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Abstract. It is well-known that the symplectic Lanczos method is an efficient tool for computing a few
eigenvalues of large and sparse Hamiltonian matrices. A variety of block Krylov subspace methods were
introduced by Lopez and Simoncini to compute an approximation of exp(M)V for a given large square
Hamiltonian matrix M and a tall and skinny matrix V that preserves the geometric property of V. For the
same purpose, in this paper, we have proposed a new method based on a global version of the symplectic
Lanczos algorithm, called the global J-Lanczos method (GJ-Lanczos). To the best of our knowledge,
this is probably the first adaptation of the symplectic Lanczos method in the global case. Numerical
examples are given to illustrate the effectiveness of the proposed approach.
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1 Introduction

Global Krylov subspace methods have received considerable attention in recent years, due to their ef-
ficiency for solving large and sparse linear systems. Some classes of these methods have been intro-
duced in [22, 23], such as the global Lanczos-based method, the global full orthogonalization method
(GI-FOM), and the global generalized minimal residual (GI-GMRES) based on the global Arnoldi pro-
cess to solve a linear system of equations with multiple right-hand sides. Heyouni in [19] proposed
the global Hessenberg (Gl-Hess) method and the global changing minimal residual method based on
the Hessenberg process (GI-CMRH). The global bi-conjugate gradient method (GI-BCG) and global
BiCGSTAB algorithm (GI-BiCGSTAB) based on global oblique projections of the initial residual onto
a matrix Krylov subspace have also been developed in [24,31]. Later, in 2016, improved variants of the
global methods for the simultaneous solutions of large and sparse linear systems whose coefficient matrix
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is non-Hermitian were discussed in [30]. Other global versions of Krylov subspace methods can be found
in [2,11,17-19,25,26,29,33-37]. In this paper, motivated by some ideas, we propose a new approach
of global Krylov subspace methods. More precisely, we introduce a global version of the symplectic
Lanczos algorithm (also called global J-Lanczos) based on a J-tridiagonalization procedure that reduces
a large sparse 2n x 2n Hamiltonian matrix to a small 2m x 2m, (m < n) Hamiltonian J-tridiagonal matrix
in the form

* % *
*
* *
* * ok
*
*
* *x %

Many applications in several engineering areas adopt the Hamiltonian structure of matrices in the
numerical solution of large systems. Especially the related problems of solving Riccati algebraic equa-
tions [21], such as Gerstner and Mehrmann proposed in [6] an algorithm to reduce a Hamiltonian matrix
to the J-Hessenberg Hamiltonian form based on symplectic transformations of type QR via an SR fac-
torization with symplectic similarity transformations to solve an algebraic Riccati equation. The Hamil-
tonian form is also used by Lin, and Wang [13, 14] to construct a J-Lanczos algorithm for solving large
sparse Hamiltonian eigenvalue problem which arises in both continuous-time and discrete-time optimal
control applications. Inspired by certain results, we have presented in this work an approach to approxi-
mate the exponential Hamiltonian matrix operator exp(M)V for a given large square Hamiltonian matrix
M and a tall-and-skinny matrix V preserving the geometric property of V by using the proposed global
J-Lanczos method whose corresponding orthogonalization process is shorter due to the reduction of the
number of multiplications performed “matrix-vector” or “matrix-matrix” and easier to implement com-
pared to the one used in the block J-Lanczos Krylov method, which makes the algorithm less costly and
thus moderately increases the numerical stability. The approximation procedure for exp(M)V that pre-
serves structural properties of the associated matrices plays an important role in several areas of applied
mathematics. It can be exploited to solve systems of ordinary differential equations (ODEs) or time-
dependent partial differential equations (PDEs). Many researchers have been interested in the approxi-
mation of the given matrix-vector product exp(M)v and its applications, via Krylov subspace methods,
for example, Friesner and his collaborators [15], and Gallopoulos and Saad [16] have presented some
ways to apply this approximation to solve systems of ordinary differential equations.

The main difference between the standard global Lanczos method and the global J-Lanczos method
is that the first one uses a Euclidean space structure on R with Frobenius inner product while the second
uses R2"*25 as free K-module with a Frobenius inner-like product on the ring K = R>*2, to generate a
Jé-orthonormal basis of the Krylov subspace K (M,V) = span{V,MV, ..., M*~'V} for a given 2n-by-2n
Hamiltonian matrix M and a 2n-by-2s rectangular matrix V where s < n. The remainder of this paper is
organized as follows. We start by introducing some definitions related to the J-structure matrices. Some
basic notation and terminology are reviewed in Section 2. In Section 3, we present, in detail, our proposed
approach of the global J-Lanczos method. To describe the process, we develop a new variant of the
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symplectic normalization, which is named “the global J*-normalization”. In Section 4, we are interested
in finding an approximation of exp(M)V using the proposed global J-Lanczos algorithm. Numerical
comparisons are made with other known iterative methods in Section 5 to show the performance of the
method presented in this work.

2 Terminology, notation, and some basic facts

In this section, we present some basic concepts and notions that will be used throughout this paper. Some

of the results in this paragraph are borrowed from [1, 3]. The J-transpose of any 2n-by-2p real matrix

M is defined from the usual transpose 7 by M’ = JZTPM T I, € R?P*2" where the skew-symmetric matrix
0, 1 . . . . . .

Joy = ( ; 0"> , I, and 0,, denote the n X n identity and zero matrices, respectively. It is obvious that
—In n

Jon 1s a real orthogonal skew-symmetric matrix, that is, J{nl = JzTn = —Jo,. We will drop the subscripts

n and 2n whenever the dimension is clear from its context. Any matrix M € R?"*2" has the explicit

é —iT>’ where A,G,R € R™" and G = G', R =R is called Hamiltonian. By

a simple algebraic manipulation, we can show that a Hamiltonian matrix M is equivalently defined by
M’ = —M. Similarly, a matrix M € R?"*?" is skew-Hamiltonian if and only if M/ = M, and it has the

form M = <?} :}), where A,G,R € R"™" and G = —G”, R = —R”. Any matrix S € R?"*?? satisfying

ST J2uS = J or equivalently, S’S = b, is called a symplectic matrix.

block structure M = (

Proposition 1. Let E; = [e;,e,ti] for i = 1,...,n, where e; denotes the i-th unit vector of length 2n. Then
EiJs = JE;, E} =E! and E[E; = §,;b,

where
| ifi=
Elj = JZTElezn and 5,']' = lfl J
0 ifi#j.
More generally, given k, s € N such that n = ks, we define the set (Fi)lgigk as

— 2nx2s
Fi= [e(i—])s-i-l y€(i—1)s425 -+ +» €iss €nt-(i—1)s+15€nt-(i—1)s+25 - - - 7en+is] eR .

Then, we have
Fias = Ik, F = F' and F'F; = §;;b,

1

where
L, ifi=},

J T T

Proposition 2. Any matrix U € R*>? can be uniquely expressed as a finite linear combination of
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(Fi)1<i<p in form U =Yt FU;, with

UGi-Ds+1,1 7 U@i—1)s+1s UGi—1)s+1s+1 "7 Uii—1)s+12s
Uis 1 Ui s Uis st 1 Uis 25
Ui — is, is,S 15,5+ is,2s e R25x2s.
Upy(i—1)s+1,1 "7 Unp(i—1)s+1,s Unt(i—D)s+ls+1 "7 Unp(i—1)s+1,.2s
Up+is,1 T Un+is,s Untis,s+1 T Un+is,2s

Proposition 3. Let M be a 2n-by-2n real matrix, where n = ks with k, s € N. Then M can be represented
uniquely as M = ):le ZI;':1 F,-M,-ijT, where M;; € R25%2s jg given by

MG 1)s+1,j—s+1 "7 Mi-1)s41,js MG Ds+1nt(G—Ds+1 "7 MGi-1)s+1ntjs
Mis (j—1)s+1 e Mis, js Misn+(j—1)s+1 e Mis nt js

My (i—1)s+1,G—1s+1 " Mug(i—1)s+1,js My (i—D)s+1n+G—Ds+1 " Mpgp(i—1)s+1,n+js
Myt is,(j—1)s+1 tee Myt s, js Myt ignt(j—1)s+1 cee My tis.n+js

k k
Proposition 4. A matrix M given by M = Z Z EML-J-FJ-T is Hamiltonian (respectively, skew-Hamiltonian)
i=1j=1
if Mijj = —M;; (respectively, Mijj =M;).

k k
Proof. This result is obvious since M/ = ¥ ¥ F,-M]J.I-F jT. O
i=1j=1

k Kk
Definition 1. A matrix M = Y, Y, F;M;;F jT € R?™2 s called in block upper J-triangular form if M; ;=
i=1j=1
Oy for i > j and M;; is upper triangular. It is called in block J-Hessenberg form if M;; = Oy, fori > j+1,

and in block J-tridiagonal form if M;j = Oy when i < j—1ori> j+1.
Remark 1. A Hamiltonian block J-Hessenberg matrix is in block J-tridiagonal form.

Let us now define and give some properties of what we will call the J°-diamond product ¢;s and the
s-star product * that we will use to describe our approach to the global J-Lanczos method. Note that the
s-star product is used here instead of the Kronecker product only for notational convenience.

Definition 2. (s-star product) For a given s, let X = [X;,Xp,...,Xi| € RS where the blocks X; for 1 <
i <k are n x s matrices, and let v be a vector in R¥. Then the s-star product of X and v, which we denote
by X sV, is defined as follows

k
X ¥,V = Z viX;.
i=1

Given now a matrix H € R®, the x-product of H and X is defined by
XxgH=[X*H(:1),X*H(:,2),.... X xH(:,r)],

where H(:,i) denotes the i-th column of H.
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Remark 2. It can be readily verified that
X v=X(val),

X« H=XH®I),
where the symbol @ denotes the Kronecker product.
Proposition 5. Ler A,B € R, H ¢ R’ G € R™ and let & € R. Then we have the following
properties:
(A+B)+x;H=Ax;H+Bx;H,
Axg(aH)=o(A*H),
(AxsH)x;G=Ax; (HG). (1)

The main ingredient to describe our method is the J°-diamond product ¢;s which we define below
and then give some interesting properties.

Definition 3. (J*-diamond product) For a given s, let U = [U, , Up] € R*¥ and V = [V} , V] € R¥™*%
where U; and V; are 2n X s matrices, for i = 1,2. The J*-diamond product of U and V denoted V o5 U is
defined by

— T - T

tr(VEJUy)  tr(VEIU).
Remark3. 1) UopU =tr(UlJU,)D.

2) If s = 1, assuming that U = [u; us] and V = [vi v2] € R*2, the J*-diamond product V o5 U is
nothing else than the matrix product V'U. Indeed,

T T
(= Jur —vyJup
Vorl= ( vigu,  viJup )
=Jvlju

=Vv/U.

Proposition 6. Let A = [A1,A,...,Asp] € R¥2PS and B = [By,Bs,...,By] € R¥**25 where A; and B,
are blocks of size 2n x s, for 1 <i<2pand 1 < j<2l. Then, the J°-diamond product A oy B is the
2p-by-2l real matrix given by

tr A JB; ) (A JB[+ ) T
. pti p+z J r
Aoy B = ,Zi JZE ( rATJB)  wr(AliBL,) )5

Note that E; = |ej,e,ii| fori=1,...,pand E; = [ej,e;1 | for j=1,...,1, where e;, e,,; denote the i-th
and (p +i)-th unit vector of length 2p, respectively, and ej, e, correspond to the j-th and (I + j)-th
unit vector of length 21, respectively.
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Lemma 1. According to the definition of the J*-diamond product, we have

p I
AopB=Y"Y Ei([Ai,Apyilo [B),Biyj)) E] .
i=1j=1
Moreover, it is easy to see that
(Ao B) =BoyA. )

Proposition 7. Let A € R?275, B.C € R*?!5 gnd let oo € R. It’s easy to prove that

AOJS (B—|—C):A<>]A'B+A<>]sc, (3)
Aoys ((XB) = (X(AO]S B)
Proposition 8. Let A = [A1,Ay,...,Azy] € R¥2PS and B = [By,Ba,...,By] € R¥5, where A; and

Bj are 2n x s matrices, for 1 <i<2pand 1< j <2I, respectively, and let v € R2%2 G e R2P>2r,
H € R*2" and M € R¥™ 2", Then we have the following relations

Aoy (Bxsv) = (Aoys B)v, 4)

Aoy (BxsH) = (Aoys B)H, (5)
(MA) oy B=Acy (M'B), (6)

(A*sG) oy (BxH) =G’ (Aoy B)H, (7

where the superscript J refers to the J-transpose.

Proof. Formulas (4), (5) and (6) are easy to get. However, formula (7) can be proved using formulas (2),
(5) and (6). O

In the following, we define the orthogonality and the normalization on R?**?* in the global symplectic
context.

Definition 4. For a given s, let U = [U; , Up] and V = [V} , V2] be two 2n x 2s matrices, with U;, V; €
R2S fori =1, 2. Then,

1) U andV are J*-orthogonal if their inner-like product V o5 U = 0px2.
2) V is said to be J°-normed if Vo5 V = I.
3) U is said non-isotropic if tr(UL JU,) # 0.

Lemma 2. (Global J*-normalization) Let U = [U; , U] € R¥% be a non-isotropic matrix (i.e.
tr(UlTJUz) £0; Uy € R fori=1, 2). The 2n x 2s matrix V. = U x,C~', where

vab, if >0,

1 0 with o = tr(Ul JU), ®)
V_O‘<o _1>’ if o <0,

is called the J*-normalized matrix associated to U, which satisfies V o5V = I,. The 2-by-2 diagonal
matrix C is called the global J*-norm of U and verifies U o5 U = C'C = al,.

C:
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Proof. Since U o U = C/C = al,, and using formula (7), we have

VorV=(Ux,C oy (Ux,Ch)

=C/(UopU)C!
—b.

149

O

1
Proposition 9. IfV = [V}, V5] € RS is a symplectic matrix, then V o5V = sk (i.e. —=V is J*-normed).
s

Proof. Since V is symplectic, we have

which implies that

VopV= <

VJV:<

—tr(VIIvi) —tr(VIJIV2)
T - SI2 .
tr(VEJvy)

3 Global /-Lanczos method

VI
viav

~VIv,\
VIV, > = by,

tr(VEIV,)

NG

In this section, we propose a global version of the symplectic Lanczos method that relies on simple re-
currence formulas based on the global J*-normalization defined above. In the following, the dimension
of the elements of the basis (E;),.;., and (F;),-;-, are given according to the context. In analogy to
the standard Lanczos, the scheme proposed here is that for a given Hamiltonian matrix M € R¥>?" we
construct a J*-orthonormal basis Qy = [¢1,. .., qk, @i+ 1, - - - ,qax] € R (k < n) of the Krylov subspace
Ki(M,V) = span{V,MV,... M*~'V}, where the matrix V € R?"*? is such that s << n. The column
blocks ¢; for i = 1,...,2k are in R>"*S. We also construct the 2k-by-2k Hamiltonian J-tridiagonal ma-
trix Hy, satisfying the global symplectic Lanczos relationship MQy = Oy s Hy + (Vit1 *5 Cr) FkTH, where
Vi1 € R2%2s g J®-orthogonal to Qg (i.e., Qx ©ss Vi1 = 02k x2). Note that the reduced matrix H; remains
Hamiltonian and has the following J-tridiagonal form

ap ci Bi
by a ¢ B2
T Ck—1
H — b1 ax B
" —a; —b
2} —c1 —ay —b
—bi_1
Yie —Ckg—1 —ai

with v, B;, a;, b, ¢i, € R, where b; #0 and ¢; A0 fori = 1,... k.

; €))
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3.1 Global J-Lanczos process

We start by identifying on both sides of the equality MOy = O *s Hy + (Vit1 *5 Ck) 1, the i-th and
(k + i)-th s-block columns g; and gy ;, respectively. Then we get, fori = 1,... k,

Mq; = ci-1q9i-1 +aiqi + biqi+1 + Yiqk+i, (10)
Mqi+i = Bigi — bi-1qi+i-1 — Qiqivi — CiGkvit1-
Note that by = 0 and ¢y = 0. The J*-orthonormality of the matrix Q; which is expressed by

tr(qi.ida;) —tr(af, i Jaiei)\ ot
Ok oy O = ( ki . E; = Iy,
s ; Z dig) gy )P

leads to 17(q’ Jqiyi) = 1 for all i = 1,...k, while the other traces are equal to zero. Using equations (3)
and (5), we find
Ok 0y MOy = Ok oys (Qu s Hi + (Vi1 %, Cr) By ) = Hi.

Therefore, the coefficients a;, ¥; and B; can be determined as follows,

a; = —tr(q}, . JMq;),
ﬁi: _tr(q£+zJqu+l)7 for l: 1,...,]{.
¥ =tr(q] JMg;),

On the other hand, if we combine the two equations of system (10 ), we obtain

Ci 0 a; i

M [qi, qrri] = [qi—15 Grri—1] ( 101 b 1) + [qis Gr+i] *s < l _ﬁ;>
11— l

N—_————

Y
T hi i
+ i1, Ghit1] *s (1(9)1 —Oc,->' (11)
—_—
hij1,i

Setting

Vicr=1[qi-1, qkyi-1],

Vi=1qi, qi+il,

Vier = [qiv1 5 qiyiv1]s
and

Tizhi,i=<ai Bi>,
Yo —ai

bi 0
Ci=hip1i=—h/;, = <Ol —Q) :

The relation (11) can thus be reformulated as follows

(12)

MV; = =V %, CL + Vi T+ Vigy %,

The main steps of the global J-Lanczos algorithm can be illustrated as follows.
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Algorithm 1 The global J-Lanczos method (GJ-Lanczos)

Input: A Hamiltonian matrix M € R?*?" and a J*-normed matrix V| = [g1,qx+1] € R?? (i.e. Vi oy
Vi=Db)withk <<nandq, g+ € R2m%s,
Output: The J*-orthonormal matrix Qx = [q,,---,qk;qk+1,---,q2] € R¥*?S and the Hamiltonian J-
tridiagonal matrix Hy € R2*2k guch that Qy ;s MQy = Hy.
Initialize: V) = 0,%2s, hO,l =Cy = 0342,
fori=1,2,....kdo
hij =T, =V;o; MV;
A =MV;+V; *sCl'J_l — Vixs T;.

A =V %G

Global J*-Normalization step (see, lemma 2) ] ;
with [git1,qk+iv1] = Vi1 and hivr;=—h; = Ci.
end for
k k  min(j+1,k)
Set Oy = Y ViF! and H, = Y, Y EhijE].
i=1 Jj=li=max(j—1,1)

Remark 4. It should be noted that the algorithm outlined above may suffer from breakdown if the matrix
A; is isotropic at a certain step i. Otherwise, the basis generated by this algorithm is J*-orthonormal
which means that Qi ©ys O = Dy. This comes from the fact that, by construction, V; oy V; = 0;, jb for

i,j=1,...k where
1a lf.]:la
6 = c
0, ifj#i

The results presented in the following lemma will be useful later to derive some basic relations of
our new method.

denotes Kronecker’s symbol.

Lemma 3. Suppose Qx =[q,,-- -, qks Qi+ 1,- - - q2x] € RS and Hy, € R**? are defined as above, and
let V. € R 2. Then . .
Orop (V) = (Qxor V)E;, (13)

(Qu s Hi) Fi = O *s (HiE;). (14)
Proof. 1t is obvious, F; = E; ® I;, which gives
Qr oy (VF') = Qrop (V(E! ®1)),
= Qrop (VHE]),
= (Qrop V)E!.
On the other hand, we have
(Qr*s Hy)F;

Ov(Hy ® I))F,
Or((Hr® ;) Fy),
Ou((HiEi) ®15),
O *s (HLE;).
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Theorem 1. According to Algorithm 1, the following relationships are derived

MOy = Qi s Hy + (Virt *s i1 ) Fy!
Ok oy MOy = Hy,

where Hy has the same Hamiltonian structure as the matrix M.

Proof. From Algorithm 1, we have
MQOF; =MV; =V, *shi_1,;+Vixshij +Vig1 %5 hiy1

k k min(j+1,k)
Given that Oy = Y. V;F/, Hy = ¥, Y EhiE] and with formula (13) of Lemma 3, we obtain
Jj=1 Jj=li=max(j—1,1)
MOF; = Vi1 xshi—1 i+ Vi*xghij+Vie1 *shiv14,
= Oy *s H E;,
= (QkxsH)F; fori=1,....k—1.

It follows that, for i =k,

MO F, =MV,
= Qp *s HiEp + Vi1 x5 i1k,
= (Qu *s He) Fic + Vieg1 %5 M1 ks
from which, we deduce that
MOy = Qi s Hi+ (Vw1 % b1 1) F -

The second relationship is proven using formulas (4) and (5). Indeed,

Ok o5 MOy = Qi oys (O 5 Hi) + Qx 05 (Viey 1 *s by 1 ) Y
= (Qxor Ok Hi + Qo (Vi1 *s i1 1) EL
———
by
= Hi+ [(Qkor Vi )i 1 1) EL,
~—— ——

O2kx2

= Hj.

Moreover, it is easy to verify via formulas (2) and (6) that H; has the same Hamiltonian structure as the
matrix M. ]

Remark 5. If M is skew-Hamiltonian, the matrix Hy, resulting from applying Algorithml to M,preserves
the same skew-Hamiltonian structure, i.e. H; = (Qx ;s MQy)” = H.

Theorem 2. Suppose that the matrix M is Hamiltonian and skew-symmetric. If Vi = [q1 , qiy1] € RZ"2S
is such that gy = —Jqi, then the blocks (q;), generated by Algorithml are verifying qi.; = —Jq; for
i=1,...,k. Moreover, the reduced matrix Hy, is also Hamiltonian and skew-symmetric.
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Proof. The matrix M is Hamiltonian and skew-symmetric, this yields JM = MJ. We first show, by
induction, that gx4; = —Jg; for i = 1,... k which is true for i = 1 according to the hypothesis. From
Algorithml1, taking into account that g;1;_ | = —Jg;—1 and g;; = —Jgq; for a giveni < k— 1, we have
T; =Vios MV,
_ (—tr(q,{ﬂ-JMq,-) _”’(CIZHJM%H))
tr(ql IMgi)  tr(q] IMgi)

_ ( tr(q; Mq;) —fr(qiTJqu')>
tr(qiTJMq,-) tr(qiTMq,-)

0 —1

This leads to a; = 0 and B; = —7%, and assuming c;_; = —b;_, it follows from system (10)
1
Al(. ) =Mgq;+bi—19i-1 — BiJqi,
2
A,( = ~MJgi—bi1Jgi1 — B qiyi = —JAZ(I)-

bi 0
0 —Cj

. i O — _ it o — o ADT TADY — AW A
This results in C; = = Voabh with a =tr(A;’ JA;”) =tr(A;’ A;7) > 0 as long as

1
Agl) # 02«5 Finally, we obtain Vi = [qit1 , Qrriv1] = Ai*q Ci_1 = —[AEI) , —JA(I)], which means

i

b:
that gr4;+1 = —Jgi+1. This proves the desired result. Furthermore, alccording to Theorem 1, Hy is
Hamiltonian, while the skew-symmetry is simply obtained from the structure of C; and T;. O

4 Approximation of the matrix exponential operator

The approximation of the matrix-matrix product exp(M)V for a large-scale square matrix M and a given
tall matrix V is the focus of this paper. This interest comes from the vast role that approximation of
the matrix exponential operator plays in many scientific areas. It’s the key element of many exponential
integrators to solve systems of ordinary differential equations (ODEs) or time-dependent partial differ-
ential equations (PDEs) [4]. The use of Krylov subspace approaches in this context has been proposed
in the literature [1,7,8, 10,12, 13,20, 32]. The approximation procedure for exp(M)V taking into ac-
count structural properties of M and V is more efficient and more accurate when M is a Hamiltonian and
skew-symmetric matrix or simply Hamiltonian. The preservation of geometric properties is necessary
for the effectiveness of some geometric integration methods [9, 28]. Structure-preserving methods can
be used, for example, to compute Lyapunov exponents of dynamical systems and geodesics (see [5, 7]).
Our goal in this section is to present a structure-preserving approximation of the matrix-matrix product
exp(M)V, applying global J-Lanczos process for a given 2n-by-2n Hamiltonian, skew-symmetric matrix
M and a 2n-by-2s rectangular matrix V (s < n). The proposed approach is new, differs from those given
in [1,27], and seems to give better results.

The next lemma provides an important result given in [27] which will be of interest in the later
discussion.

Lemma 4. If M is a 2n x 2n real Hamiltonian matrix, then exp(M) is symplectic. If M is in addition
skew-symmetric, then exp(M) is orthogonal and symplectic.
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Proof. Indeed, exp(M)’ exp(M) = exp(M’)exp(M) = exp(—M)exp(M) = b, and the same result re-
mains true for the superscript 7. Ul

In the following theorem, we will have an approximation of exp(M)V that preserves the global J*-
norm of V defined in Lemma 2.

Theorem 3. Let M € R¥"™2" be a Hamiltonian matrix, and V = [\71 , Vz} € R¥25 ywhere Vy, V5 € RS,
and C is its global J*-norm (defined in Lemma 2). Assuming that Q) and Hy, are generated by Algorithm
1. Then, for any polynomial py_, of degree less than k — 1, the following formula is satisfied.

Pr—1(M)(V) = Op *s (pr—1(Hk)E1C).
It follows that
exp(M)V =~ Qy *, (exp(Hy)E;C),
which verifies that Wy o;s Wy =V o5V = tr(VlTJvz)Iz, with Wy, = Qy. *, (exp(Hy)E,C).
Proof. Suppose that Oy and H; are the results of k steps of the global J-Lanczos algorithm. Then we

have
MOy = Qp*s Hi + (Vir1 *s i1 ) F and Qg oys MQy, = Hy.

It was shown that the J*-normalized matrix associated with V is given by V; =V x,C~!, which leads to
V = Vy %,C = QiF} *;C. We will prove by induction that M'V = (Qy *SH,i)Fl xC, fori=0,1,...k—1.
The statement is obviously true for i = 0, as well as for i = 1, indeed,
MV = M(QkFl *g C),
= MOyFi %5 C,
= [(Qx *s Ho)Fi + (Vier1 5 i1 ) i Fi] %4 C,
——
02s><2x
= (Qk *s Hy)F1 %5 C.
Suppose that the result is true for a given i < k — 2, it implies that,

MY = M[(Qy *s HL)Fy %, C),
= (MQy *; H})Fy %,C,
= [(Qu #s Hi) %5 Hy| Fi %3 C+ [((Vier1 %5 a1 ) F ) #5 HE] Fy % C,

:02n><25

= (Qk+s H T F %, C.

We therefore conclude that, py_1(M)V = (Qx *s px—1(Hx))F1 *; C for all polynomials p;_; of degree
< k— 1, which can also be written using formulas (1) and (14)

Pr—1(M)(V) = Qi *; (pr—1(Hi)E1C).
This eventually leads us to the following approximation

exp(M)V =~ Oy *, (exp(Hy)E|C).
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Moreover, using formula (7), we obtain

Wi ogs Wy = [Qx %4 (exp(Hy ) E1C)] o5 [Ok *5 (exp(Hk)E1C)],
= (exp(Hi)E1C)’ [Qk oss Ox] (exp(Hy)E1C),

=’ E{exp(Hk)J(QkOJ.YQk)CXp(Hk)El C,
—_——

L =l

=’ |E{exp(H;)’ exp(Hy)E: | C,

=Dy

=C'c,
such that, according to Lemma 2, C/C =V oV =tr(V) TJVQ)IZ. O

Remark 6. IfV is given by V = [\71,—]‘71] € R and according to Theorem 2 and Lemma 4, if
M, in addition to being Hamiltonian, is a skew-symmetric matrix, then exp(Hy) is both orthogonal and
symplectic.

5 Numerical experiments

The numerical examples below illustrate the effectiveness of the proposed global J-Lanczos method
when applied to approximate an operator of the form exp(M)V by comparing our approach with those
given in [1,27] which based on the block symplectic Lanczos method. Using the Frobenius norm, we
examine the accuracy of Wy = Oy *, (exp(Hy)EC) as an approximation of exp(M)V (i.e. ||exp(M)V —
Oy *s (exp(H)E C)||r) when the dimension of Krylov’s space k increases. The matrices in Example
1 are constructed similarly to the matrices in Example 3.4 described by Lopez and Simoncini in [27].
The 2n-by-2s matrix V is given by V = [X,—JX|, where X = exp(G)hLy,xs, with G being a 2n-by-2n
skew-symmetric and Hamiltonian matrix derived in the same way as M. Here I, «s consists of the
first s columns of the identity matrix I»,. The test matrices used in Examples 2 and 3 are taken from
the Matrix Market (http://math.nist.gov/MatrixMarket/). All our experiments were performed
using Matlab 2015a. The vertical axis in all given figures represents 10 x log, of error except in Figures
3 and 6 where the error is represented directly.

Example 1. In this first example, we consider a 10000-by-10000 skew-symmetric and Hamiltonian

matrix M defined as
M, M,
M =
(e )

where M| and M, are the 5000-by-5000 skew-symmetric and symmetric parts, respectively, of two dif-
ferent matrices with normally distributed random entries. For s = 5, varying m from 1 to 500,we obtain
the error displayed in the Figure 1. In order to make a comparison between our approach and those given
in ( [1,27]) simultaneously, we take n = 1500 and s = 2, we then obtain the error indicated in the Figures
2 and 3.
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Example 2. In this example, we consider a 10000 x 10000 skew-symmetric and Hamiltonian matrix M

constructed as follows
[ My M,
M= (—Mz M 1> '

The blocks M| and M, are the n-by-n skew-symmetric and symmetric parts, respectively. M| is taken as a
random matrix with normally distributed numbers and M, = gallery('ris’,n) is a 5000 x 5000 symmetric
Hankel matrix, with elements M (i, j) =0.5/(n—i— j+1.5), fori, j=1,...,n. For s = 6, we get Figure
4. For a matrix of size 2000-by-2000, with s = 2, Figures 5 and 6 and illustrate the performances of the
methods proposed in this study.

Example 3. For this example, we wish to examine the evolution of the error relative to the approximation
of exp(M)V, when the matrix M is Hamiltonian but not necessarily skew-symmetric, for this reason, we
consider a 10000 x 10000 Hamiltonian matrix M given as follows

My —M;
v )
where M, and M, are the n-by-n skew-symmetric and symmetric parts, respectively. M) is taken as
Hansen matrix and M, = gallery('ris’,n) is a 5000 x 5000 symmetric Hankel matrix, with elements
M(i,j) =0.5/(n—i—j+1.5), fori,j=1,...,n. M3 = shaw(n) is a 5000 x 5000 symmetric Hansen

matrix. For s =5, in the Figure 7, we find the error committed when approximating exp(A)V. Let
n = 1000, s = 2, we have the following error shown in the Figure 8.

6 Conclusion

In this paper, we have presented a global approach to the symplectic Lanczos method based on a new
version of symplectic global like-orthogonalization and symplectic global like-normalization. The de-
veloped global J-Lanczos method, in addition to being robust in particular in terms of computational
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time which has been observed during the calculations and being easily implementable, presents a con-
siderable numerical efficiency compared to the block J-Lanczos method, when applied to approximate
the exponential matrix-matrix operator exp(M)V for a given large square Hamiltonian matrix M and a
tall and skinny matrix V, preserving the geometric property of V.
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