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Abstract. In this paper, a special kind of Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolu-
tion equations is introduced. Since it is not possible to solve DGLAP integral equations analytically,
the numerical solutions of these equations can be of interest. Here, the Tau spectral method is used for
solving this integral equation and offer an approximate solution. Finally, this solution is compared with
solution obtained experimentally for Q2

0 = 0.35GeV 2.
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1 Introduction

Probing the internal structure of the nucleons is one of the important aims of particle physics. The nu-
cleons are the bound systems that are consisted of a number of fundamental particles called partons.
These particles are quarks and gluons. The partonic structure of the nucleon has been investigated by
lepton-nucleon deep inelastic scattering (DIS) in experimental particle physics [4]. The parton distribu-
tion functions of the nucleon describe the probability for finding a parton with a specified longitudinal
momentum fraction in DIS processes. The parton distribution functions (PDF) of the proton are de-
pendent on two variables Q2 and x. The variable Q2 is related to the momentum 4-vector transfer q as
Q2 =−q2 and x = Q2

2p.q is the momentum fraction which is carried by the parton in which p denotes the
momentum of the nucleon.

There are many theoretical models for studying dependence of x to the parton distribution functions
[4]. On the other hand, the dependence of the PDFs on Q2 variable has been investigated in perturbative
quantum chromodynamics (QCD) via Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution
equations [5]. The PDF of the proton have been evolved from initial scale, Q2

0, to the higher Q2 values
applying the DGLAP evolution equation.
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These coupled integro differential equations are applied in both theoretical and experimental studies
of particle physics. One can evolves the unpolarized and polarized PDF of the nucleon from initial scale
Q2

0 to higher Q2 values using the DGLAP evolution equation [8]. Some kinds of DGLAP equations can
be seen in [3, 9]

The present paper is devoted to the study of the numerical solution of one kind of the DGLAP
equations by the Tau method. For this aim, at the first the desired DGLAP and Tau method are introduced.
In Section 2, the numerical solution of DGLAP equation for the flavor nonsinglet and singlet distributions
by Tau method are given. Finally, some numerical examples are presented.

1.1 DGLAP Equations

We study the Q2 evolutions of the unpolarized PDF of the proton applying the DGLAP evolution equa-
tions. One kind of DGLAP equations for the flavor nonsinglet distribution is given by [4]:

dqNs(x,Q2)

dlogQ2 =− αs

2π

∫ 1

x

(
Pqq(

x
y
)qNs(y,Q2)

)dy
y
,

in which
αs =

12π

(33−2n f ) log( Q2

0.2GeV 2 )
,

denotes the runnig coupling constant at leading order (LO), qNs =
n f

∑
i=1

qi− q̄i is a unpolarized nonsinglet

quark distribution function and Pqq is the splitting of quark-quark vertex, where n f is the number of quark
flavors and q̄i is pod quarak. This splitting function is given as:

Pqq(z) =
4
3

(1+ z2

1− z

)
,

at LO approximation [8].
The unpolarized flavor singlet DGLAP equation is written as [4]:

dqs(x,Q2)

d logQ2 =− αs

2π

∫ 1

x

(
Pqq(

x
y
)qs(y,Q2)+2n f Pqg(

x
y
)g(y,Q2)

)dy
y
,

where qs =
n f

∑
i=1

qi + q̄i denotes singlet parton distribution, n f is the number of quark flavors and Pqg is the

splitting function of gluon to quark-antiquark pair [4]:

Pqg(z) =
1
2

(
z2 +(1− z)2

)
.

Finally, the DGLAP evolution equation for gluon distribution is given as [4]:

dg(x,Q2)

d logQ2 =− αs

2π

∫ 1

x

(
Pgq(

x
y
)qs(y,Q2)+Pgg(

x
y
)g(y,Q2)

)dy
y
,

where g is the gluon distribution function and Pgg denotes the splitting function of gluon to gluon which
has the following form at the LO approximation [4]:

Pgg(z) = 6
(1− z

z
+

z
1− z

+ z(1− z)
)
.
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1.2 Tau method

In 1981, Ortiz and Samara introduced the Tau method which is used to compute the numerical solu-
tions of both linear and nonlinear normal differential equations with initial conditions using linearization
approach [7]. In the last two decades, Ortiz and Samara have introduced several works on theoretical
development of the Tau method and its practical applications. In fact, the Tau method offers a series
of matrix operations instead of localization or other similar methods. Due to its high precision, the Tau
method has been widespread used in teh numerical solving of differential equations. Hosseini and Ortiz
investigated the applications of Tau method by first linearizing the non-linear equations before solving
them using the Tau method [1]. Liu and Pan used the Tau method to solve normal differential equations
in 1999 [6]. Dao and Khajeh solved a simple form of linear integral equations numerically using the
Tau method in 1997 [2]. From 1999 onwards, several researchers have offered numerical solutions for
integral and integro-differential equations using the Tau method [2, 5–7].

In the Tau method, a family of independent linear functions with finite dimensions is selected so
that the exact solution to the equation can be approximated as a linear combination of these functions.
Then, we offer conditions in order to minimize the approximation error. So, we have a system of linear
equations or a Sylvester matrix equation. By solving the obtained system and determining the coefficients
of linear combination, we can portrait the solution in a special function space with finite dimension [7].

To introduce the Tau method the following matrices are introduced: (see [7])

η =


0 0 0 0 · · ·
1 0 0 0 · · ·
0 2 0 0 · · ·
0 0 3 0 · · ·
...

...
...

...
. . .

 , µ =


0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .

 .

Theorem 1. [7] If yn(x) = anX with an = (a0,a1, . . . ,an,0, . . .) and X =
(
1,x,x2, . . . ,xn, . . .

)T , then

1.
dm

dxm yn(x) = anηmX ,

2. xmyn(x) = anµmX .

2 Main results

2.1 Solving DGLAP evolution equation for nonsinglet quark distribution function using
the Tau method

Consider the DGLAP evolution equation for distribution function of nonsinglet quark with the following
initial conditions:

dqNs(x,Q2)

d logQ2 = − αs

2π

∫ 1

x

(
Pqq(

x
y
)qNs(y,Q2)

)dy
y
, (1)

qNs(x,Q2
0) = u(x,Q2

0)− ū(x,Q2
0)+d(x,Q2

0)− d̄(x,Q2
0), (2)

where u, ū, d and d̄ are distribution functions for up quark, up antiquark, down quark and down antiquark,
respectively. We aim to approximate the solution of this equation by considering n points of distribution
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function for non-singular quark (2) using the Tau method. We assume that {φi(x)}n
i=0 and {ν j(Q2)}n

j=0
are two sets of standardized polynomials and an approximate solution for Eq. (1) is calculated as follows:

dqNsn(x,Q
2)

dlogQ2 +
αs(Q2)

2π

∫ x

1

(
Pqqn

(
x
y
)qNsn(y,Q

2)
)dy

y
= 0, (3)

where qNsn and Pqqn
are approximations for qNs and Pqq, respectively. So we have:

qNsn(x,Q
2) ≈

n

∑
i=0

n

∑
j=0

ai jφi(x)ν j(Q2) = AΨ(x,Q2), (4)

Pqqn
=

n

∑
l=0

pl(
x
y
)l, (5)

where A = (a00, . . . ,a0n,a10, . . . ,a1n, . . . ,an0, . . . ,ann)1×(n+1)2 , and

Ψ(x,Q2) =




φ0(x)ν0(Q2)

...
φ0(x)νn(Q2)
φ1(x)ν0(Q2)

...
φ1(x)νn(Q2)

...
φn(x)ν0(Q2)

...
φn(x)νn(Q2)


(n+1)2×1

.

By substituting Eqs. (4) and (5) in the right-hand side of Eq. (1), we have:∫ x

1

Pqqn
( x

y)

y
qNsn(y,Q

2)dy = APqqΨ(x,Q2), (6)

where Pqq is an (n+ 1)2× (n+ 1)2 matrix obtained from the coefficients of Tylor series of Pqqn
in (5).

According to Theorem 1, we can easily obtain that for each linear differential operator d f (x,Q2)
dlogQ2 , there

exists a unique matrix Π satisfying the following equation:

d f (x,Q2)

dlogQ2 = AΠΨ(x,Q2). (7)

The structure of the matrix Π is defined as Π = 2.3 diag(C, . . . ,C)(n+1)2×(n+1)2 where C is a block matrix
defined as C = diag(0,1, . . . ,n)(n+1)×(n+1) .

By substituting Eqs. (6) and (7) in (1), we get:

A(Π+
αs

2π
Pqq) = 0. (8)
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On the other hand, based on the initial condition of matrix equation, we have:

ABi = di, i = 1, . . . ,k, (9)

where
Bi =

(
1,Q2

i , . . . ,(Q
2
i )

n,xi,xiQ2
i , . . . ,xi(Q2

i )
n,xn

i , . . . ,x
n
i (Q

2
i )

n)T
1×(n+1)2 .

Now, let B be a matrix whose columns are Bi and use the following equations:
T = Π+

αs

2π
Pqq,

Gn =
(

B T1 · · · T (n+1)2−k

)
,

gn = (d0 · · · dk 0 · · · 0) .

where Tj is the jth column of matrix T. Therefore, the system of equations (8) and (1) can be written as
follows:

AGn = gn,

where Gn is an (n+1)2× (n+1)2 matrix and gn is an 1× (n+1)2 vector. Solving this system of linear
equations produces the unknown coefficients {a00, . . . ,a0n, . . . ,an0, . . . ,ann}, in approximation (4).

2.2 Solving DGLAP evolution equation for singlet quark distribution function using the
Tau method

Here, consider the following integral differential equation:

dqs(x,Q2)

d logQ2 =− αs

2π

∫ 1

x

(
Pqq(

x
y
)qs(y,Q2)+2n f Pqg(

x
y
)g(y,Q2)

)dy
y
, (10)

with initial conditions:

qs(x,0.35) = u(x,0.35)+ ū(x,0.35)+d(x,0.35)+ d̄(x,0.35)+ s(x,0.35)+ s̄(x,0.35).

First, there exists a function qs1 such that qs can be considered as:

qs(x,Q2) = qs1(x,Q
2)+g(x,Q2).

Therefore, the left-hand side of the equation (10) can be written as follows:

dqs(x,Q2)

d logQ2 =
dqs1(x,Q

2)

d logQ2 +
dg(x,Q2)

d logQ2 .

Consider the following approximations

gn(x,Q2) =
n

∑
i=0

n

∑
j=0

ci jφi(x)ν j(t) =CΨ(x,Q2),

qsn1(x,Q
2) =

n

∑
i=0

n

∑
j=0

ai jφi(x)ν j(t) = AΨ(x,Q2),
(11)
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of g and qs1 , respectively. So, the approximation of qs can be considered as follows:

qsn(x,Q
2) = qsn1(x,Q

2)+gn(x,Q2) = (A+C)Ψ(x,Q2). (12)

Therefore, by replacing Eqs. (11), (12) and n f = 3 in the right-hand of Eq. (10), we get:

αs

2π

∫ x

1

(
Pqq(

x
y
)qsn(y,Q

2)+2n f Pqg(
x
y
)gn(y,Q2)

)dy
y

=
αs

2π

(
APqq +CPqq +6CPqg

)
Ψ(x,Q2), (13)

where Pqq and Pqg are (n + 1)2 × (n + 1)2 matrices obtained from the coefficients of Tylor series of
functions Pqq(

x
y) and Pqg(

x
y), respectively. On the other hand, based on Theorem 1 we have:

dqsn1(x,Q
2)

dlogQ2 = AΠΨ(x,Q2),

dqg(x,Q2)

dlogQ2 =CΠΨ(x,Q2).

(14)

Take Eq. (14) in Eq. (10) we can write:

A(Π+
αs

2π
Pqq)Ψ(x,Q2)+C(Π+

αs

2π
Pqq +6

αs

2π
Pqg)Ψ(x,Q2) = 0.

So, we have:
A(Π+

αs

2π
Pqq)+C(Π+

αs

2π
Pqq +6

αs

2π
Pqg) = 0.

Now, consider the following system of equations:{
A(Π+ αs

2π
Pqq) = 0,

C(Π+ αs
2π

Pqq +6 αs
2π

Pqg) = 0.
(15)

On the other hand, based on the initial conditions for gluon and singlet quark, we have:{
ABi = di, i = 1, . . . ,k,
CBi = ei, i = 1, . . . ,k.

(16)

Set T = Π+ αs
2π

Pqq and S = Π+ αs
2π

Pqq +6 αs
2π

Pqg. Therefore, based on Eqs. (15) and (16), the following
systems are obtained:

AUn = un, CWn = wn,

where Un and Wn are (n+1)2× (n+1)2 matrices and un and wn are an 1× (n+1)2 vectors as follows:

Un =
(

B T1 · · · T (n+1)2−k

)
,

Wn =
(

B S1 · · · S(n+1)2−k

)
,

un = (d0,d1, . . . ,dk,0, . . . ,0) ,

wn = (e0,e1, . . . ,ek,0, . . . ,0) .

(17)

Solving them provides us with the unknown coefficients {a00,a01, . . . ,an0, . . . ,ann} and {c00,c01, . . . ,
cn0, . . . ,cnn} in (11).
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3 Numerical example

In this section, we give a numerical example. The computations were done in MATLAB 2018a. Also, the
obtained results were compared with the function of initial conditions obtained experimentally.

Example 1. Consider the integro differential equation for nonsinglet quark distribution function:

dqNs(x,Q2)

dlogQ2 =
−αs(Q2)

2π

∫ x

1

(
pqq(

x
y
)qNs(y,Q2)

)dy
y
,

with the initial conditions:
u(x) = 1.53461x−0.46792(1− x)1.43212(1−3.38053x+2.98227x0.5),

ū(x) = 2.85227x−0.05840(1− x)5.30056(1+1.65916x−2.31355x0.5),

d(x) = 6.78582x−0.12584(1− x)0.34160(1+0.97882x−1.96756x0.5),

d̄(x) = 4.84634x−0.05340(1− x)5.35315(1+1.68065x−2.32755x0.5).

The solution of this example is approximated using 11 points of initial nonsinglet quark function (2) us-
ing the Tau method. We assume that {φi(x)}n

i=0 and {ν j(Q2)}n
j=0 are the sets of standardized polynomials

{1,x,x2, . . . ,xn} and {1,Q,Q2, . . . ,Qn}, respectively. The approximate function is shown by qNsn(x,0.35).
The CPU time for determining of the coefficients of qNsn(x,0.35) is 5.056251s. Finally this function and
the function xqNsn(x,0.35) are compared to the functions qNs(x,0.35) and qNs(x,0.35) obtained experi-
mentally. This comparison is shown in Figures 1 and 2.

Now, using this approximation, the values of the nonsinglet quark distribution function can be com-
puted in Q2 values, which is singificant for the values Q2 = 1GeV 2, Q2 = 4GeV 2 and Q2 = 10GeV 2 in
Table 1.

0 0.2 0.4 0.6 0.8 1x

0

5

10

q
(x

,0
.3

5
)

qNs(x,0.35)

qNsn(x,0.35)

0 0.2 0.4 0.6 0.8 1x

0

5

10

q
(x

,0
.3

5
)

qNs(x,0.35)

qNsn(x,0.35)

Figure 1: Comparison of charts of the qNs(x,0.35) with qNsn(x,0.35).
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0 0.2 0.4 0.6 0.8 1x

0

0.5

1

x
q
N

s
(x

,0
.3

5
)

xqNsn(x,0.35)

Figure 2: Comparison of charts of the xqNs(x,0.35) with xqNsn(x,0.35).

Table 1: Numerical results for Example 1.

x 0.1 0.3 0.5 0.7 0.9
Q2 = 1GeV 2 −6.0591e+04 −8.3147e+04 −1.6747e+05 −5.2500e+05 −1.7647e+06
Q2 = 4GeV 2 2.2333e+09 3.3330e+09 8.5565e+09 3.3987e+10 1.2706e+11
Q2 = 10GeV 2 9.4033e+12 1.4567e+13 4.2416e+13 1.8583e+14 7.2073e+14

4 Conclusion

Based on the solutions resulting from this method and analysis of the example provided, it was ap-
peared that the results of numerical solution of DGLAP equation for distribution function of nonsinglet
quark using the Tau approximation method for n = 11 and using Q2

0 = 0.35GeV 2 was compatible with
the initial distribution function of nonsinglet quark in Q2

0 = 0.35GeV 2. However, as could be seen, there
was some errors at the start and end of the interval which was due to singularity of the function at the
start and end of the interval. Since all calculations have been carried out in a total space, decreasing the
interval size can certainly lead to more accurate solution.
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