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Abstract. Electrocardiogram (ECG) signals is widely used as one of the common procedures for heart’s
disease diagnose. Since electrical signals generated by biological sources have low level, they are de-
stroyed by interference. Therefore, it is difficult to achieve high resolution electrical signals. A new
approach based on non-polynomial cubic spline has been developed to approximate the ECG signal. The
Efficiency of proposed method is analyzed by simulation results and filter evaluation metrics.
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1 Introduction

Cardiovascular diseases (CVDs) are common causes of death in the worldwide based on the world health
organizations report (WHO) [1]. The heart conduction systems contain particular muscle cells. The
general system is surrounded in myocardium. Main component of conduction systems consist of the SA
node, AV node, bundle of His, bundle of branches and Purkinje fiber (see Fig. 1). Electrical impulses
are created by the action of these component and spread all over the heart and cause it contract. Besides,
any disorder of conduction systems effect in the regularity and the speed of heart rhythms which causes
fast, slow or irregular. The electrical activity of heart can be measured by electrodes which are placed at
particular position on the skin. The produced result is recorded in the form of a graph or ECG [13].

The electrical function of the heart has been modeled using reaction-diffusion equations. The influx
of ions through the cell membrane (ionic currents) causes electric activation to propagate through nerve
fibers, i.e. from ion movement inside or beyond the extracellular space. These ionic currents are illus-
trated as the reaction kinetics which is combined with the diffusion equation for the membrane potential.
The Barrio-Varea-Aragon-Maini (BVAM) model is a generic reaction-diffusion system derived based on
mass conservation of two morphogens and a Taylor expansion around an equilibrium point with cubic
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Figure 1: Heart electrical conduction system

non-linearity. This model has been applied to a broad range of trends seen in biological and chemical
processes. In its simplest form, the BVAM model is as follows:

∂u
∂ t

= D∇
2u+η

(
u+av−Cuv−uv2) ,

∂v
∂ t

= ∇
2v+η

(
bv+Hu+Cuv+uv2) , (1)

where u(x, t) and v(x, t) denote two interacting variables with a constant diffusion coefficient ratio D at
position x and time t. Depending on the method to be modeled, these variables may be interpreted as
chemical elements, morphogens, or some other observable amount [16].

Since electrical signals generated by biological sources have low level, they are destroyed by inter-
ference. They are polluted by different kind of noises. Therefore, Noise omission from ECG signal is an
impressive step for recovery resolution of signal in order to accurate visual interpretation. The applica-
tion of mathematical models in medicine is growing rapidly [3, 10, 20].ECG signal is not separate from
this fact. Using analog or digital filters for removing these artifacts is prevalent method. Due to the lack
of instrumentation in digital filters, they are more precise compared with analog ones [12]. Some proce-
dures mainly consist of infinite impulse response (IIR) [9], finite impulse response (FIR) [5,25], adaptive
filter [7,11,26]. Although these methods can remove noise outside the ECG signals, they are incapable if
the range of noise overlaps with the ECG signal. Besides, the Gibbs phenomenon is likely to occur when
the order of the filter does not choose correctly. Other methods mainly include discrete wavelet trans-
form [2,22,23], Principal Component Analysis (PCA) [8], Independent Component Analysis (ICA) [15],
and Empirical Mode Decomposition (EMD) [4, 6] in order to ECG denoising. Baseline wander noise is
a low frequency resulted in breathing, changing electrode impedance due to body movement. numerous
methods have been proposed for reduction Baseline wander noise. Common methods applied for reduc-
tion Baseline wander noise are based on Fourier decomposision [24] and wavelet transformation [17,21].
Every method has special basis function [14]. Polynomial functions are more popular in compared with
other ones because there are flexibility in applying nonlinear function. Besides, interpolation method for
denoising ECG signal based on maximum degree 3, second degree polynomials, Legendre polynomials
with high degree compression were applied as the first methods of approximation ECG signal [27].

Non-polynomial cubic spline polynomials are used in a variety of mathematical modeling and nu-
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Figure 2: Simple model of ECG signal.

merical solution of ordinary differential equation and Partial differential equation but they are seldom
used to improve signal quality by minimizing artifacts. The noise in the MIT-BIH database ECG signals
is minimized in this paper using the Non-polynomial cubic Spline interpolation technique. According to
our knowledge , using nonpolynomial cubic spline as an interpolant has been used for the first time so
far. The numerical results illustrate capability of proposed method in this field.

In this paper, a new mathematical model is proposed in order to modification of ECG signal resolution
based on interpolation technique. This procedure consists of two steps i.e. Moving Average Filter(MAF)
and Non-polynomial Cubic Spline (NCS), respectively.

Advantages and disadvantages of procedure are discussed in detail. Therefore, this technique can be
used for similar situation in the field of signal processing.

This paper is organized as follows. Section 2, is dedicated to introduced ECG signal. Section 3,
Moving Average Filter, Non-polynomial Cubic Spline method is introduced. Section 4, evaluation met-
rics are introduced. Section 5, suggested methods are approximated real ECG data and the results are
compared with each other geometrically and algebraically. Section 6, superiority of the proposed method
is concluded.

2 ECG wave

The ECG displays hearts the electrical activity and applied as one of the most important information
sources to physicians in order to diagnosis of heart diseases. Fig. 2 displays a simple model of ECG
signal which is divided to three main segmentation P, QRS and T. This wave is produced by the con-
traction and expansion of the heart muscle. There is a relationship between type of heart function and
each part of this category. P wave, QRS complex and T wave in one ECG complete wave are related
to depolarization of the atria, excitation of ventricles and ventricular re-polarization, respectively. ECG
signal samples which are used in our experiments are given from MIT-BIH Database and consists of
baseline wander noise (0.18Hz) and power line interference (50Hz). MIT-BIH is a popular data base for
this target.
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3 Proposed method

High resolution ECG signals plays decisive rols in order to accurate diagnosis of the disease. Proposed
algorithm in order to removal noise is implemented as follows: first of all, Moving Average Filter sec-
ondly (MAF) are enforced over noisy ECG signals in order to reduce noises. Secondly, the results of
implementation of MAF are reconstructed by non-polynomial cubic spline (NCS) interpolation. In the
other words,ECG signals are reconstructed by NCS. Generally, this procedures display by MNCS no-
tation. Presented method is capable for reducing low level frequency noises such as baseline wander
noise.

3.1 Moving average filter

Compression of signal is counted as an effective procedure for pre-processing. The benefits of using
pre-processing is presentation striking features similar to inflexion and extrema points. One of the
most prevalent process for data compression is the MOVING AVERAGE FILTER (MAF) which used
to demonstrate significant trends in repeat statistical data. The main benefit of AVERAGE FILTER is
diminishing random noise while sustaining striking features. Assume S = {x1,x2, . . . ,xm, . . .} is the value
of ECG sample, following algorithm illustrates how this filter works.

Algorithm 1. Moving Average Filter.
Input : X = {x1,x2, . . . ,xn} .

Step 1: Set n = length(X) and N ∈ N,N < n such that N is fix.
Step 2: Set Bi =

xi+xi+1+···+xN+(i+1)
N , i = 1, . . . ,(n−N)−1 .

Output: Moving average of i.e. B =
{

B1,B2, . . . ,B(n−N)−1
}
.

3.2 Non-polynomial cubic spline

Suppose ∆ is a mesh on [a,b] such that ∆ : a = x0 < x1 < x2 < · · · < xN−1 < xN = b and { fi}, fi =
f (xi) , i = 1,2, . . . ,N are corresponding data points. Let hi = xi− xi−1, i = 1,2, . . . ,N be the mesh size
and mesh ratio be σ = hi+1

hi
, i = 1, . . . ,N−1. When σ = 1, the mesh transforms to a uniform mesh, i.e.,

h j+1 = h j = h. The non-polynomial S∆(x) is a function of class C2[a,b] has the following form:

S∆i(x) = ai +bi (x− xi)+ ci sinτ (x− xi)+di cosτ (x− xi) ,∆i = [xi,xi+1] , (2)

such that ai,bi,ci and di are constants and τ is arbitrary parameter. Besides, τ is the frequency of the
trigonometric part of the spline functions which has two important features as [18]:
First of all: τ is real or pure imaginary.
Secondly: τ is a factor can be used in order to improve the accuracy of method.

Assume ui denotes approximation of u(xi) which obtained by segmentation non-polynomial spline
function go through the points (xi,ui) and (xi+1,ui+1). To capture essential conditions for computing
coefficients in using interpolation conditions at xi and xi+1 points that satisfies in them is not sufficient.
Therefore, we have to apply the continuity of first derivative at the nodes (xi,ui) to compensate this
shortage.

As a result of the non-polynomial cubic spline features, following expressions are derived as follows:

S∆ (xi) = ui, S∆ (xi+1) = ui+1,
S′′

∆
(xi) = Mi, S′′

∆
(xi+1) = Mi+1.

(3)
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The coefficients of (2) are obtained by algebraic calculation:

ai = ui +
Mi
τ2 , bi =

ui+1−ui
h + Mi+1−Mi

τθ
,

ci =
Mi cosθ−Mi+1

τ2 sinθ
, di =−Mi

τ2 ,
(4)

where θ = τh and i = 0,1, . . . ,N−1. By applying the continuity of the first derivative at (xi,ui), i.e.,

S′
∆

(
x−i
)
= S′

∆

(
x+i
)
, (5)

the following expression is obtained

αMi+1 +2βMi +αMi−1 =
1
h2 (ui+1−2ui +ui−1) , (6)

where i = 0,1, . . . ,N−1 and α = (θ cscθ −1)/h2, β = (1−θ cotθ)/h2.
Applying the operator E = ehD in relation (6), we obtain

Error = (2α +2β −1)(Mi− y′′i )+D2h2
(
α− 1

12

)
(Mi− y′′i )

+D4h4
(

α

12 −
1

360

)
(Mi− y′′i )+O

(
h6
)
.

(7)

The consistency relation (6) leads that the equation 2α +2β = 1 in the relation (7) is satisfied, which can
be expressed as tan θ

2 = θ

2 . This equation has a zero root and infinitely non-zero roots, and θ = 8.98881
is the smallest positive root. In this paper, this θ is considered as optimal value in all steps. By applying
this assumption, we have ∣∣Ml− y′′l

∣∣≤ d2h2, d2 = 0.22max
∣∣y4

l

∣∣ . (8)

Assuming α = 1
12 and β = 5

12 the equation 2α +2β = 1 is satisfied. Therefore, the second term in (7) is
zero. This choice leads to modify the order of the method, i.e., O

(
h4
)
.

Besides, if natural spline initial condition, i.e., M0 = Mn = 0 is considered as boundary equations,
the system (6) is strictly diagonally dominant. Therefore, M1, . . . ,Mn−1 are determined uniquely. The
matrix form of system (6) is of the form

M = 12
h2 N−1JY. (9)

where

M =



M0
M1
M2
...
...

Mn−2
Mn−1
Mn


, N =



1 0 0 0 · · · · · · 0 0 0 0
1 10 1 0 · · · · · · 0 0 0 0
0 1 10 1 · · · · · · 0 0 0 0
...

...
. . . . . . . . . · · ·

...
...

...
...

...
...

...
. . . . . . . . .

...
...

...
...

0 0 0 0 · · · · · · 1 0 0 0
0 0 0 0 · · · · · · 1 10 1 0
0 0 0 0 · · · · · · 0 1 10 1


, JY =



0
y0−2y1 + y2
y1−2y2 + y3

...

...
yn−3−2yn−2 + yn−1
yn−2−2yn−1 + yn

0


.

The presented nonpolynomial cubic spline satisfies the following relation:

T3 = Span{1,x,cosτx,sinτx}.
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By using the Maclaurin series expansions, we have

T3 = Span
{

1,x, 2
τ2 (1− cosτx), 6

τ3 (τx− sinτx)
}
. (10)

Whenever τ → 0, we have

lim
τ→0

2
τ2 (cosτx−1) = x2,

lim
τ→0

6
τ3 (sinτx− τx) = x3.

Therefore by using the above limits in the equation (10) we get T3 =
{

1,x,x2,x3
}
. So that the nonpolynomial cubic

spline reduces to the cubic spline when τ → 0 and then the relation (6) reduces to the consistency relation of the
cubic spline

Mi+1 +4Mi +Mi−1 =
6
h2 (ui+1−ui +ui−1) . (11)

According to above interpretation, convergence of non-polynomial cubic spline is concluded by Atkinsons logic
[19] for natural cubic spline. It is worth noting, this method presents acceptable result when

h≤ a×10−3, a > 0. (12)

4 Evaluation metrics
Suggested methods’ efficiency for characterization of ECG signal should be evaluated. Let y(n) be the original
signal and x(n) be reconstructed ECG signal of length N. Besides, e denotes absolute error between original signal
data and reconstructed signal. Some criteria for this purpose are defined as follows.

4.1 Root mean square difference
The root-mean-square difference (RMSD) evaluates average of the absolute error between main signal and approx-
imated one:

RMSD =

√
∑

N
i=1[e(n)]2

N
.

4.2 Percentage Root-Mean-Square Difference
The percentage root-mean-square difference (PRD) is used for calculation deformation in approximated signal as
follows

PRD =

√
N

∑
i=1

[y(n)− ȳ]2,

where ȳ denotes the average of the original signal.

4.3 Correlation coefficient
Correlation Coefficient (CC) is a criterion that specifies the degree such that original signal data and reconstructed
signal are connected according to their morphology

CC =
N ∑xy−∑x∑y[

N ∑x2− (∑x)2
][

N ∑y2− (∑y)2
] .
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5 Numerical experiments
Evaluation of proposed method is done based on qualitative and quantitative analysis. Qualitative analysis dis-
cusses the efficiency of suggested method by visual evaluation. Besides, quantitative analysis is done based on
criteria which is introduced in Section 4.

We use the following notations in the numerical results:
NCS: Non-polynomial cubic spline.
MAF: Moving Average Filter.
MNCS: Proposed algorithm in order to modification resolution of ECG signal based on Non-polynomial cubic
spline.

Qualitative analysis
In order to survey the effect of proposed method, first of all, NCS method is implemented on four ECG samples
which are displayed by (a), (b), (c) and (d) notation. In Fig. 3, implementation results of approximated signals are
represented.
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Figure 3: Approximation result of ECG signal by NCS method, (a) displays normal ECG sample and
(b), (c) and (d) represent abnormal ECG signal samples.

According to Fig. 3, similarity between original ECG signal and its reconstructed form is specified. From
a medical perspective, QRS complex consists important information about patients heart condition. Therefore,
having accurate QRS complex plays a decisive factor in hearts disease. In order to better observation of results
interpolation methods which are presented above, QRS complex of one complete wave of normal ECG is approx-
imated by NCS method and the result is displayed in Fig. 4. According to Fig. 4, capability of this method in the
field of reconstruction of ECG signal is visible especially in Fig. 4 (b).

For better representation of proposed methods efficiency in the field of approximation of signal, we add white
Gaussian noise with SNR=5,10 dB to normal ECG Signal samples and approximated noisy ECG signal by using
NCS method. In Fig. 5- 6, the result of implementing method on data is represented. As can be seen from Fig.
5-6 reconstructed noisy ECG signal are smoother compared with noisy ECG samples.

Quantitative analysis
Metrics which are introduced in section 4 are calculated in order to evaluation of proposed method’s efficiency
quantitatively. Although used metric criteria are explain in section 4 precisely, it is worth mentioning a few points
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Figure 4: Approximation of QRS complex of one complete wave of ECG by NCS Method, (a) one
complete wave of normal ECG signal that is approximated by NCS method (b) QRS complex of part (b)
is focused.

0 500 1000 1500

Time(sec)

-1

0

1

2

E
C
G
(
t
)

(a)

0 500 1000 1500

Time(sec)

-1

0

1

2

E
C
G
(
t
)

0 500 1000 1500

Time(sec)

-1

0

1

E
C
G
(
t
)

(b)

0 500 1000 1500

Time(sec)

-1

0

1

E
C
G
(
t
)

Figure 5: Comparison of noisy ECG signals with SNR= 10dB (top panel) and reconstructed ECG signal
by MNCS method (bottom panels).

about acceptable values for these criteria. RMSD is always non-negative, zero (almost never attained in practice)
value represents a complete fit to the data. Besides, the quality of the approximated signal is evaluated as good
approximation if the PRD (%) scale is between 0 and 9. Moreover, CC which is a criterion for similarity between
original signal and approximated one is close to 1. The results of implementing proposed method is represented in
Table 1.

As can be seen from Table 1, the results of RMSD and PRD are small acceptably for all of samples. Besides,
CC for each sample is close to 1 sufficiently which displays the similarity between original ECG sample and its
reconstructed one. Therefore, the proposed method is capable in order to approximate the ECG samples.
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Figure 6: Comparison of noisy ECG signals with SNR= 10 dB (top panel) and reconstructed ECG signal
by MNCS method (bottom panels).

Table 1: Numerical results of Samples (a)-(d) Based on Metric criteria (RMSE, PRD and CC).

N
sample (a) sample (b) sample (c) sample (d)

RMSD PRD CC RMSD PRD CC RMSD PRD CC RMSD PRD CC

100 0.00400 2.28751 0.99396 0.00516 1.37747 0.99997 0.00500 1.65745 0.99574 0.00500 1.28751 0.99996
110 0.00401 2.55683 0.99487 0.00769 1.36623 0.99996 0.00247 1.99647 0.99425 0.00501 1.55683 0.99487
120 0.00457 2.69534 0.99523 0.00556 1.07069 0.99997 0.00287 1.43049 0.99743 0.00557 1.69534 0.99923
130 0.00426 1.48142 0.99937 0.00580 1.20547 0.99998 0.00221 1.49650 0.99164 0.00426 1.48142 0.99937
140 0.00666 2.23612 0.99776 0.00813 1.25624 0.99996 0.00169 2.05476 0.99624 0.00466 1.23612 0.99976
150 0.00557 3.29116 0.99262 0.00227 1.21244 0.99998 0.00922 1.45354 0.99617 0.00457 1.29116 0.99962
160 0.00402 2.97304 0.99318 0.00238 1.30797 0.99996 0.00978 2.40898 0.99492 0.00392 1.97304 0.99918
170 0.00609 2.56799 0.99447 0.00784 1.29649 0.99996 0.00227 2.67953 0.99222 0.00300 1.56799 0.99947
180 0.00274 2.28824 0.99231 0.00988 1.16276 0.99996 0.00252 2.24812 0.99518 0.00239 1.28824 0.99931
190 0.00239 2.64631 0.99564 0.00776 1.21834 0.99999 0.00402 1.58782 0.99305 0.00250 1.64631 0.99964
200 0.00250 2.72755 0.99430 0.00757 1.05270 0.99996 0.00180 1.99831 0.99186 0.00250 1.72755 0.99990
210 0.00289 2.18217 0.99316 0.00669 1.43816 0.99996 0.00083 1.18431 0.99242 0.00289 1.78217 0.99916

The numerical result of proposed method and [27] on sample(d) are illustrated in Table 2. the order of
Lagrange-Chebyshev restoration is order 50. According to the numerical result of Table 2, the accuracy of pro-
posed method is clearly visible. In terms of elapsed CPU time, the proposed method is superior to method of [27].

6 Conclusion

From a medical point of view, precise characterization of ECG signals was considered as a decisive factor in
accurate diagnosis of the disease. MNCS algorithm was proposed as a mathematical model in order to modify the
ECG signal quality in resolution. Capability of this method was evaluated by simulation result and quantitative
criteria. Therefore, MNCS method represented acceptable results diagnostically. As can be seen, these methods
can be used in similar fields in order to reconstruct the signals.
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Table 2: Quality assessment metrics for proposed method and [27].
sample (d) [27]

N RMSD PRD CC CPU Time RMSD PRD CC CPU Time
250 0.00530 1.58051 0.99996 0.99999 0.06363 2.35671 0.98897 2.00011
500 0.00491 1.56783 0.99586 1.00011 0.05132 2.56412 0.97012 2.69871
1000 0.00546 1.66014 0.99961 1.45672 0.06897 2.76903 0.97193 2.99989
1250 0.00536 1.68602 0.99987 2.00011 0.07124 2.88806 0.97119 3.50014
1500 0.00394 1.03452 0.99986 2.45610 0.08666 2.67015 0.96456 4.00983
1750 0.00367 1.07816 0.99982 3.0012 0.05696 2.29940 0.98003 5.57780
2000 0.00332 1.99994 0.99918 3.50631 0.06145 2.90237 0.98636 5.45875
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