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Abstract. The Hamilton-Jacobi-Bellman (HJB) equation, as a notable approach obtained from dynamic
programming, is widely used in solving optimal control problems that results in a feedback control law. In
this study, the HJB equation is first transformed into the Convection-Diffusion (CD) equation by adding a
viscosity coefficient. Then, a novel numerical method is presented to solve the corresponding CD equation
and to obtain a viscosity solution of the HJB. The proposed approach encompasses two well-known
methods of Finite Volume Method (FVM) and Algebraic Multigrid (AMG). The former as a reliable
method for solving parabolic PDEs and the latter as a powerful tool for acceleration. Finally, numerical
examples illustrate the practical performance of the proposed approach.
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1 Introduction

Let Ω⊂ Rn and U ⊂ Rm be the sets of all possible states and admissible controls respectively. Also for
any arbitrary x ∈Ω and u ∈U consider the control system as

ẋ(t) = f(t,x(t),u(t)), t0 ≤ t ≤ t f , (1)

x(t0) = x0,

where x0 ∈Ω is given and f(.) assumed to be continuously differentiable. An optimal control problem is
to find the optimal control u∗ ∈U which has the ability of moving the state from initial state x0 to any
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final state in a finite time interval and also optimizing a performance index given by

J(t0,x(t0),u(·)) = h(t f ,x(t f ))+
∫ t f

t0
L(τ,x(τ),u(τ))dτ. (2)

Many approaches have been presented to solve the optimal control problem (1)-(2) which can be
divided in two main categories of (a) discretization based approaches, in which a straightforward algorithm
is used to discretize the domain and transform the problem into solving a set of algebraic equations such
as meshless methods [10], Wavelet methods [21, 31], Neural Networks [13] and many more; and (b)
analytic based approaches which either study the Pontryagin’s principle [11, 14, 38] or the dynamic
programming [28]. The two analytic based approaches take advantage of the optimality conditions to
derive out new sets of equations. Nevertheless, they apply different optimality conditions and thereby
result in solving an ordinary or partial differential equation (the HJB equation) respectively. The main
difference between these two methods is in providing a closed- or open-loop solution, however. The closed-
loop solution has an utmost application in different fields of study where, for e.g., online information is
required [26, 43]. Nonetheless, solving the HJB equation -as a PDE- is more challenging in comparison to
the ODE provided by the Pontryagin’s Principle. Therefore, exact and applicable methods are required to
obtain reliable results.

In related work, Saberi Nik et al. in [28] employed the He’s polynomials and presented a homotopy
perturbation method for solving the HJB equation that results in an analytical-approximate solution. Other
studies, e.g. [32, 33] investigate the HJB equation for a class of fractional optimal control problems.
Furthermore, Richardson and Wang in [34] proposed a reliable algorithm using Finite Volume Method
(FVM) for solving the viscosity approximation of the HJB equation. This viscosity approximation is
obtained by adding the diffusion coefficient to the HJB equation and reformulating it as the convection-
diffusion equation. This approach has been first introduced by [22] and frequently used in the literature
since its introduction. More importantly, many of the discretization based algorithms, such as finite
element [5] and finite volume methods [9, 25] have been developed to solve the convection-diffusion
equation. Nevertheless, such approaches often result in solving a system of algebraic equations that
consequently fail to deal with high-dimensional problems. This is due to the huge amount of nodes
required for the accuracy of the method which increases the computations enormously. This can be
seen as a common drawback of the discretization approaches for solving PDEs that suffer from the lack
of memory and time consuming during the implementation because of the number of grid nodes [34].
In our contribution, the goal is to compensate for the lack of accelerated based approaches for solving
the HJB equation. In this manner, we apply FVM for solving the corresponding convection-diffusion
equation of the HJB and further employ a class of Algebraic Multigrid (AMG) method. FVM, as a
well-known method for transforming PDEs into a set of algebraic equations, has been widely used for
solving parabolic PDEs, especially in Computational Fluid Dynamics (CFDs), because of its conservation
property [25]. In addition, a wide variety of AMGs have been recently developed that, based on their
robustness and efficiency properties, target various problems [3, 16]. For instance, Han and Wan in [17]
applied a class of multigrid method for solving the second order HJB and Hamilton-Jacobi-Bellman-Isaacs
(HJBI) equations (also see [18] as an important work in this direction). Both contributions [17, 18] exploit
a geometric multigrid approach combined with a finite difference method to solve the HJB equation. In
contrast to the algebraic multigirds, the geometric multigrid methods require information of the grid space
and are based on the assumption that the matrix A (in the linear system Ax = b) is symmetric. Such an
assumption, however, cannot be satisfied in many of the numerical methods used for solving the HJB
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equation. As a consequence, the approaches presented in [17,18] are not applicable in the general case. In
addition, their work is only intended to solve the HJB equation obtained from a set of financial problems
and does not solve the optimal control problems directly. On the contrary, we here apply algebraic MG
as an acceleration of the traditional iterative methods (also called smoother methods), which make the
high-frequency components of the error milder. The proposed approach only requires the information of
the matrix A as being M-matrix and can be directly applied when there is no grid in the background (we
further discuss the properties of AMGs in the upcoming sections). We also solve the convection-diffusion
equation as an approximation to the HJB equation which later provides the solution of the considered
optimal control problem (1)-(2). Moreover, we emphasize that the application of the proposed approach is
beyond solving the convection-diffusion equation and the method can be modified for solving many of the
similar PDEs. The rest of the paper is organized as follows: we first present the preliminary concepts in
section 2 and discuss the HJB equation. Section 3 is devoted to numerical study. We will first point out the
salient features of the FVM and also the AMG approach and then propose the AMG-FVM algorithm for
solving the considered optimal control problem (1)-(2). Convergence properties of the proposed method
are then discussed accordingly. Numerical examples are further brought in section 4 to illustrate the
efficacy of the presented algorithm and assess its reliability. Finally, the paper is concluded in section 5.

2 The Hamilton-Jacobi-Bellman equation

Consider the problem stated in (1)-(2) and let t ∈ [t0, t f ) denote the initial time (we assume t to be arbitrary).
Next, let v be a continuously differentiable function given by

v(t,x(t)) = inf
u(·)∈U

J(t,x(t),u(·)).

Applying the Bellman’s principle [27], the HJB equation can be presented as a PDE given by

−vt = inf
u(·)∈U

{∇v · f(t,x(t),u(t))+L(t,x(t),u(t))}, (3)

with the terminal condition

v(t f ,x(t f )) = h(t f ,x(t f )), (4)

where ∇ denotes the gradient operator with respect to x. In the case of linear quadratic optimal control
problems -a quadratic cost functional and a linear system- an analytic solution is proposed using the
Riccati equation (see, e.g., [1]). This cannot be extended to general cases, however. In addition, no
classical solution v(t,x(t)) -that is v ∈C1((t0, t f ]×Ω)- exists in general for the problem (3)-(4). This is a
well-known issue that occurs even for simple control problems (see Example 1 in section 4). To address
this issue, it is common to use the vanishing viscosity approach [2, 6–8] which is adding a diffusion term
to the HJB equation (3) and approximating it with a second order parabolic PDE as:

−vε t − ε∇
2vε = inf

u(·)∈U
{∇vε · f(t,x(t),u(t))+L(t,x(t),u(t))}, (t,x(t)) ∈ [t0, t f )×Ω, (5)

where 0 < ε � 1 is the diffusion coefficient (a.k.a. viscosity). In most practical situations, a numerical
approach is then applied to solve the above equation for small values of ε and therefore approximate the
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viscosity solution of the HJB equation (3). This, however, is still a challenging task since no boundary
conditions exist for the problem. As a consequence, one will encounter some inefficiencies in applying a
discretization method. Such problems with only one terminal condition often use explicit time stepping
schemes, and therefore are subject to conditional stability [35]. In other words, too many time steps and
also too many grids for the spatial solution domain in each time step are required to satisfy the stability
condition for high-dimensional problems. This increases the computations in the algorithm and makes
the problem intractable. In this respect, a new artificial boundary condition on a novel extended domain
will be introduced to alleviate the complexity of the problem [19]. To this, let Ω̃ be any extended domain
of Ω (i.e. Ω ⊂ Ω̃), that is just assumed to be bounded, and g(t,x(t)) be an arbitrary artificial Dirichlet
boundary condition. In practice, the function g(t,x(t)) for any t ∈ [t0, t f ) is set to be equal to h(t,x(t)).
We then define the terminal and boundary conditions of the equation (5) as follows:

vε(t f ,x(t f )) = hε(t f ,x(t f )), x(t f ) ∈ Ω̃, (6)

vε(t,x(t)) = gε(t,x(t)), (t,x(t)) ∈ [t0, t f )×∂ Ω̃. (7)

The choice of Ω̃, however, is important as if the extended domain is too small, the approximate
solution will be affected by the artificial boundary and yield unreliable results and if it is too large, many
grids and hence excessive computations are required for convergence. The following theorem illustrates
the relation between solutions of the problem (5) with conditions (6)-(7) and the HJB equation (3)-(4)
which we refer the readers to [35] for its proof.

Theorem 1 ( [35]). Let vε be the solution of the problem (5)-(7). Then vε converges to the solution v of
the HJB equation (3)-(4) as ε→ 0 in a domain D defined by D := {(t,x) : t0 < t < t f and |x−a|< r(t)},
where a is the center of Ω and

r(t) = r0 +
∫ t

t0
C(τ,r(τ))dτ,

C(t,r(t)) := sup
(t0,t)×B(a,r(t))×U

|f(t,x(t),u(t))|,

where B(a,r(t)) is an open ball of radius r(t) around the point a and r0 is the radius of Ω.

As the theorem infers, solving the optimal control problem (1)-(2) is then equivalent to solving the
set of equations (5)-(7) for sufficiently small values of ε . Now, substituting vε by v, problem (5)-(7) as a
second order PDE can be restated as

vt + ε∇
2v+∇v · f(t,x(t),u∗(t))+L(t,x(t),u∗(t)) = 0, (t,x) ∈ [t0, t f )× Ω̃, (8)

u∗(t) = arg infu(·)∈U {∇v · f(t,x(t),u(t))+L(t,x(t),u(t))}, (9)

where u∗(t) is the optimal control and the terminal and boundary conditions are

v(t f ,x(t f )) = h(t f ,x(t f )), x ∈ Ω̃,

v(t,x(t)) = g(t,x(t)), (t,x) ∈ [t0, t f )×∂ Ω̃.

Equation (8) is known as the convection-diffusion equation. Furthermore, equations (8) and (9) are
required to be solved recurrently due to the fact that the two unknown functions v(t,x(t)) and u∗(t) are
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Figure 1: A Illustration of a considered CV and its different elements. B The top shows a cell-centered
CV and the bottom is a node-centered CV.

coupled with each other. To do so, first, the aforementioned boundary conditions will be employed for
solving (9) and the result will be then used for obtaining the next v(t,x(t)) through equation (8). The
backward procedure will start from the terminal time t f and continue till the initial time step which results
in having the optimal control function u∗(t) and the performance index value v(t,x(t)). However, the
most important challenge is to solve the convection-diffusion equation in each time step.

3 Numerical study

In the following, we present a numerical approach for solving equation (8). To this, first the FVM is
applied and then, the AMG approach is exploited as an accelerator to the process.

3.1 Finite volume method

In order to apply the FVM, first, the domain Ω̃ is meshed into non-overlapping cells consisting of nodes
X = {xi|i = 1, . . . ,N} and faces E = {ei, j|i, j = 1, . . . ,M} (this step is known as the primal mesh). Next, a
partitioning of Control Volumes (CVs), denoting by di for i = 1,2, . . . ,N, is considered as a dual mesh
with a cell-centered scheme where CVs and cells coincide with each other and the variables of interest
are the cell centers. This is in contrast to a node-centered partitioning where the variables of interest
are the nodes themselves. Figure 1 illustrates the concepts of primal and dual meshes. Also assume
X̃ = {xi|i = 1, . . . , Ñ} to be the nodes which are not on the boundary (∂ Ω̃) for a value Ñ < N. Since
the FVM follows the conservation law, the neighbours of a node have important role in the full system
of equations and every node is identified by its neighbours. Thus, let Ii = Ĩi ∪ Īi be the index set of
all xi’s neighbours consisting of interior and boundary nodes such that Ĩi = { j : j ∈ Ii,x j /∈ ∂ Ω̃} and
Īi = { j : j ∈ Ii,x j ∈ ∂ Ω̃}. Then, integrating equation (8) over an arbitrary control volume di for i ∈ Ii, we
get

−
∫

di

∂v
∂ t

dx−
∫

di

ε∇
2vdx−

∫
di

∇v · fdx =
∫

di

Ldx,

that using the midpoint rule for integration and also the Divergence Theorem [25], one can obtain

−∂vi

∂ t
|di|−

∫
s
(ε∇v+ vf) ·n ds+ vi

∫
s
f ·n ds= Li|di|,
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where n denotes the outward unit normal and s is the surface of the CV (i.e. ∂di). Now, based on [34],
using the exponential fitting for approximating the integral parts, we get

−∂vi

∂ t
|di|−∑

j∈Ii

ε
|li j|
|ei j|
{B(−

fi j(u∗)|ei j|
ε

)v j−B(
fi j(u∗)|ei j|

ε
)vi}+ ∑

j∈Ii

vi fi j(u∗)|li j|= Li|di|,

where B(z) and fi j are given by

B(z) =


z

ez−1
, z 6= 0,

1, z = 0,

fi j(u∗) =
1
2
{f(t,xi,u∗(t,xi))+ f(t,x j,u∗(t,x j))}.ei j,

with the unit vector ei j from xi to x j. Finally, we use the first-order backward Euler method for time
discretization with step size ∆tk = tk− tk−1 < 0 for k = 1,2, . . . , tmax and tmax as the number of steps. This,
in each time step tk, results in solving the following system of equations with respect to vk = (vk

1,v
k
2, . . . ,v

k
Ñ)

(Ck +Ak(u∗)+Gk)vk = bk +Ckvk−1, (10)

where G and C are positive diagonal matrices and for i = 1, . . . , Ñ:

aii
k = ∑

j∈Ii

ε
|li j|
|ei j|

B(
fi j(u∗)|ei j|

ε
),

ai j
k =

−ε
|li j|
|ei j|

B(−
fi j(u∗)|ei j|

ε
), j ∈ Ĩi,

0, j 6= i, j /∈ Ĩi,

bi
k = Li|di|+ ∑

j∈Īi

ε
|li j|
|ei j|

B(−
fi j|ei j|

ε
)vk−1

j ,

gii
k = ∑

j∈Ii

fi j(u∗)|li j|, cii
k =
|di|
∆tk

.

Defining Ak :=Ck+Ak(u∗)+Gk and bk := bk+Ckvk−1, system Akvk = bk in (10) with the aforementioned
equations, in each step k, provides an iterative algorithm for solving the convection-diffusion equation (8).
Observe the bold notation preserved for the matrix A and vector b. Next, given the value of vk and also
using equation (9), the optimal control u∗ is computed by:

u∗i = arg infu∈U {∇vk
i .f(tk,xi,ui)+L(tk,xi,ui)}, i = 1, . . . , Ñ.

The algorithm initiates at the value v0 = v(t f ,x(t f )) and performs for each step k till achieving v(t,x(t))
as the optimal value of the convection-diffusion equation (8) and consequently the approximate solution
of HJB equation (3) when ε is sufficiently small. The method performs well in solving the optimal
control problems, however, as the complexity of the problem increases, a larger Ñ value is required to
provide reliable results. Note that the main challenge is to solve system Akvk = bk in each iteration more
effectively. We further address this issue by applying an AMG method to alleviate the effects of large



Approximate solution of the Hamilton-Jacobi-Bellman equation 77

Ñ values. This is efficiently practicable since matrix Ak obtained from the FVM in each step k is an
M-matrix that has well-behaved properties such as being sparse and weakly diagonally dominant [34, 37].
In addition, observe that each row of matrix Ak (denoted, for e.g., by Ak

i ) for i = 1, . . . , Ñ is coupled with
its corresponding variable vk

i and node xi. This creates a one-to-one relation between the considered mesh
and matrix Ak.

Definition 1. Two nodes (variables) xi (vi) and x j (v j) are said to be connected if ai j 6= 0. Also, given a
threshold value 0 < θ ≤ 1, the node xi (variable vi) strongly depends on (or is strongly connected to) x j

(v j) if
−ai j ≥ θ max

aik<0
{|aik|}.

If xi (vi) is connected to x j (v j), but not strongly connected, it is said to be weakly connected.

In the following and throughout the paper, we use index i for referring to the variable vi or its node xi.

3.2 Algebraic multigrid method

Consider the system Akvk = bk in (10) that needs to be solved in each time step and omit the k index for
the sake of simplicity. Furthermore, let S be the smoother that, in general, can be any arbitrary relaxation
method such as Gauss-Seidel or Jacobi. AMG approaches use the concepts of the so-called fine and
coarse levels, which are respectively the states of using all variables and a subset of variables in the
computations, and vary the number of selected variables from fine to coarse to reduce the computations
while maintaining the accuracy. Here, since we obtained a weakly diagonally dominant M-matrix A
in (10), we further employ the Classical Algebraic Multigrid (CAMG) algorithm introduced by Ruge
and Steuben [36]. In the case that the resultant matrix A is symmetric, geometric multigrid (or simply
multigrid) approaches can be applied [39–41]. These approaches leverage the information of the grid
space and construct a procedure in which the number of used grids reduces by moving from a fine level to
a coarser one and vice versa. In this manner, the amount of computations decreases when A moving to the
coarser levels. On the contrary, the CAMG requires no explicit knowledge of the problem geometry and
only uses the information of matrix A to extract a submatrix of it. CAMG can be therefore seen as a more
general approach since it also subsumes non-symmetric matrices and only takes the assumption of A being
M-matrix. We preserve Al and Al−1 to show respectively the states of matrix A in the fine and coarse
levels respectively, where Al−1 is a submatrix of Al . In this manner, we introduce levels l = 0,1, . . . , lmax

with matrices A0 ⊂ A1 ⊂ ·· · ⊂ Almax where Almax = A is the finest and A0 is the coarsest matrix.
In general, following steps will be applied in a two-grid approach for the Av = b. First, assume

κ1,κ2 > 0 be two constants, then:
• Pre-Smoothing: is to apply κ1 iterations of S on Alv = bl with v(0) as the initial guess and computing
v(κ1).
• Coarse-Grid Correction: is first computing the residual rl = Alel where el = v− v(κ1) and then,
obtaining the residual restriction and the Galerkin operator as rl−1 = Rrl and Al−1 = RAlP respectively.
Here R and P are the so-called restriction and prolongation operators. The restriction operator transfers the
residual rl from the fine level to the coarse level and contrariwise, the prolongation operator interpolates
the residual rl from the coarse level to the fine (in practice we set R = PT ). Figure 2 illustrates the
restriction and prolongation geometry on a mesh grid scheme.
Next, Al−1el−1 = rl−1 is solved to find the coarse error el−1 that is later transferred by the prolongation
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Figure 2: Geometric representation of the restriction and prolongation (interpolation) operators are
illustrated in a V-cycle. In this example, in each level, 9 nodes are transferred into 1 node of the coarser
level using the restriction operator. Also the procedure will be applied vice versa from a coarse level to a
fine level employing the prolongation operator.

operator as ẽ = Pel−1. Finally, the value v(κ1) will be corrected by setting v(κ1+1) = v(κ1)+ ẽ. This is due
to the fact that v = v(κ1)+ el is the exact solution and el is approximated by ẽ. In short, the coarse-grid
correction operator can be presented as

K := Il−P(Al−1)−1RAl,

where Il is the identity matrix that its dimension is equal to the number of variables in level l.
• Post-Smoothing: is to apply κ2 iterations of S on Alv = bl with v(κ1+1) as the initialization.

We emphasize that the aforementioned steps represent a V-cycle of the CAMG (in analogy, one can
also define a W-cycle and examine the differences between the two approaches in solving the above
system of equations, see, e.g., [16] for further information). In addition, this procedure can be further
generalized from a two-grid to a multi-grid method by recursively setting the current state as the fine level
and the reduced one as the coarse.

Notably, the main part of the AMG approaches is the coarse-grid correction that aims to attenuate the
error of the system drastically in a V-cycle and hence accelerate the convergence. Observe that after the
pre-smoothing step, it is required to find the prolongation and restriction operators in order to obtain the
coarse matrix Al−1. In this regards, first, the elements of matrix Al should be divided into two groups of Cl

and F l , where Cl represents those variables in the coarse level (C-variables) and F l is the complementary
set (F-variables); i.e., Al = F l ∪Cl . To this, consider a threshold value 0 < θ ≤ 1 and, for each variable i,
let the set of strong couplings to be Γl

i = { j ∈ Ĩl
i |v j strongly connected to vi}. Further, we define λ l

i as
the measure of importance for each variable i by:

λ
l
i = |Γl

i ∩ Ω̃
l|+2|Γl

i ∩F l|, i ∈ Γ
l
i,

where Ω̃l is the set of all variables in the fine level. The C/F-splitting can be applied by denoting the
variable i with the highest λi value to the set Cl and all the variables j ∈ Γl

i to the set F l . Observe that the
variables i and j will be assigned to the sets Cl and F l only if they are not assigned to a set before and the
process will continue till all variables are included to one of the Cl or F l sets. Given such a C/F-splitting,
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Algorithm 1 Set up phase algorithm: SetUp (Al,v).

n← length(v)
compute {Γi

l} and {λ l
i }

F l ← /0, Cl ← /0.
while |Cl ∪F l|< n do

i← index max{λ l
i }

Cl ←Cl ∪{i}
for j = 1, . . . ,n do

if j ∈ ΓlT

i and j /∈ F l and j /∈Cl then
F l ← F l ∪{ j}

end if
end for
update {λ l

i }
end while
return P

the interpolation el = Pel−1 is then given by:

el
i = (Pel−1)i =

{
el−1

i if i ∈Cl,

∑k∈Pl
i
wikel−1

k if i ∈ F l,
(11)

where Pl
i ⊂Cl is called the set of interpolatory variables and, here, we let

Pl
i :=Cl ∩Γ

l
i, wik :=−αiaik

aii
, and αi :=

∑ j ai j

∑k aik
, j ∈ Ĩi

l
, k ∈ Pl

i . (12)

Finally the Galerkin operator RAlP will be constructed using the interpolation operator P and
restriction operator R, where R is the transpose of P (R = PT ). This phase is known as the set up phase
and summarized in Algorithm 1. Next, the so-called solution phase (presented in Algorithm 2) will be
concluded using the interpolation and restriction operators and applying the correction on the error that
terminates the CAMG process. At the end, we present the summary of the proposed method for solving
the convection-diffusion equation (8) in Algorithm 3.

3.3 Convergence analysis

To assess the convergence of the proposed method, it is only required to examine the convergence of the
CAMG algorithm for the system of Av = b in each iteration. Besides the convergence of the CAMG, we
expect to achieve a good estimation of the function v(t,x(t)) for sufficiently large values of tmax. Now, let
S be the relaxation operator employed in the CAMG, the smoothing property of S can be defined as:

Definition 2 (Smoothing Property). Let A∈Rn×n be a symmetric positive definite matrix and D represents
its diagonal matrix. S satisfies the smoothing property w.r.t. A if

||Se||12 ≤ ||e||12−σ ||e||22, (σ > 0), (13)
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Algorithm 2 V-cycle CAMG with γ levels in each time step: CAMG (Al,bl,v(0),κ1,κ2,γ).

Require: Al,bl,v(0),κ1,κ2 and γ ,
P← SetUp (Al,v)
while γ ≥ 0 do

v(κ1)← S(Al,bl,v(0),κ1)
rl ← b−Alv(κ1)

rl−1← Rrl

Al−1 = RAlP
if γ == 0 then

el−1← (Al−1)−1rl−1

else
Al ← Al−1

bl ← rl−1

v← el−1

γ ← γ−1
CAMG (Al,bl,0,κ1,κ2,γ)

end if
v(κ1+1)← v(κ1)+Pel−1

v← S(Al,bl,v(κ1+1),κ2)
end while
return v

Algorithm 3 Proposed approach.

Require: v0 = h(t f ,x(t f )),
u0 = arg inf{∇v0 · f(t f ,x,u)+L(t,x,u)}
while k < tmax do

Ak← A(uk)
vk = CAMG (Ak,bk,vk,κ1,κ2,γ)
uk = arg inf{∇vk · f(tk,x,u)+L(tk,x,u)}

end while
return u,v

holds with σ being independent of e and where ||Se||12 = 〈ASe,Se〉 , ||e||12 = 〈Ae,e〉 and ||e||22 =
〈D−1Ae,Ae〉 with 〈., .〉 denoting the inner product.

The inequality (13) implies that S will be inefficient in reducing the error component ||el||1
2� ||el||2

2.
Such an error component is known as algebraically smooth error and must be distinguished and reduced
effectively in the coarse-grid correction since most iterative methods show slow convergence for these
error components.

Since the obtained matrix A in each iteration is a weakly diagonally dominant M-matrix, there are
different studies showing the convergence of CAMG where, for e.g., a two-grid approach and only one
smoothing step is performed per cycle. Such investigations, however, mainly assume the M-matrix A to
be symmetric. Although this assumption is necessary for the simplicity of the discussion, it can be shown



Approximate solution of the Hamilton-Jacobi-Bellman equation 81

that the results are also valid for non-symmetric cases. This, however, requires a comprehensive study
on AMGs that is far from our goal in this paper. Instead we only present the following theorem stating
the convergence of CAMG for symmetric cases and further refer the readers to see [29, 30, 40, 41] for its
proof and other related studies.

Theorem 2. [40] Let A be a symmetric and weakly diagonally dominant M-matrix and S be the relaxation
method satisfying the smoothing property (13). Also assume a given C/F-splitting such that for each
i ∈ F there exist a set Pl

i ⊆C∩ Ĩl
i and a fixed τ ≥ 1 where

∑
k∈Pl

i

|aik| ≥
1
τ

∑
j∈Ĩl

i

|ai j|.

Then, using interpolation (11) and weights (12) for each el ∈R(K) (where R(K) denotes the range of
K), following inequality holds:

〈Ael,el〉 ≤ τ〈D−1Ael,Ael〉.

In addition, the two-level approach using one relaxation step for post-smoothing converges at a rate which
only depends on τ and not on the given matrix dimensions in each level. Meaning that:

〈ASK,SK〉1/2 ≤
√

1−σ/τ.

The theorem ensures that the properties of matrix A are sufficient for the convergence of the CAMG
algorithm as long as the considered relaxation method is convergent. In this theorem, these properties
are listed as being a symmetric M-matrix and also weakly diagonally dominant. However, as mentioned
before, the theorem is in practice extendable to the non-symmetric cases. In addition, the theorem indicates
that the rate of convergence depends on a scalar and not on the size of matrix A in each level l. This
is of utmost importance for non-linear and high-dimensional problems since higher values of Ñ are
required for the algorithm to yield reliable results. In practice, most of the relaxation methods require
many iterations for convergence that increases both computations and running time of the algorithm.
Moreover, their number of iterations scales up exponentially with the number of nodes Ñ. The number
of iterations required for convergence of the CAMG in each level, however, bounded from above to a
fixed value. That is, increasing the value of Ñ does not affect the convergence rate of the algorithm
(see Table 2.1 in [20] for more information). For our experiments here, we observed a linear increase
of the iterations (required for convergence) for the proposed approach when CAMG is applied and an
exponential increase when only a relaxation method is used without CAMG. Importantly, we emphasize
that a careful implementation of the proposed algorithm (specially the set up phase) is required to obtain
the desired acceleration. Moreover, considering the run-time of the algorithm, we mention that AMGs
are often considered less effective in comparison to geometric multigrids and some other acceleration
approaches such as GMRES and/or polynomial acceleration methods [42]. Nonetheless, reducing the
number of computations and also the run-time of the AMGs are still an ongoing research direction and
many studies have been devoted to develop new algorithms in order to further speed up the current
framework of AMGs (see, e.g., [12, 15, 20, 42, 45]).
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Table 1: The optimal value of v(t,x(t)) at different given initial points. The results correspond to Ñ = 211.

(t0,x0) Exact Proposed method
(0.5, 0) -0.25 -0.2502

(0.5, -0.5) -1.002 -1.005
(0.25, 0.25) -1.004 -1.002

(0, 0.5) -2.253 -2.258
(0.75, 0.4) -0.4243 -0.4256

4 Numerical examples

In this section, we investigate the reliability of the proposed method on numerical examples. For all
the examples below, the diffusion coefficient ε and also the threshold value θ of the CAMG are set
to be 10−10 and 0.25 respectively. Moreover, the two well-known relaxation operators of Jacobi and
Gauss-Seidel and a 3-level CAMG approach are applied. Also, following [17, 18], we further apply
two pre- and two post-smoothing steps. The stopping criteria for the algorithm is also considered to
be ‖vnew− vold‖∞ < 10−6. Further a uniform mesh with different number of nodes is considered and
the Matlab software on a 2.3 GHz Dual-Core Intel Core i5 laptop with 8 GB RAM is employed for the
implementation. Moreover, we here follow a common procedure (similar to, e.g., [4, 23]) and report the
average number of V-cycles used for the solving Av = b (averaging over different time steps: we here used
the first 5 iterations to compute the average) alongside with the averaged solution time of the AMG-FVM
for each of the examples below. These values are further compared with the cases where CAMG is not
applied and only a relaxation method is used.

Example 1 ( [44]). Consider the following optimal control problem and let Ω = [−1,1].

min
u

− x2(1),

s.t. ẋ(t) = u(t), t0 ≤ t ≤ 1,

x(t0) = x0.

Note that here t0 and x0 are not fixed values.

The HJB equation for this problem can be presented as

vt + inf
u
{vxu}= 0,

v(1,x(1)) =−x2(1),

which its optimal function is given by v(t,x(t)) =−(|x|+(1− t))2.
Although the problem seems to be a toy example at first glance, the optimal function of v(t,x(t)) is
not differentiable which makes it almost impossible for the classical approaches to obtain a reliable
result. On the contrary, the proposed approach can reliably approximate the optimal function. To this,
we let Ω̃ = [−3,3] and ∆tk =−0.0025 and applied the proposed algorithm for solving the corresponding
convection-diffusion equation of this example. The obtained values of the performance index v(t,x(t))
for different initial points are then presented in Table 1 where we also compare the results with their
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Figure 3: Surface plots of computed control (left) and optimal value of v(t,x(t)) (right) for different initial
points. See [19, 44] for a comparison of the images.

Table 2: The average number of iterations (for AMG-FVM this corresponds to the number of V-cycles)
and also the average CPU time used for solving system of Av = b in each time step tk for different number
of nodes Ñ. The results reveal the efficiency of the proposed method when it is cast along with the CAMG
approach.

Ñ
AMG-FVM (Jac.) Jacobi relax. AMG-FVM (GS) Gauss-Seidel relax.
# V-cyc Time(s) # Iter. Time(s) #V-cyc Time(s) # Iter. Time(s)

213 16 0.0111 63 0.0197 15 0.0126 64 0.0212
214 29 0.055 118 0.0923 26 0.0552 119 0.0622
215 57 0.1918 228 0.2834 48 0.1828 227 0.2159

corresponding exact values. As can be seen, the proposed algorithm performs well where its closed-
loop property enables us to compute the value of v(t,x(t)) at different initial points without any further
procedure. The behaviour of the function v(t,x(t)) and also the computed control function u(t) are further
illustrated in Figure 3 for different initial points.

Next, a comparison in the number of iterations and CPU time required for solving the system of
Av = b in each time step is presented in Table 2. We considered two different relaxation methods (Jacobi
and Gauss-Seidel) and performed the proposed method using these two relaxations once with the CAMG
and once without it. The presented values then correspond to different numbers of Ñ. Importantly, the set
up time (coarsening time) is excluded from the CPU time corresponding to the AMG-FVM approach as
this procedure has been applied only once for solving the system of Av = b. As it can be seen, the number
of iterations drastically decreases when the CAMG is applied. In addition, we observed this number of
iterations to grow linearly with the number of Ñ in contrast to the cases where CAMG is not applied
which the growth seems to be exponentially. This further indicates that the convergence of CAMG is
not dependent on the mesh size. Besides, the CPU time of the proposed AMG-FVM is also observed to
be less than the other solvers for all the three different values of Ñ that are considered here. Finally, the
performance of the algorithm is observed to improve as Ñ increases which shows the consistency of the
method.
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Example 2 ( [24]). For the second example, consider the electric circuit shown in Figure 4. The optimal
control problem computes the current u to minimize the energy consuming in the resistor and bring the
system, initially at rest (x1(t0) = x01 and x2(t0) = x02), to have unitary voltage across the condenser at a
given T and also zero current flowing inside the inductor. Assuming that all components are ideal, the
circuit equations are

Figure 4: The electric circuit.

ẋ1(t) =
x2

L
, ẋ2(t) =

u− x1

C
,

x1(t0) = x01, x2(t0) = x02,

while the performance index that should be minimized is given by

J =
2RC2

T
− 2RC2

T
x2(T )+

∫ T

t0
R

u2

2
dt.

The optimal solutions for this optimal control problem in the case that [x1(0),x2(0)]T = [0,0]T

are observed as u∗(t) =−2C
T cos(ωt), x∗1(t) =− 1

Lπ
t sin(ωt) and x∗2(t) =− 1

π
[sin(ωt)+ωt cos(ωt)] and

v(t,x(t)) = α1(t)x1(t)+α2(t)x2(t)+α3(t), where

α1(t) =
2RC

π
sin(ωt), α2(t) =

2RC2

T
cos(ωt), α3(t) =

RC2

T
[1+

1
T
(t +

sin(ωt)cos(ωt)
ω

)].

Here, we set T := π/ω , ω :=
√

1/LC and L = R = C = 1
2 to apply the proposed method for solving

the problem. Further, we aim to solve the problem on the interval Ω = [−1,1]× [−1,1] and let Ω̃ =
[−2,2]× [−4,4], ∆tk = − T

100 and (hx1 ,hx2) = (0.05,0.05). The optimal control u∗(t) and also surface
v(t,x1(t),x2(t)) on spatial domain Ω̃ and initial time t0 = 0 are presented in Figure 5. Also Figure 6
illustrates the behaviour of the optimal trajectories x∗1(t) and x∗2(t). In addition, in order to examine the
performance of the proposed method, a comparison between the obtained optimal values of v(t,x1(t),x2(t))
and their exact values for different initial points is presented in Table 3. Moreover, Table 4 presents the
average number of iterations and also the average CPU time used for solving the system of Av = b in
each time step tk. It gives a comparison of applying two different relaxation operators with or without the
CAMG approach. This suggests that the CAMG approach performs well in combination with the FVM
method and accelerates the performance of the proposed algorithm. Consistently, by increasing the number
of nodes, the number of iterations required for solving the system of Av = b does not change drastically,
which illustrates the reliability of the method. Regarding the CPU time, however, the implemented
AMG-FVM has seen to require a bit higher amount of time for the convergence when the Jacobi relaxation
is applied (note that for the Gauss-Seidel this is not the case and AMG-FVM performs faster).



Approximate solution of the Hamilton-Jacobi-Bellman equation 85

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

t

u
(t

)

−4

−2

0

2

4

−5

0

5
−0.5

0

0.5

1

x
1x

2

V
(t

,x
1
,x

2
)

Figure 5: The left figure illustrates the behaviour of the optimal control u∗(t). The line − corresponds to
the proposed method and the line ·− to the exact function. The right figure presents the surface of the
function v(t,x1(t),x2(t)) at initial time t0 = 0.
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Figure 6: Behaviour of the optimal trajectories x∗1(t) (left) and x∗2(t) (right). The line − corresponds to the
proposed method and the line ·− shows the exact optimal trajectory.

Table 3: The optimal value of v(t,x1(t),x2(t)) at different given initial points.

(t0,x01,x02) Exact Proposed method
(0, -1, -1) -0.0796 -0.0717
(0, 0.5, 1) 0.2387 0.2351
(0, 1, 1) 0.2387 0.236

(0, 0, 0.5) 0.1593 0.1592
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Table 4: The average number of iterations (for AMG-FVM this corresponds to the number of V-cycles)
and also the average CPU time used for solving system of Av = b in each time step tk for different number
of nodes. The results reveal the efficiency of the CAMG in reducing the number of iterations used in the
algorithm. Besides, we observe that the CPU time for the solution phase of AMG-FVM is a bit higher
than the classical relaxation methods.

(hx1 ,hx2)
AMG-FVM (Jac.) Jacobi relax. AMG-FVM (GS) Gauss-Seidel relax.
# V-cyc Time(s) # Iter. Time(s) #V-cyc Time(s) # Iter. Time(s)

(0.05,0.05) 10 0.079 38 0.0339 9 0.0722 36 0.5363
(0.03,0.03) 14 0.3487 58 0.099 14 0.3547 56 5.5220
(0.025,0.025) 17 0.6468 68 0.2278 16 0.6186 65 11.3382

Table 5: The optimal value of v(t,x1(t),x2(t)) at different initial points. We here report two different
values for our method corresponding to two different discretizations. The index (1) corresponds to
(hx1 ,hx2) = (0.05,0.05) and index (2) corresponds to (hx1 ,hx2) = (0.025,0.025). We also mention that
the approach presented in [34] uses a number of 321×321 nodes that (approximately) corresponds to
(hx1 ,hx2) = (0.0065,0.025).

(t0,x01,x02) Wang et al. [34] Our method(1) Our method(2)

(0, 0, 1) 0.0991 0.1124 0.1037
(0, 0.5, 0.1) 0.1253 0.1356 0.1304
(0, 0.4, -0.2) 0.04683 0.0552 0.0507

Example 3 ( [34]). As the third example, consider the following optimal control problem:

min
u

∫ 1

t0
((x1(t)−0.1sin(10t))2 +0.001u2(t))dt,

s.t. ẋ1(t) = x2(t),

ẋ2(t) =−0.1x2(t)− x1(t)+u(t),

x1(t0) = x01,

x2(t0) = x02,

|u(t)| ≤ 1,

where Ω = [0,0.5]× [−0.3,1].

We consider Ω̃ = [−0.9,1.2]× [−4.6,3.7] (this is the interval that has been considered in [34] and
we here assume the same interval for the sake of a better comparison), and set ∆tk =−0.025. We further
solve the problem for different values of discretizations, i.e. different (hx1 ,hx2) values. Table 5 presents
the obtained optimal value of v(t,x1(t),x2(t)) for different initial points in comparison with the results
stated in [34].

Moreover, behaviour of the optimal control u∗(t) at point (0,1) and also the surface v(t,x1(t),x2(t))
on the spatial domain Ω̃ and initial time t0 = 0 are illustrated in Figure 7. We further present the behaviour
of the optimal trajectories x∗1(t) and x∗2(t) in Figure 8 and the surface of control u(t) at two different time
steps of 0.25 and 0.75 in Figure 9.
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Figure 7: The left figure illustrates the behaviour of the optimal control u∗(t). Also the surface of the
function v(t,x1(t),x2(t)) at initial point t0 = 0 is shown in the right figure.
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Figure 8: Behaviour of the optimal trajectories x∗1(t) (left) and x∗2(t) (right).

Figure 9: Surface plots of the optimal control at time points t = 0.25 (left) and t = 0.75 (right). See [34]
for a comparison of the images.
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Table 6: The average number of iterations (for AMG-FVM this corresponds to the number of V-cycles)
and also the average CPU time used for solving system of Av = b in each time step tk for different number
of nodes. The results reveal the efficiency of the proposed AMG-FVM approach.

(hx1 ,hx2)
AMG-FVM (Jac.) Jacobi relax. AMG-FVM (GS) Gauss-Seidel relax.
# V-cyc Time(s) # Iter. Time(s) #V-cyc Time(s) # Iter. Time(s)

(0.05,0.05) 4 0.0311 15 0.0327 4 0.0289 15 1.4106
(0.03,0.03) 6 0.1283 22 0.1336 5 0.1119 21 4.8443
(0.025,0.025) 7 0.2149 27 0.1773 5 0.1885 24 10.2031

Finally, Table 6 provides the average number of iterations along with the average CPU time of the
method (in solving the system of Av = b) in each time step. The values are computed for different
relaxation methods (Jacobi and Gauss-Seidel) and also for different discretization steps. As it can be seen,
the CAMG approach can reliably decrease the number of iterations and also the CPU time when it is cast
in the proposed method.

5 Conclusion

We investigated the HJB equation of the optimal control problems and presented a new algorithm for
its solving. The algorithm is robust and performs well in combining two powerful approaches of FVM
and CAMG. First, the FVM applied the viscosity approximation of the HJB equation which resulted in
solving a system of equations Av = b in each time step. Then, the CAMG was employed to accelerate the
convergence of a relaxation method applied for solving Av = b. The algorithm has shown to scale linearly
with the number of nodes and converge at a rate that only depends on a scaling parameter and not on the
size of matrix A. That is the number of iterations required for convergence observed to grow linearly in
contrast to the case where CAMG is not applied. Besides, the CPU time of the proposed AMG-FVM
has seen to be still competitive (and in most cases improved) in comparison to the classical relaxation
methods even though we have considered small-scale examples with a fairly small number of nodes.
Finally, numerical examples were presented to approve the theoretical results.
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