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Abstract. We provide a general finite iterative approach for constructing factorizations of a matrix
A under a common framework of a general decomposition A = BC based on the generalized Schur
complement. The approach applies a zeroing process using two index sets. Different choices of the
index sets lead to different real and integer matrix factorizations. We also provide the conditions under
which this approach is well-defined.
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1 Introduction

Solving a linear system Ax = b is an important and common problem in engineering and scientific com-
putations. A direct method for solving a dense linear system is to factorize the matrix A into some
simpler matrices and then solve the corresponding simpler linear systems. The most known factoriza-
tion is the LU factorization. The WZ factorization or butterfly factorization was proposed by Evans and
Hatzopoulos [8] to factorize nonsingular matrices. It is a direct method for solving linear systems in
parallel. It was proposed as an alternative to the LU factorization and was originally named as Quadrant
Interlocking Factorization (QIF).

ABS methods comprise an extensive class of algorithms, first introduced by Abaffy, Broyden and
Spedicato, for solving linear systems of equations [1], and later extended to nonlinear algebraic equa-
tions and optimization problems [16,17], linear Diophantine equations [5,6], linear Diophantine systems
with controlling the growth of intermediate results [13], computing the Smith normal form [11] and the
WZ factorization [10, 12]. Recently Raboky and Mahdavi-Amiri presented a generalization of the ABS
algorithm which is more general to produce several other matrix factorizations [9].
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As a useful tool, the (generalized) Schur complement has various important applications in many
aspects of matrix theory, applied mathematics, and statistics [2, 3]. Smith [15] focused on interlacing
eigenvalues of Schur complement and econometrics. The notion of Schur complement can be extended
to that of generalized Schur complement [4], when a matrix is allowed to have a singular block. Ando [2]
studied generalized Schur complement and Lyapunov stability. Wang [18] gave some inequalities for
generalized Schur complement.

Let R and Rm×n denote the set of real numbers and the set of m×n real matrices, respectively, and
[n] = {1, . . . ,n}. Let also A∈Rm×n, and α ⊂ [m] and β ⊂ [n] be two index sets. We denote the cardinality
of α by |α|. A[α,β ] denotes the |α|× |β | submatrix of A composed of the rows specified by α and the
columns specified by β . The generalized partitioned form of A based on the index sets α and β is a 2×2
block matrix, with the following blocks:

Eα,β = A[α,β ], Fα,β = A[α,β c], Gα,β = A[αc,β ], Hα,β = A[αc,β c], (1)

where αc = [m]−α and β c = [n]−β . We also denote A[α] for A[α,α].
Corresponding to any nonsingular submatrix, the Schur complement can be formed not just to a

leading principal submatrix. Let |α| = |β | and A[α,β ] be nonsingular. Then, the generalized Schur
complement of A corresponding to A[α,β ] is defined as

Sα,β = A[αc,β c]−A[αc,β ](A[α,β ])+A[α,β c], (2)

where (A[α,β ])+ is the Moore−Penrose inverse of the matrix A[α,β ] [19]. Obviously, if A[α,β ] is
nonsingular, then the Moore-Penrose inverse (A[α,β ])+ equals (A[α,β ])−1. Many other results on Schur
complement can be extended to generalized Schur complement.

Let Pα and Pβ denote the partial permutation matrices to move the rows and columns of A, respec-
tively, to locate A[α,β ] into the upper left corner of A. Letting

Aα,β = PT
α APβ =

A[α1,β1] · · · A[αs,βs]
...

. . .
...

A[αs,β1] · · · A[αs,βs]

 , (3)

we have

Aα,β =

(
A[α,β ] A[α,β c]
A[αc,β ] A[αc,β c]

)
=

(
Eα,β Fα,β

Gα,β Hα,β

)
. (4)

If A(α,β ) is invertible, then

Aα,β =

(
I 0

Gα,β E−1
α,β I

)(
Eα,β 0

0 Sα,β

)(
I E−1

α,β Fα,β

0 I

)
. (5)

Let Eα,β be invertible. Then, A is invertible if and only if Sα,β is invertible. If α = β , then there exists a
permutation matrix P such that

PT AP =

(
A[α] A[α,αc]
A[αc,α] A[αc]

)
. (6)

Definition 1. We say that α = {α1, . . . ,αs} is an index set of [n] if and only if αi ⊂ [n], for i = 1, . . . ,s,
αi
⋂

α j = /0, whenever i 6= j, and ∪s
i=1αi = [n].
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An index set is a set whose members are formed as sets of members of another set. The index set
α can be seen as a block permutation vector, where the elements of the sets αi are written in ascending
order. For example, α = {{1,6},{2,5},{3,4}} is an index set [6].

Let A∈Rm×n, and α and β be two index sets of [n]. Assume that A(:,b) denotes the m×|b| submatrix
of A containing the columns specified by b and A(αi,β j) denotes the |αi|×|β j| submatrix of A composed
of the rows specified by αi and the columns specified by β j. If αi = β j, then A(αi,β j) is a principal
submatrix of A, and if αi = β j = {1, . . . , i}, 1 ≤ k ≤ min{m,n}, then A(αi,β j) is a leading principal
submatrix of A.

Definition 2. Let A∈Rn×n, and α = {α1, . . . ,αs} and β = {β1, . . . ,βs} be two index sets of [n], A(αi,β j),
1≤ i, j ≤ s denote the (i, j)th block of A and

A(∪k
i=1αi,∪k

j=1β j) =

A[α1,β1] · · · A[α1,βk]
...

. . .
...

A[αk,β1] · · · A[αk,βk]

 , k = 1, . . . ,s.

We say A is (α,β )-block strongly nonsingular if and only if A(∪k
i=1αi,∪k

i=1βi), for k = 1, . . . ,s, are
nonsingular.

Definition 3. Let A ∈ Rn×n, and α = {α1, . . . ,αs} and β = {β1, . . . ,βs} be two index sets of [n] such
that |αi|= |βi|. The matrix A is called row (α,β )-block diagonally dominant matrix (with respect to the
matrix norm || · ||) if for i = 1, . . . ,s, the matrices A(αi,βi) are nonsingular, and

s

∑
j=1, j 6=i

||A(αi,βi)
−1A(αi,β j)|| ≤ 1, i = 1, . . . ,s. (7)

If a strict inequality holds in (7), then A is called row (α,β )-block strictly diagonally dominant (with
respect to the matrix norm || · ||).

Let A be an (α,β )-block strictly diagonally dominant matrix. Then, the A(∪k
i=1αi,∪k

i=1βi) are non-
singular, for k = 1, . . . ,s, and A is an (α,β )-strongly nonsingular matrix.

Definition 4. Let A ∈ Rn×n, and α = {α1, . . . ,αs} and β = {β1, . . . ,βs} be two index sets of [n] such
that |αi|= |βi|. The matrix A is called (α,β )-block symmetric matrix if the A(αi,βi) are symmetric and
A(αi,β j) = AT (β j,αi), for i, j = 1, . . . ,s.

Remark 1. A is (α,β )-block strongly nonsingular, (α,β )-block strictly diagonally dominant, (α,β )-
block symmetric positive definite, if and only if Aα,β is block strongly nonsingular, block strictly diago-
nally dominant, block symmetric positive definite, respectively.

Now, consider the following definition.

Definition 5. A ∈ Zn×n is a unimodular matrix if and only if |det(A)|= 1.

Note that A is unimodular if and only if A−1 is unimodular.

Definition 6. Let A ∈ Zn×n, and α = {α1, . . . ,αs} and β = {β1, . . . ,βs} be two index sets of [n]. We
say that A is (α,β )-block strongly unimodular if and only if A(∪k

i=1αi,∪k
i=1βi), for k = 1, . . . ,s, are

unimodular.
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2 Generalized Schur complement and matrix factorization

Here, we provide an iterative approach based on the generalized Schur complement for constructing
factorizations of A = BC. The approach applies a zeroing process using two index sets. Let A1 = A. At
the kth step, the method calculates Ak+1(α

c
k ,βk) = 0 as follows:

Ak+1(α
c
k ,β

c
k ) = Ak(α

c
k ,β

c
k )−Ak(α

c
k ,βk)Ak(α,βk)

−1Ak(α,β
c
k ).

We note that different choices of the index sets lead to different real and integer matrix factorizations.
Now, we are ready to present the following algorithm.

Algorithm 1 Generalized Schur complement algorithm.
Input: A ∈ Rn×n, α = {α1, . . . ,αs} and β = {β1, . . . ,βs} two index sets of [n] such that |αi|= |βi|.
Output: The matrix factorization A = BC.
Let B = In.
for k = 1, . . . ,s do

Compute Ek = A[αk,βk], Fk = A[αk,β
c
k ], Gk = A[αc

k ,βk], Hk = A[αc
k ,β

c
k ].

Set Sk = Hk−GkE−1
k Fk.

Let A[αc
k ,βk] = 0, A[αc

k ,β
c
k ] = Sk, and B[αc

k ,αk] = GkE−1
k .

end for
Set C = A.

If A(αk,βk) is singular for an index k, then A(αk+1,βk+1) is singular. Now, according to (5) we have
the next result.

Theorem 1. (Factorization theorem) Let A ∈ Rn×n. The generalized Schur complement algorithm (Al-
gorithm 1) can be performed on A to produce the matrix factorization A = BC if and only if A is an
(α,β )-block strongly nonsingular matrix.

Proof. A is (α,β )-block strongly nonsingular if and only if Ek are nonsingular, for k = 1, . . . ,s. This
complete the proof.

Corollary 1. Let A ∈ Zn×n, and α = {α1, · · · ,αs} and β = {β1, · · · ,βs} be two index sets. If A is (α,β )-
block strongly unimodular, then Algorithm 1 produces an integer matrix factorizatin A = BC, where B
and C are integer matrices.

3 Matrix factorizatios

Let A ∈ Rn×n, and α = {α1, . . . ,αs} and β = {β1, . . . ,βs} be two index sets of n. Then, Algorithm 1
computes a matrix factorization A=BC such that B(α(i),β (i))= I. In the kth step, Algorithm 1 performs
a partial zeroing such that the elements of the submatrix Ak correspond to the columns specified by βk
and the rows specified by αc

k .
Here, we consider different choices for α and β such that all the blocks A(αi,β j) are of size 1× 1

and present the associated matrix factorizations. First, we define two index sets. Let J = { j1, . . . , jn},
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such that

ji =

{
i+1

2 , if i is odd,
n− i

2 +1, if i is even.
(8)

We define the index set K = {k1, . . . ,kn} as follows. If n is an even number, define

ki =

{
n
2 −

i+1
2 +1, if i is odd,

n
2 +

i
2 , if i is even,

(9)

and if n is an odd number, define

ki =

{
n+1

2 −
i
2 , if i is even,

n+1
2 + i−1

2 , if i is odd.
(10)

The following cases are noted:

Case (1): For αi = βi = i, B is a lower triangular and C is an upper triangular matrix.

Case (2): For αi = βi = n− i+1, B is an upper triangular and C is a lower triangular matrix.

Case (3): For αi = i,βi = n− i+1, B is lower triangular and C has the following structure:

C

Case (4): For αi = n− i+1,βi = i, B is upper triangular and C has the following structure:

C

Case (5): For αi = i,βi = ji, B is lower triangular and C has the following structure:

C

Case (6): For αi = n− i+1,βi = ki, B is upper triangular and C has the following structure:

C
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Case (7): For αi = i,βi = ki, B is lower triangular and C has the following structure:

C

Case (8): For αi = n− i+1,βi = ji, B is upper triangular and C has the following structure:

C

Case (9): For αi = ji,βi = i, we have:

B C

Case (10): For αi = ki,βi = n− i+1, we have:

B C

Case (11): For αi = ki,βi = i, we have:

B C

Case (12): For αi = ji,βi = n− i+1, we have:

B C
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Case (13): For αi = ji,βi = ji, we have a WZ factorization:

B C

Case (14): For αi = ki,βi = ki, we have a ZW factorization:

B C

Case (15): For αi = ki,βi = ji, we have:

B C

Case (16): For αi = ji,βi = ki, we have:

B C

Below, we give a MATLAB code for Algorithm 1, where A∈Rn×n, and t = {t1, . . . , tn} and b= {b1, . . . ,bn}
are two index sets and all the blocks A(αi,βi) are of size 1×1, for i = 1, . . . ,n.

1 function [B,C]= Genschur(A,t,b)

2 clc

3 [n,n]=size(A);

4 B=eye(n);

5 C=zeros(n);

6 for k=1:n-1

7 E=zeros (1 ,1);F=zeros(1,n-k);G=zeros(n-k,1);H=zeros(n-k,n-k);

8 E=A(t(k),b(k));

9 G=A(t(k+1:n),b(k));

10 F=A(t(k),b(k+1:n));

11 H=A(t(k+1:n),b(k+1:n));

12 B(t(k+1:n),t(k))=G*inv(E);

13 S=H-G*inv(E)*F;

14 A(t(k+1:n),b(k))=0;

15 A(t(k+1:n),b(k+1:n))=S;

16 end

17 C=A;

18 end
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4 Quadrant interlocking factorization

A direct method called the WZ factorization, used for solving linear systems of equations Ax = b, was
introduced by Evans and Hotzopoulos [8]. Let A be an n×n nonsingular matrix. The WZ factorization
of [7] expresses A as A =WZ, with W and Z having the following forms:

W =


• ◦ ◦ ◦ •
• • ◦ • •
• • • • •
• • ◦ • •
• ◦ ◦ ◦ •

 , Z =


• • • • •
◦ • • • ◦
◦ ◦ • ◦ ◦
◦ • • • ◦
• • • • •

 , (11)

where the empty bullets stand for zero and the other bullets stand for possible nonzeros.
The transpose of a W-matrix is called a Z-matrix and vise versa. A matrix which is both a Z- and a

W-matrix is called an X-matrix.
Note: Without loss of generality, we assume that A is an n×n nonsingular matrix and n is even.

Theorem 2. Let A ∈ Rn×n. A has a WZ factorization if and only if the nested submatrices A([1 : k,n−
k+1 : n], [1 : k,n− k+1 : n]) are invertible, for k = 1, . . . , n

2 .

Proof. See proof for Theorem 2 of [14].

The cases (13) and (14) above compute the WZ and the ZW factorizations by 1×1 blocks. Next, we
compute the factorizations using 2×2 blocks which is suitable for parallel computing.

Let A ∈ Rn×n and α = β = {k,n− k+1}, for k = 1, . . . , n
2 . If A is (α,β )-block strictly nonsingular

matrix, then by Theorem 2 A has a WZ factorization. Furtheremore, with the index sets, Algorithm 1
produces a WZ factorization for A.

Below we give a MATLAB code for Algorithm 1, where A ∈ Rn×n, αk = βk = {k,n− k+1}, and all
the blocks A(αk,βk) are of size 2×2, for k = 1, . . . , n

2 .

1 function [B,C]= GenschurWZ(A)

2 % This program produces B as a W-matrix and C as a Z-matrix

3 clc

4 [n,n]=size(A);

5 B=eye(n);

6 C=zeros(n);

7 for k=1:n/2

8 E=A([k,n-k+1],[k,n-k+1]);

9 G=A([k+1:n-k],[k, n-k+1] );

10 F=A([k,n-k+1],[k+1:n-k]);

11 H=A([k+1:n-k],[k+1:n-k]);

12 B([k+1:n-k],[k,n-k+1])=G*inv(E);

13 S=H-G*inv(E)*F;

14 A([k+1:n-k],[k,n-k+1])=0;

15 A([k+1:n-k],[k+1:n-k])=S;

16 end

17 C=A;

18 end
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Remark 2. Let A∈Zn×n. If the nested submatrices A(1 : k,n−k+1 : n,1 : k,n−k+1 : n) are unimodular,
for k = 1, . . . , n

2 , then A has an integer WZ factorization.

Theorem 3. Let A ∈Rn×n. A has a ZW factorization if and only if the nested submatrices A([n
2 −k+1 :

n
2 + k], [n

2 − k+1 : n
2 + k]) are invertible, for k = 1, . . . , n

2 .

Proof. See proof for Theorem 7 of [10].

Consider two equal index sets α = {α1, . . . ,α n
2
} and β = {β1, . . . ,β n

2
} such that αk = βk = {n

2 − k+
1, n

2 +k}. Let A∈Rn×n be an (α,β )-block strictly nonsingular matrix. Upon an application of Algorithm
1, a ZW factorization for A is produced.

Below, we give a MATLAB code for Algorithm 1, where A ∈Rn×n, αk = βk = {n
2−k+1, n

2 +k}, and
all the blocks A(αk,βk) are of size 2×2, for k = 1, . . . , n

2 .

1 function [B,C]= GenschurZW(A)

2 % This program produces B as a Z-matrix and C as a W-matrix

3 clc

4 [n,n]=size(A);

5 B=eye(n);

6 C=zeros(n);

7 for k=1:n/2

8 E=A([n/2-k+1,n/2+k],[n/2-k+1,n/2+k]);

9 G=A([1:n/2-k,n/2+k+1:n],[n/2-k+1,n/2+k]);

10 F=A([n/2-k+1,n/2+k],[1:n/2-k,n/2+k+1:n]);

11 H=A([1:n/2-k,n/2+k+1:n],[1:n/2-k,n/2+k+1:n]);

12 B([1:n/2-k,n/2+k+1:n],[n/2-k+1,n/2+k])=G*inv(E);

13 S=H-G*inv(E)*F;

14 A([1:n/2-k,n/2+k+1:n],[n/2-k+1,n/2+k])=0;

15 A([1:n/2-k,n/2+k+1:n],[1:n/2-k,n/2+k+1:n])=S;

16 end

17 C=A;

18 end

Remark 3. Let A ∈ Zn×n. If the nested submatrices A([n
2 −k+1 : n

2 +k], [n
2 −k+1 : n

2 +k]) are unimod-
ular, for k = 1, . . . , n

2 , then A has an integer ZW factorization.

5 Numerical experiments

Example 1. Consider the following matrix:

A =



0.6256 0.3379 0.7228 0.9845 0.9512 0.3806 0.4522
0.5751 0.2752 0.6681 0.8859 0.2490 0.9259 0.8492
0.7510 0.0060 0.1788 0.2138 0.3864 0.7408 0.3904
0.1535 0.8019 0.5505 0.0346 0.4314 0.7376 0.7384
0.3568 0.4974 0.9599 0.4511 0.8309 0.9469 0.9764
0.1440 0.5378 0.5960 0.0138 0.8246 0.5101 0.5233
0.8506 0.8709 0.8086 0.4737 0.4530 0.7919 0.4299


.
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Upon an application of Algorithm 1 with αi = i and βi = ji, we have the matrix factorization A = BC,
with

B =



1 0 0 0 0 0 0
0.9193 1 0 0 0 0 0
1.2004 −0.3517 1 0 0 0 0
0.2454 1.4474 −1.8692 1 0 0 0
0.5703 1.6574 −0.8818 0.2836 1 0 0
0.2302 0.9670 −1.1994 0.6237 0.8882 1 0
1.3597 −0.4266 −0.9618 1.3727 2.1767 24.0238 1


,

and

C



0.6256 0.3379 0.7228 0.9845 0.9512 0.3806 0.4522
0 −0.0354 0.0036 −0.0191 −0.6254 0.5760 0.4335
0 −0.4121 −0.6876 −0.9748 −0.9754 0.4865 0
0 0 −0.9174 −2.0013 −0.72 0.7198 0
0 0 0.1954 −0.3708 0.6690 0 0
0 0 0 0.2141 −0.1046 0 0
0 0 0 −3.3997 0 0 0


.

With the parameter choices αi = ji and βi = n− i+1, we have:

B =



1 0 0 0 0 0 0
1.8779 1 0 0 0 0 0.4910
0.8633 0.0017 1 0 0 0.2047 0.9585
1.6329 0.7600 −0.0824 1 −1.5948 0.9486 0.2700
2.1592 0.8297 −0.2424 0 1 0.9920 0.2909
1.1572 0.1543 0 0 0 1 0.1620
0.9507 0 0 0 0 0 1]


,

and

C =



0.6256 0.3379 0.7228 0.9845 0.9512 0.3806 0.4522
−0.7254 −0.6292 −0.7489 −0.7360 −1.3157 0 0
0.0712 −0.8432 −0.5308 0 0 0 0
0.1927 0 0 0 0 0 0
0.0561 −0.2280 0 0 0 0 0
−0.5095 0.1549 −0.1445 −0.9370 0 0 0
0.2559 0.5497 0.1214 −0.4622 −0.4513 0.4301 0


.

Example 2. Let

A =



0.0965 0.8212 0.5470 0.7802 0.5085 0.3507 0.4709 0.3111
0.1320 0.0154 0.2963 0.0811 0.5108 0.9390 0.2305 0.9234
0.9421 0.0430 0.7447 0.9294 0.8176 0.8759 0.8443 0.4302
0.9561 0.1690 0.1890 0.7757 0.7948 0.5502 0.1948 0.1848
0.5752 0.6491 0.6868 0.4868 0.6443 0.6225 0.2259 0.9049
0.0598 0.7317 0.1835 0.4359 0.3786 0.5870 0.1707 0.9797
0.2348 0.6477 0.3685 0.4468 0.8116 0.2077 0.2277 0.4389
0.3532 0.4509 0.6256 0.3063 0.5328 0.3012 0.4357 0.1111


.
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Using the function GenSchurWZ, we have a WZ factorization as follows:

B =



1 0 0 0 0 0 0 0
3.1412 1 0 0 0 0 0 −0.4845
0.4768 0.7895 1 0 0 0 −0.6421 2.5371
−0.4130 −0.1148 0.0991 1 0 9.5446 1.8450 2.8198
2.5787 0.3148 −0.3475 0 1 1.0307 2.0490 0.9240
3.4226 0.4403 0 0 0 1 1.2522 −0.7658
1.3003 0 0 0 0 0 1 0.3095

0 0 0 0 0 0 0 1


,

and

C =



0.0965 0.8212 0.5470 0.7802 0.5085 0.3507 0.4709 0.3111
0 −2.3457 −1.1188 −2.2213 −0.8284 −0.0167 −1.0376 0
0 0 −0.5644 1.1086 −0.1320 −0.2616 0 0
0 0 0 2.9264 4.8960 0 0 0
0 0 0 0.8319 −0.3262 0 0 0
0 0 −0.0453 −0.1922 −0.5709 0.0524 0 0
0 −0.5596 −0.5364 −0.6625 −0.0145 −0.3415 −0.5195 0

0.3532 0.4509 0.6256 0.3063 0.5328 0.3012 0.4357 0.1111


.

We illustrate that B is a W matrix and C is a Z matrix. By applying the function GenSchurZW for
computing the ZW factorization, we obtain the following result:

B =



1 −0.6566 1.8535 2.2604 −1.9992 −1.2902 0.1916 0
0 1 −2.2447 −1.7400 2.9393 2.7711 0 0
0 0 1 1.7790 −0.9256 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0.8554 −0.4675 1 0 0
0 0 −0.7163 −0.9498 2.4314 −1.0903 1 0
0 0.0037 −0.0365 −0.5494 1.5047 −0.7754 0.6319 1


,

and

C =



−0.3187 0 0 0 0 0 0 −0.3269
0.9520 −3.2962 0 0 0 0 1.1882 −2.7562
−0.2264 0.3431 1.0442 0 0 0.4733 0.7068 0.9390
0.9561 0.1690 0.1890 0.7757 0.7948 0.5502 0.1948 0.1848
0.5752 0.6491 0.6868 0.4868 0.6443 0.6225 0.2259 0.9049
−0.4891 0.8906 0.3429 0 0 0.4074 0.1097 1.2447
−0.9510 0.4469 0 0 0 0 0.4894 0.4440
0.2229 0 0 0 0 0 0 −0.4199


.

The results show that B is a Z matrix and C is a W matrix.
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