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Improving the Dai-Liao parameter choices using a fixed point
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Abstract. Recently, based on a singular value analysis on the Dai—Liao conjugate gradient method,
Babaie-Kafaki and Aminifard suggested a fixed point equation. The prominent feature of the proposed
equation is that its solutions may increase numerical stability of the method while improving the global
convergence. Here, the same fixed point equation is employed to upgrade previously proposed choices
of the Dai-Liao parameter based on the well-known functional iteration method. Global convergence
analysis is conducted and numerical experiments are done to support our discussions.
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1 Introduction

As of late, the one-parameter class of conjugate gradient (CG) methods proposed by Dai and Liao (DL)

[9] has attracted special attention in developing efficient tools for solving the unconstrained optimization

problem m]iRn f(x) where f : R" — R is a smooth nonlinear function. Iterative formula of the method is
xER"

x0 € R, Xpq1 = X+ 5, Sk = oqdy, k >0, (D
where oy > 0 is a step size generated by the line search discussed in [17] along the direction
do = —80, dr+1 = —8k+1+ Prdk, k >0, (2)
with the CG parameter

DL g/f 1k 81{ 15k
gk = g(x) == Vf(x), Br:=PBO" = = — 17—, Yk = 8kl — &k (3)
d yk dy; Yk

*Corresponding author.
Received: 23 June 2020/ Revised: 25 February 2021/ Accepted: 5 March 2021
DOI: 10.22124/jmm.2021.16900.1466

(© 2022 University of Guilan http://jmm.guilan.ac.ir


http://jmm.guilan.ac.ir

12 S. Babaie-Kafaki, Z. Aminifard

Here ¢ is a nonnegative parameter. Note that if the line search fulfills the strong Wolfe conditions [17],

[+ oudy) — fxx) < Sougy dy, “4)
\d] gis1| < —od] gk, (5)

with 0 < § < o < 1, then we have dkTyk > 0, and so BkDL is well-defined.

It is worth noting that performance of the DL method is closely dependent on the choice of ¢ for
which an optimal formula has not been achieved yet [1]. Nevertheless, some recent adaptive choices for
the DL parameter can be listed as follows:

== Hkaz , by Hager and Zhang [14]; ©)
=1 Ty, Oy Hag gL=h
t:tIEZ): HkaH , by Dai and Kou [8]; ™
Sk Yk
k
T
= t/ES) = ’Tk )|)‘k2 + “yk” , by Babaie-Kafaki and Ghanbari [5]; ®)
Sk Sk
PR O N ’|Yk|| by Babaie-Kafaki and Ghanbari [5]; ©)
I R
t:tlgi) — Skykz, by Andrei [2]; (10
sl
2
O HS/«’\TM by Babaie-Kafaki and Ghanbari [7]; (1)
(Sk )’k)z
T
. t]£7) _ |]y7|||(7‘k3yk)7 by Babaie-Kafaki and Ghanbari [6]; (12)
Sk

where ||.|| stands for the Euclidean norm. Especially, the DL method with

H)’kHz
sk)’k

r=10

1. : . . o
where ¥ > 1 is a constant, has been established to satisfy the sufficient descent condition

df g < —cl|gkl|*, k>0, (13)

where c is a positive constant, independent of the objective function convexity and the line search condi-
tions (see also [3]).

Recently, conducting a singular value analysis [18], Babaie-Kafaki and Aminifard [4] computed
direction of the maximum magnification by search direction matrix of the DL. method [5],

s spsh
QkH:I—k—yk—%— ﬂ (14)
Skyk skYk
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where / is an n X n identity matrix. In light of the analysis carried out in [5], the largest singular value of
Or+1, namely Gk+ , can be computed as follows:

or L LVaETE— g 1Pt b
L2 9k 2 gk ’

with g = s{ v, ax = t[sel|* + g b = [Isel| [|yxl]. and pr = 1[]sil[* — g
Now, considering (14), the DL search directions can be generated by:

diy1 = —0Or18k+1, k> 0. (15)

As discussed in [4], when the gradient and the direction of the maximum magnification by the search
direction matrix are approximately parallel, from (15) we may have ||gi+1|| < ||dk+1|]- Therefore, nu-
merical errors (such as data swamping) may corrupt the solution and slow down the convergence speed
(see Theorem 2.1 of [11]). Hence, if the gradient g;. is far from the direction of the maximum magni-
fication by Q.1 as much as possible (kind of being orthogonal), impact of the mentioned troubles may
be decreased. Based on this fact, in [4] it has been noted that the fixed point equation ¢ = @(¢) with

+32 T T
(P(t) _ (Gk ) <|skyk o gk+1yk> 7 (16)

=) sl gl yse

should be solved to achieve an appropriate formula for computing the DL parameter. As a result, they
suggested the following adaptive choice:

et \/e]%—|—4h]%b,% Hka2
max 0, gl si #0and hy #0
. P s [ |
t=t"' = 17
2
0 H);A , otherwise,
Sk Yk
in which
T T T, \2
Stk 81V (s k)
hi = . 7 kT+1 ) ek:Hyk”z_h%HskHz_ s 2
Isell® g1, 15 Il
and
1
U > 7

is a constant.

Here, using the fixed point equation (16) obtained based on the maximum magnification by the matrix
Or+1, we propose a general modification approach for the adaptive choices of the DL parameter. This is
the subject of Section 2, together with a brief convergence analysis. We provide a test bed to shed light
on the merits of our modification scheme in Section 3. Finally, in Section 4 we come out with concluding
remarks. Hereafter, we assume that dkT yx > 0, as guaranteed by the strong Wolfe conditions (4) and (5).
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2 A modification scheme for the Dai-Liao parameter choices

As known, functional iteration method is a popular technique for solving fixed point equations [16].
Especially, near the solution computational behavior of the method is acceptable. So, in order to take
advantage of the fixed point equation (16), if we have the appropriate choice ¢ = #; for the DL parameter,
then we may suggest its modified version as 7, = ¢@(#;). However, the choice t = #; may be nonpositive.
In addition, generally it may not guarantee the descent property for the DL method. Hence, based on the
eigenvalue analysis conducted in [3], we suggest the following one-parameter class of choices for the
DL parameter:

2
max{q)(lk),ﬁ ||};k” } . &1k #0and o) > 1,
Sk Yk
t=1(t) = (18)
2
s M 5 otherwise,
Sk Yk

1
with the constant % > —. As can be seen, different choices for # yield different formulas for 7(z;). Now,

similar to the proof of Lemma 3.1 of [4], the following result can be established for the DL parameter
t = 1(t). The proof is ignored to avoid verbosity.

Lemma 1. For the DL method witht = ©(t;.) given by (18), if the line search guarantees that dkT v >0,
for all k > 0, then the sufficient descent condition (13) holds.

In what follows, we discuss the global convergence of the DL method with the parameter r = ()
given by (18). In this context, the following preliminaries are needed [ 1 1].

Assumption 1. For arbitrary xo € R", £ = {x: f(x) < f(x0)} is a bounded set and in some neighbor-
hood % of £, V f(x) is Lipschitz continuous; that is, there exists a constant L > 0 such that

IVf(x) = VF@ < Lllx— x|, Vx,x € % (19)

The following theorem ensures the global convergence of the method for uniformly convex functions
[17]. The proof is similar to the proof of Theorem 3.3 of [9] and here is omitted.

Theorem 1. Suppose that Assumption 1 holds and the CG method using (1)—(2) and (18) is applied.
If t is uniformly bounded, the objective function f is uniformly convex on % and the step size 0Oy is
computed to fulfill the strong Wolfe conditions (4) and (5), then the method converges in the sense that
Jim [lg4]| = 0.

To ensure boundedness of 7 (as assumed in Theorem 1), we can set # < min{s, M}, where M is a large
positive constant. Also, in order to achieve global convergence for general functions, we can employ the
following restricted version of the CG parameter (3) [9]:

T T

s

,?L+ = max gk;lyk ,0 —t%. (20)
dk Yk dk Yk
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3 Numerical experiments

In this section, we investigate computational effect of the choice t = 7(#) given by (18) on the DL+
method in which the CG parameter is computed by (20), with different eight adaptive choices (6)—(12)
and (17) for #;. Here, for i = 1,2,...,8, the method with ¢t = t,E’) which is called DLi+ is compared
by its modified version with t = ‘c(t,@) which is called MDLi+. The runs were performed on a set of
153 unconstrained optimization test problems of the CUTEr collection [12] as given in Table 1. The
hardware and software specifications have been clarified in [4]. In the line search procedure, the strong
Wolfe conditions (4) and (5) have been employed using Algorithm 3.5 of [17] with § = 0.0001 and
o = 0.99. The steepest descent direction employed when an uphill search direction was generated [9].
The efficiency of all algorithms was evaluated by applying the performance profile of Dolan—Moré [10].
To do so, the total number of function and gradient evaluations (TNFGE) being equal to Ny + 2Ng,
where Ny and N, respectively denote the number of function and gradient evaluations, and the times in
second (TSEC) were used as the cost measures. Moreover, the algorithms were stopped when TNFGE >
20000 -+ 501 (where 1 denotes the dimension of the problem) or achieving a solution with ||gx|| < 107°.

Figures 1 and 2 illustrate the results of comparisons (based on the considerations of [13]) in which
p(w) stands for the Dolan—-Moré performance profile in the level @ [10]. As seen, MDLi+ fori=3,...,8
are superior to DLi, with respect to TNFGE and TSEC. Also, from Figures 1 and 2 it can be concluded
that MDL 1+ and MDL2+ respectively are preferable to DL1+ and DL2+ with respect to TNFGE while in
viewpoint of TSEC, MDL1+ and DL1+ as well as MDL2+ and DL2+ are competitive. Hence, employing
the given fixed point equation can enhance effectiveness of the previously proposed adaptive choices of
the DL parameter. As a final remark, Table 2 showed that averagely at almost % of the iterations of
the MDLi+ methods (i = 1,2,...,8) our modification scheme were employed in the sense that we had

t= (") in (18).

4 Conclusions and future works

Finding optimal choices for the parameter of the Dai—-Liao method is a classical open problem in the
conjugate gradient methods. In this regard, by orthogonalizing the direction of the maximum magnifica-
tion by the search direction matrix of the method to the gradient vector, a fixed point equation has been
obtained. As known, functional iteration method is a popular technique for solving fixed point equations,
being computationally promising near the solution. Based on this fact, a modification scheme has been
proposed for the classical reasonable choices of the Dai-Liao parameter, yielding a one-parameter class
of adaptive choices. To investigate practical effect of our approach, several pairwise comparisons have
been done on a set of CUTETr test problems, using the Dolan—Moré performance profile. They showed
the proposed modified methods outperform their classical versions. Especially, the experiments demon-
strated that averagely in 32.55% of the iterations of the modified methods our fixed point scheme were
employed.

As a final note, the functional iteration method for the fixed point equation # = ¢(¢) can have good
convergence behavior when ¢(r) given by (16) is a contractive function on a compact interval containing
the solution as an inner point [16]. It is worth noting that in our experiments we have observed that
¢'(ty) < 1, for all k > 0. So, as a future work, one can establish the inequality ¢’(r) < 1 which ensures
that @(¢) is contractive. Also, employing such fixed point approaches on the other iterative methods of
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Table 1: Test problems data.

Function n  Function n  Function n
AKIVA 2 DIXMAANL 3000 KOWOSB 4
ALLINIT 4 DIXMAANM 15 LIARWHD 5000
ALLINITU 4 DIXMAANN 15 LOGHAIRY 2
ARGLINA 200 DIXON3DQ 10000  MANCINO 100
ARGTRIGL 10 DITL 2 MARATOSB 2
ARWHEAD 5000 DJTL 2  MEXHAT 2
BARD 3 DMNI15102 66 MOREBV 5000
BDEXP 5000 DMNI15103 99 MSQRTALS 1024
BDQRTIC 5000 DMN37142 66 MSQRTBLS 1024
BEALE 2 DMN37143 99 NONCVXU2 5000
BENNETTS 3  DQDRTIC 5000 NONDIA 5000
BIGGS6 6 DQRTIC 5000 NONDQUAR 5000
BIGGSB1 5000 DRCAVILQ 4489 OSBORNEA 5
BOX3 3 DRCAV2LQ 4489 OSBORNEB 11
BQP1VAR 1 DRCAV3LQ 4489 OSCIPATH 10
BQPGABIM 50 ECKERLE4 3 PALMERID 7
BQPGASIM 50 EDENSCH 2000 PALMER2C 8
BRKMCC 2 EG2 1000 PALMER3C 8
BROWNAL 200 EIGENALS 2550 PALMER4C 8
BROWNBS 2 EIGENBLS 2550 PALMERSC 6
BROWNBS 2 EIGENCLS 2652 PALMER6C 8
BROWNDEN 4 ENGVAL2 3 PALMER7C 8
BROYDN7D 5000 ERRINROS 50 PALMERSC 8
BRYBND 5000 EXPFIT 2 PARKCH 15
CHAINWOO 4000 EXTROSNB 1000 PENALTY1 1000
CHENHARK 5000 FLETCBV2 5000 PENALTY2 200
CHNROSNB 50 FLETCBV3 5000 POWELLSG 5000
CHWIRUT2 3 FLETCHCR 1000  POWER 10000
CLIFF 2 FMINSRF2 5625 QUARTC 5000
CLPLATEB 5041 FMINSURF 5625 ROSENBR 2
CUBE 2  GAUSSILS 8 S308 2
DECONVU 63 GAUSS3LS 8 SINEVAL 2
DENSCHNA 2  GENHUMPS 5000 SISSER 2
DENSCHNB 2  GENROSE 500 SNAIL 2
DENSCHNC 2 GROWTHLS 3 SPARSINE 5000
DENSCHNC 2 GULF 3  SPARSQUR 10000
DENSCHND 3 HAIRY 2  SPMSRTLS 4999
DENSCHND 3 HATFLDD 3 SROSENBR 5000
DENSCHNE 3 HATFLDE 3 TESTQUAD 5000
DENSCHNF 2 HATFLDFL 3  TOINTGOR 50
DIXMAANA 3000 HEART6LS 6 TOINTGSS 5000
DIXMAANB 3000 HEARTSLS 8 TOINTPSP 50
DIXMAANC 3000 HELIX 3  TOINTQOR 50
DIXMAAND 3000 HILBERTA 2  TQUARTIC 5000
DIXMAANE 3000 HILBERTB 10 TRIDIA 5000
DIXMAANF 3000 HIMMELBB 2  VARDIM 200
DIXMAANG 3000 HIMMELBF 4  VAREIGVL 50
DIXMAANH 3000 HIMMELBG 2 VIBRBEAM 8
DIXMAANI 3000 HIMMELBH 2  WATSON 12
DIXMAANJ 3000 HUMPS 2 WOODS 4000
DIXMAANK 3000 JENSMP 2 YFITU 3
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Figure 1: Performance profile in terms of TNFGE.
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Figure 2: Performance profile in terms of TSEC.
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Table 2: Average percentage of the iterations with ¢t = (p(t,Ei)) for the methods MDLi+, i =1,2,...,8.

MDL1+ MDL2+ MDL3+ MDL4+ MDL5+ MDL6+ MDL7+ MDL8+
29.89%  31.81% 31.74% 3321% 32.72% 3749% 31.55% 39.34%

unconstrained optimization can be investigated.
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