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Streamwise feature selection on big data using noise
resistant rough functional dependency
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Abstract. Online Streaming Features (OSF) is a data streaming scenario, in which the number
of instances is fixed while feature space grows with time. This paper presents a rough sets-based
online feature selection algorithm for OSF. The proposed method, which is called OSFS-NRF'S,
consists of two major steps: (1) online noise resistantly relevance analysis that discards irrele-
vant features and (2) online noise resistanlty redundancy analysis, which eliminates redundant
features. To show the efficiency and accuracy of the proposed algorithm, it is compared with
two state-of-the-art rough sets-based OSF'S algorithms on eight high-dimensional data sets. The
experiments demonstrate that the proposed algorithm is faster and achieves better classification
results than the existing methods.
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1 Introduction

Feature selection has become an integral part of data mining tasks in the big data era where
we encounter huge datasets with thousands of irrelevant and redundant information [9, 141]. For
example, the educational data mining dataset from KDD CUP 2010 [36] has about 29 million
features. Most of the traditional feature selection methods process all the features together and
hence, are not applicable in such big data due to the computational concerns.

In addition to feature space size, the growth of feature space is another issue in big data that
the traditional feature selection methods are not able to handle. For example, since the outbreak
of the Covid-19, hundreds of new features have been reported daily by various laboratories and
research centers around the world on the virus and it’s detection [26,34,37]. A rudimentary
approach in these dynamically growing scenarios is to wait a long time for all features to become
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available and then carry out the feature selection methods. However, due to the importance of
optimal decisions at every time step, a more rational approach is to design an online streaming
features selection (OSFS) method which selects a best feature subset from so-far-seen information
and updates the subset on the fly when new features stream in.

Designing a general purpose OSFS algorithm is a very challenging problem. The main reason
for this challenge is the lack of domain knowledge, such as the size, distribution, order, type
and etc, about the streaming feature space. Although domain knowledge is an integral part
of most of the traditional feature selection algorithms, an OSFS algorithm should not require
such knowledge. This constraint makes the rough sets [28] an ideal tool to work, because rough
sets-based operations do not require any domain knowledge other than the given data.

Several rough sets based OSF'S algorithms are proposed in the literature [9,17,19]. Although
these algorithms are able to handle streaming features, the accuracy of selected subsets is still
an open problem and we need more accurate algorithms that allow reliable classification and
learning tasks at each time instance. Motivated by this problem, a new OSFS algorithm, called
OSFS-NRFS, is proposed in this paper. This algorithm uses a newly defined functional depen-
dency concept called noise resistance rough functional dependency. OSFS-NRFS consists two
major steps: 1) Online noise resistant relevance analysis that discards irrelevant features and,
2) Online noise resistant redundancy analysis that discards redundant features.

In summary, the unique contributions that distinguish the proposed work from existing ap-
proaches are threefold: 1) Our work advances the OSFS problem one step further for handling
big and noisy data; 2) a novel feature relevance/redundancy criterion based on newly defined
noise resistance rough functional dependency is proposed which needs no human input or do-
main knowledge; and 3) a new OSFS algorithm is proposed, with extensive comparisons and
experimental studies to prove its accuracy and speed.

The remainder of this paper is structured as follows: Sections 2 and 3 summarize the related
work and theoretical background, respectively. Section 4 discusses the proposed noise resistant
functional dependency concepts and presents the OSFS-NRFD algorithm. Section 5 reports
experimental results, and Section 6 concludes the paper.

2 Related work

Hundreds of FS algorithms have been proposed in the literature [3,14,43]. In terms of selection
approach, FS algorithms can be classified into wrapper, filter and embedded methods. Wrap-
pers [5, 12, 13,20, 25], train a learning algorithm for each candidate feature subset and select
the subset with maximum accuracy. Although these algorithms are highly accurate, they are
computationally very expensive. Filters [2,7,8,16,23,29,33 39], evaluate each candidate subset
using criteria such as consistency, relevance, information and etc. As the evaluation is inde-
pendent of the learning process, filters are very fast and unbiased to any learner. Fembedded
approaches [24, 30, 44], consider FS as a regularization term in loss function. These algorithms
try to make a trade-off between the accuracy and complexity of the training model, by removing
or selecting candidate features.
Several filter and embedded OSFS algorithms are proposed in the literature:

e Embedded methods. Online grafting [31], Information-Investing [10] and alpha-investing
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[15] are three embedding OSFS algorithms. These algorithms try to make a trade-off
between the accuracy and complexity of the training model, by removing or selecting
candidate features. Online grafting algorithm [31] considers the feature selection task as
part of a risk minimization problem. This algorithm selects a new incoming feature if
it improves the model accuracy more than a predefined threshold. Information-Investing
algorithm [10], selects a new incoming feature if it reduces the model entropy more than
the cost of the feature coding. Alpha-Investing [15] is a version of Information-Investing,
which uses the statistical p-value as a criterion for selecting or discarding features. Al-
though these embedding algorithms are designed to handle streaming features, they are
unable to deal with true OSF scenarios for three reasons: (1) they all need to access
global feature space for hyper-parameter tuning. For example, suitable A setting in online
grafting requires information about the entire feature space; (2) Using these algorithms,
the selected subset size grows incrementally with time. This is because of the fact that
these algorithms does not eliminate the previously selected features, even if they became
redundant due to new streamed features. 3) Considering OSFS as a training part of a
special model, results feature subsets which are biased to the model.

e Filter methods. Several filter OSFS algorithms are proposed in the literature [9, 17,
,21,22,32,42 16]. In these methods, the feature subset evaluation is independent of
the classifier or induction algorithm. For each candidate subset of features, evaluation
measures such as information, consistency, relevance and etc are applied and the best
feature subset is selected. The fast-OSFS algorithm [12] gradually generates a Markov-
blanket of feature space using causality-based measures. For any new incoming feature,
this algorithm executes two processes: an online relevance analysis and then an online
redundancy analysis. SFS-RS [17] is a rough sets-based OSFS algorithm that uses classical
feature significance measure to eliminate irrelevant features in a top-down manner. Using
rough sets, this algorithm does not require any human input or domain knowledge other
than the given data. OS-NRRSAR-SA [9] is an extension to the SFS-RS algorithm that
adopts a noise resistance dependency measure for the significance analysis. OSFS-MRMS
[19] is another extension of SFS-RS that filters out the redundant features before the
significance analysis step. This algorithm uses a redundancy measure based on functional
dependency concept in a bottom-up fashion. OFS-Density [10] is a similar algorithm
to SFS-RS (and OS-NRRSAR-SA) that use neighborhood rough sets-based measure for
feature significance analysis. OSFSMI [32] uses the well-known mutual information to
eliminate irrelevant and/or redundant features in OSF.

3 Rough sets

There are several tools for expressing uncertainty in data, including probability theory, fuzzy set
theory, and rough set theory. Rough sets theory has been introduced by Pawlak [28] to express
vagueness by means of boundary region of a set. The main advantage of this theory is that
it requires no domain knowledge other than the given dataset [27]. This section describes the
fundamentals of the theory.
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3.1 Information system and indiscernibility

An information system is a tuple IS = (U, F'), where U is a non-empty finite set of objects
called the universe and F' is a non-empty finite set of features such that f : U — V}, for every
f € F. For any set B C F, the B-indiscernibility relation is defined as:

INDis(B) = {(z,y) e U x U|Vf € B, f(x) = f(y)} (1)

Equivalence classes of the relation IN Dg(B) are denoted [z]p and referred to as B-elementary
sets. The partitioning of U into B-elementary subsets, denoted U/B, is the common computa-
tional routine for rough set-based operations. The worst case time complexity of this routine is

O ([UP1B]) [19].
3.2 Lower and upper approximations

Lower and upper approximations are two fundamental concepts of rough sets that define infor-
mation contained in a set. Let B C F and X C U, the B—lower approximation of X specifies
all the elements in U that certainly belong to X. This approximation is defined as:

BX = {a|[a]s € X}. (2)

The B—upper approximation of X specifies all the elements in U that may or may not belong
to X. This approximation is defined:

BX = {z|[z]pN X # 0}. (3)

By the definition of BX and BX, the objects in U can be partitioned into three parts, called
the positive, boundary and negative regions:

POSp(X) = BX, (4)
BNDg(X) = BX — BX, (5)
NEGg(X) = U — BX. (6)

3.3 Noise resistant dependency measure

Quantifying dependencies between feature subsets is the main issue in feature selection tasks.
Let D and C be subsets of F'. The noise resistant dependency measure proposed in [18] tries to
quantify a combination of two dependency types:

1. The classical dependency represented by positive region which is defined as:

|Uxev/p €X|

7(07 D) = |U|

(7)

2. The dependency that probably lost due to noise. This dependency uses an impurity rate
value to calculate the noisy portion of a set. Let A and B be two sets. The impurity rate
of A with respect to B can be defined as follows:

¢(A,B) = ’A’;B’. (8)
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This value calculates the portion of the elements that must be eliminated from A to make
it totally included in B. Using the impurity rate, the B-related information that could be
retrieved after removing impurities from A can be formulated as:

1—c(A,B), ifc(A,B)<0.5,

. (9)
0, if ¢(A, B) > 0.5.

f(AaB) = {

This formulation can be applied to elementary sets to extract information that may be
unseen in calculating lower approximations. In this regard, the noise measure function, ¢,

is defined as:

- 2veyysbY, X) €Y, X) # 1]
U/B|
This function quantifies the possibility of transferring some objects from the boundary to

the positive region of a set, if the noise elements could be removed. Using this function,
the noisy dependency of D on C' can be defined as follow:

(D)= 3 o(Y). (11)

YeU/D

¢p(X)

(10)

As ~(C, D) only operates on the objects in positive region and v(C, D) only on the objects in
boundary region, the two operators are combined to create a noise resistant evaluation measure

p [18]:
p(C’,D):V(C’D);rY(C’D). (12)

4 The proposed OSFS method

In this section, we first define the notations of noise resistant functional dependency and then
based on this concept, we define the notations of redundant and irrelevant features. Finally, we
propose an OSFS algorithm that uses the redundant and irrelevant features concepts for feature
selection with streaming features.

4.1 Noise resistant functional dependency

In supervised machine learning, the goal is to learn the mapping from a feature space F to a
target variable d. To consider the target variable, we use the notion of decison systesm. In
the definitions below, a decision system is an information system of the form DS = (U, F,d),
where d is called the decision feature and U and F represent the universe and the full set of
conditional features, respectively. Moreover, F' — {f} represents the feature subset excluding
the single feature f.

Definition 1 (Noise resistant functional dependency). Let D and C' be subsets of FU{d}. For
0 <k <1, it is said that D is noise resistant functionally dependent on C in the kth degree
(denoted C = D), if

k= p(C,D,). (13)
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Table 1: An Example Dataset.
xeU f1 fz f3 d

1 1 3 1 0
2 2 1 1 4
3 1 3 1 0
4 1 3 1 3
5 2 1 1 2
6 0 2 1 3
7 2 1 1 0
8 2 1 1 2
9 1 3 1 2
10 1 3 1 4

Definition 2 (Noise resistantly redundant feature subset). A feature subset C C F is a noise
resistantly redundant subset for DS = (A, F,d) iff 3F' C F — C s.t. F' =1 C, otherwise it is
noise resistantly non-redundant subset.

Noise resistantly redundant features can be described using some other features in the con-
ditional feature set and therefore they can be eliminated without loosing useful information.

Definition 3 (Noise resistantly irrelevant feature subset ). A feature subset F' C F is a noise
resistantly irrelevant feature subset for DS = (A, F,d) iff p(F,d) — p(F — F’',d) = 0.

Noise resistantly irrelevant features are dispensable and can be eliminated from the decision
system.

4.1.1 An example

To illustrate the notations of noise resistant functional dependency, a small example decision
system is considered (Table 1). This decision system contains ten discrete-valued objects.
Let C = {f1} and D = {d}, then based on equation (12),

o(C, D) = v(C, D) —42—7(0, D).

Using equation (7), v(f1,d) can be calculated:

POy ()] |Usevjalfi}X]

v({f1},d) =

10 10
_ {A3{1.3,5) U {/1}{5,8,9} U {/1}{2. 10} U {£1}{4. 6}/
10
_ VUDdUDU{6} oL

10
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The noisy dependency of d on f; can be calculated using equation (11),

v({f1},d) Z (b{fl}
YeU/d
= ¢{f1}({17 3, 7}) + ¢{f1}({57 8, 9}) + ¢{f1}({2? 10}) + ¢{f1}({47 6})
€({1,3,4,9,10},{1,3,7}) + £ ({2,5,7,8},{1,3,7}) + £ ({6},{1,3,7})
3
€({1,3,4,9,10},{5,8,9}) + £ ({2,5,7,8}, {5,8,9}) + £ ({6}, {5,8,9})
3
£({1,3,4,9,10},{2,10}) + £ ({2,5,7,8},{2,10}) + £ ({6},{2,10})
3
€({1,3,4,9,10},{4,6}) + £ ({2,5,7,8},{4,6}) + £ ({6}, {4,6})
3

3 T 6

Having calculated the two measures, the noisy dependency measure can be calculated:

_040+05 1

141
p({f1},d) =108 =0.1333.

and therefore {f1} = 1333 {d}. Using similar calculations, we can see that {fi} =/ {f2}. This
means that fo can be described using f; and therefore fs is a noise resistantly redundant feature
for the decision system. Moreover, we can see that {f1, f3} = 1333 {d}, hence, f3 is an irrelevant
feature for the decision system because p({ fi1, f3},d) = p({f1},d).

4.2 OSFS using noise resistant functional dependency

Suppose that DS; = (Uy, Fy, d) is a decision system at time ¢. In online streaming features (OSF),
for every t' > t, |Fy| > |F}| and |Uy| = |U;|. Because the full feature space is not accessible in
OSF scenario, the selected subset must be gradually built over time based on features streamed
so far. Algorithm 1 represents the proposed OSFS-NRFS algorithm. This algorihm keeps a
best subset (R) from so far seen features and updates whenever a new feature streams in.
Using Definitions 1-3, this algorithm contains two steps: (1) online noise resistantly relevance
analysis that discards irrelevant features. (2) online noise resistantly redundancy analysis, which
eliminates redundant features from the features selected so far. When a new feature f streams
in, the algorithm tests its relevance to decision feature d in the first step. If f is not noise
resistantly relevant, the algorithm simply rejects f. Otherwise, the algorithm adds f to selected
feature subset R. If the new feature is not rejected, the algorithm executes the second step. This
step sorts the features in R according to their relevance and then starting from the least relevant
feature, calculates the noise resistant functional dependency of each feature to the remaining
features. If the feature is noise resistantly redundant, then the algorithm simply eliminates it.

4.2.1 The time complexity of OSFS-NRFS

The time complexity of OSFS depends on the number of p-tests. The time required by this test
O(|R||UJ?) [9,19]. Suppose that at time ¢ a new feature f; be present to the OSFS-NRFS
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Algorithm 1 OSFS-NRFS(d).
d: The decision feature
1. R=10
2: while stopping criterion is not met do
3: f = GET-NEW-FEATURE()
4: added = False
%First Phase: Online Noise Resistantly Relevance Analysis%
5: if p(RU{f},d) — p(R,d) # 0 then
6: R=RU{f}
7: added = True
8: end if
%Second Phase: Online Noise Resistantly Redundancy Analysis%
9: if added then

10: S=R

11: for k=1:|R| do

12 g = argminges{p(S,d) — p(S — {f'},d)}
13: if S—{g} =1 {g} then

14: S=85—-{g}

15: end if

16: end for

17: R=S

18: end if

19: end while

algorithm and let R; be the selected feature subset at this time. At this time, the first phase of
the algorithm will be triggered, which includes two p-tests for online noise resistantly relevance
analysis. Therefore, the worst-case time complexity of this phase is O(|R;||U|?). If f; is noise
resistantly relevant feature, then the second phase of the algorithm will be triggered. This phase
includes |R;| tests for removing noise resistantly redundant features. Therefore, the worst-case
time complexity of this phase is O(|Ry|?|U|?).

Although the worst-case time complexity of the proposed algorithm is square with respect to
the number of selected features, in many real-world applications, only a small number of features
in a large feature space are predictive and relevant to decision feature [9]. Therefore |Ry| is so
small that its square does not affect the time complexity of the OSFS algorithm, significantly.

5 Experimental results

In this section, we show the performance of the proposed method. To do this, the proposed
OSFS-NRFS algorithm is compared with five state-of-the-art OSFS algorithms, information-
investing [10], fast-OSFS [12], OSFSMI [32], OS-NRRSAR-SA [9] and OSFS-MRMS [19]. For
information-investing, we set Wy = 0.5 and Wa = 0.5. For fast-OSFS, we used G? tests
for all discrete (categorical and integer-valued) datasets and Fishers z-tests for all continues
(real-valued) datasets. For both tests, we used 0.05 as the statistical significance level. For OS-
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Table 2: Summary of the Benchmark High Dimensional Data sets.

No Dataset # Attributes # Train # Test Type Source
1 dorothea 100000 800 800 Pharmacology [6]

2 arcene 10000 100 700 Mass Spectrometry [6]

3 dexter 20000 300 2000 Text classification [6]

4 madelon 500 2000 1800 Artificial [6]

5 VOC 2007 6096 5011 4952 Image classification [11]

6 VOC 2012 6096 11530 11001  Image classification [10]

7 mf 649 2000 - Handwritten Digit Classification [1]

8 arrhythmia 279 452 - Health [1]

NRRSAR-SA, we adopted SBE3 implementation of the NON-SIGNIFICANT procedure and for
OSFS-MRMS, we set the maximum subset size (k) in REDUNDANT routine to be 3. Kernel
SVM with RBF kernel function [1] is employed for the classification of the data. For two class
classification problems, average precision (AP%) is used as accuracy measure. For multi-class
cases, we used the mean of the APs (mAP%) on different classes. Table 2 summarizes the eight
datasets used in our experiments. For all the datasets, we considered features one by one to
simulate OSF scenario. The dorothea, arcene, dexter, and madelon datasets are from the NIPS
2003 feature selection challenge [6]. The VOC2007 and VOC2012 are two image classification
datasets from the PASCAL Visual Object Classes Challenge [10,11], and the mf and arrhythmia
are from the UCI Repository of machine learning databases [1]. For VOC images, we used a
combination of penultimate layers of three well-known convolutional neural networks: 1) VGG-
VD [35] (4096 features), 2) GoogleNet [38] (1000 features) and 3) ResNet [15] (1000 features).
The networks are pre-trained on ILSVRC [11].

Because of the fact that we do not have access to the full feature space, the streaming order
of the features affects the final results. Therefore, in order to strengthen the comparison, we
generated 30 different random streaming orders for each dataset.

5.1 Classification accuracy

The average SVM classification accuracy of selected subsets during features streaming are re-
ported in Figure 1. The results are averaged over 30 random streaming orders. It should be
noticed that the fast-OSFS algorithm failed to select a feature subset for arcene dataset. This is
due to the fact that this algorithm uses conditional independence tests, which needs sufficiently
large number of training instances.

As it can be seen, the proposed OSFS-NRFS algorithm performs very well and shows in-
crease in classification accuracies for most of the tests. According to the recorded accuracy
values for each data set (10 measurements on 30 streaming orders), OSFS-NRFS outperforms
the OS-NRRSAR-SA, OSFS-MRMS, Information-Investing, fast-OSFS and OSFSMI in 71.25%
and 67.5%, 97.3%, 97.25% and 98.5% of the cases, respectively. Moreover, considering all the
records, the average accuracy of the OSFS-NRF'S is 1.65%, 1.08%, 22.66%, 13.50% and 18.51%
higher than OS-NRRSAR-SA, OSFS-MRMS, Information-Investing, fast-OSFS and OSFSMI,

respectively.
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Figure 1: SVM classification accuracies during features streaming.

5.2 Running time

Table 3 reports the running times of the six algorithms at the end of the features streaming. As
it can be seen, the Information-Investing, which is an embedded method, is the fastest algorithm.
However, it should be noticed that this algorithm is the least accurate one. Comparing the filter
methods (fast-OSFS, OSFSMI, OSFS-MRMS, OS-NRRSAR-SA and OSFS-NRFS), we see that
the proposed OSFS-NREFS is superior for five cases, dorothea, arcene, dexter, VOC 2007 and
mf. Although calculating the noise resistance measure in the proposed algorithm imposes an
extra computational time, the smaller selected subsets during features streaming cause faster
partitioning routine for calculating the elementary sets.
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Table 3: Comparison of run times for OS-NRRSAR-SA, OSFS-MRMS and OSFS-NRFS.
Dataset Information-Investing fast-OSFS OSFSMI OS-NRRSAR-SA OSFS-MRMS OSFS-NRFS

dorothea 388.3 643.0 1283.9 509.7 486.9 477.3
arcene 11.3 77.5 93.9 82.2 80.6 71.3

dexter 101.9 502.8 638.5 572.7 511.0 475.5
madelon 9.7 79.3 89.4 87.0 123.8 113.8
VOC 2007 482 3844.9 3392.1 3028.8 2472.9 2394.6
VOC 2012 601 4832.9 5554.3 5421.8 3964.4 4216.0
mf 18.5 172.9 179.4 234.8 163.0 152.7
arrhythmia 19.4 72.9 133.5 123.1 118.3 118.9

6 Conclusions

This paper presented an OSFS method based on a newly proposed rough sets based functional
dependency, called noise resistant functional dependency. The proposed method, which is called
OSFS-NRFS, consists two major steps: 1) Online redundancy analysis that discards redundant
features and, 2) Online noise resistantly relevance analysis that discards irrelevant features and
(2) online noise resistanlty redundancy analysis, which eliminates redundant features. To show
the efficiency and accuracy of the proposed algorithm, it was compared with five state-of-the-art
OSFS algorithms OS-NRRSAR-SA, OSFS-MRMS, fast-OSFS, Information-Investing and OSF-
SMI. Eight high-dimensional data sets were used for comparisons, and their features considered
one by one to simulate the true OSF scenarios. The running time and SVM classification accu-
racy during the features streaming were the comparison terms. The experiments demonstrate
that the proposed algorithm achieves better results than existing algorithms.
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