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Abstract. A fast and efficient Newton-Shultz-type iterative method is presented to compute
the inverse of an invertible tensor. Analysis of the convergence error shows that the proposed
method has the sixth order convergence. It is shown that the proposed algorithm can be used
for finding the Moore-Penrose inverse of tensors. Computational complexities of the algorithm
is presented to support the theoretical aspects of the paper. Using the new method, we obtain
a new preconditioner to solve the multilinear system A ∗N X = B. The effectiveness and accu-
racy of this method are re-verified by several numerical examples. Finally, some conclusions are
given.
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1 Introduction

In recent years, tensors or hypermatrices have been applied in many types of research and
application areas such as data analysis, psychometrics, chemometrics, image processing, graph
theory, Markov chains, hypergraphs, etc. [35]. Tensor equations (or multilinear systems), with
the Einstein product, have been discussed in [9,14], which have many applications in continuum
physics, engineering, isotropic and anisotropic elastic models [26]. Wang and Xu presented some
iterative methods for solving several kinds of tensor equations in [42]. Huang and Ma, in [20],
proposed the Krylov subspace methods to solve a class of tensor equations. In [18], Huang and
Ma presented an iterative algorithm to solve the generalized Sylvester tensor equations. They
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also, in [19], proposed the global least-squares methods based on tensor form to solve a class
of generalized Sylvester tensor equations. In [7], F. P. A. Beik and S. Ahmadi-Asl applied the
steepest descent based iterative method for solving tensor equations. In [24], Khosravi Dehdezi
and Karimi proposed the extended conjugate gradient squared and conjugate residual squared
methods for solving the generalized coupled Sylvester tensor equations

n∑
j=1

Xj ×1 Aij1 ×2 Aij2 × · · · ×d Aijd = Ci, i = 1, 2, . . . , n, (1)

where the matrices Aijl ∈ Cnijl×nijl , l = 1, 2, . . . , d, the tensors Ci ∈ Cni1×···×nid , i = 1, 2, . . . , n
and Xj ∈ Cnj1×···×njd , j = 1, 2, . . . , n are known and unknown, respectively and also ×j ,
j = 1, 2, . . . , n denote the j-mode product (see [25] for more details about j-mode product).
Stanimirovi et al., in [38], proposed some basic properties of the range and null space of tensors
with respect to Einstein tensor product. Also, an efficient definition of the tensor rank is intro-
duced in [38]. This definition is called reshaping rank and it is related to the matrix rank. Using
these properties, conditions for the existence and representations of outer inverses of tensors are
considered. These representations apply to complex tensors and are based on finding solutions
to certain matrix equations and simple Einstein product with appropriate tensors. Algorithms
arising from the introduced representations are developed. In addition, results related to the
(b,c)-inverses on semigroups, originated in [16], in a specific semigroup of tensors with a binary
associative operation defined as the Einstein tensor product, was considered in [38]. One may
refer to [3–6,10,12,15,21–23,28–34,39,40,43] to see the other topics in tensor.

The importance of tensor inversion for solving multilinear systems (see [9]), computing ap-
proximation of Moore-Penrose and outer inverses of tensors, motivated the authors to present a
fast and efficient iterative algorithm based on the Newton-Shultz method and divided differences
for computing the approximation of the inverse of tensors. In the following, some definitions
and propositions which will be used later are collected.

Throughout the paper, the following notations are used. Tensors are written in calligraphic
letters, e.g., A. Let N, Ij , 1 ≤ j ≤ N be the positive integers. An order N tensor A = (ai1···iN ),
(1 ≤ ij ≤ Ij , j = 1, 2, . . . , N) is a multidimensional array with I = I1 × · · · × IN entries [25],
where × denotes the “multiplication” operation. O with all zero entries denotes the zero tensor.
With this definition of tensors, matrices are tensors of order two where signified by capital
letters, e.g., A. As usual, R and C denote the real and complex numbers field, respectively.
Finally RI1×···×IN and CI1×···×IN are the set of order N , dimension I1 × I2 × · · · × IN tensors
over R and C, respectively.

Definition 1. [42] The linear transformation ΦIJ : RI1×···×IN×J1×···×JN → RI×J with ΦIJ(A) =
A (I = I1 × · · · × IN , J = J1 × · · · × JN ) is defined component-wise as

(A)i1···iN j1···jN → (A)st,

where A ∈ RI1×···×IN×J1×···×JN , A ∈ RI×J , s = iN +
∑N−1

p=1

(
(ip − 1)

∏N
q=p+1 Iq

)
and t = jN +∑N−1

p=1

(
(jp − 1)

∏N
q=p+1 Jq

)
.

Note. When I = J , for simplicity, we write Φ(A) instead of ΦII(A).
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Definition 2. [39] Let N,M, Ii, Ji,Kj , 1 ≤ i ≤ N, 1 ≤ j ≤ M be the positive integers, A ∈
CI1×···×IN×J1×···×JN and B ∈ CJ1×···×JN×K1×···×KM . The Einstein product of A and B is defined
by operation ∗N via

(A ∗N B)i1···iNk1···kM =

JN∑
jN=1

· · ·
J1∑
j1=1

ai1···iN j1···jN bj1···jNk1···kM .

Thus A ∗N B ∈ CI1×···×IN×K1×···×KM and the associative law of this tensor product holds.

For A = (ai1···iN j1···jM ) ∈ CI1×···×IN×J1×···×JM , let B = (bj1···jM i1···iN ) ∈ CJ1×···×JM×I1×···×IN
be the conjugate transpose of A, where bj1···jM i1···iN = āj1···jM i1···iN . The tensor B is denoted
by A∗. When bi1···iM j1···jN = aj1···jM i1···iN , B is called the transpose of A, denoted by AT . Let
A = (ai1···iN j1···jN ) ∈ CI1×···×IN×I1×···×IN . The trace of A is defined by

tr(A) =

IN∑
in=1

· · ·
I1∑
i1=1

ai1···iN i1···iN . (2)

Inner product of two tensors X ,Y ∈ CI1×···×IN×J1×···×JM is defined by

< X ,Y >= tr(Y∗ ∗N X ) =

JM∑
jM=1

· · ·
J1∑
j1=1

IN∑
iN=1

· · ·
I1∑
i1=1

xi1···iN j1···jM ȳj1···jM i1···iN ,

so the tensor norm induced by this inner product is

‖X‖ =
√
< X ,X > =

√√√√ JM∑
jM=1

· · ·
J1∑
j1=1

IN∑
iN=1

· · ·
I1∑
i1=1

|xi1···iN j1···jM |2,

which is the tensor Frobenius norm. Let A ∈ CI1×···×IN×I1×···×IN , then Ai+1 = A ∗N Ai, i =
1, 2, . . . .

Definition 3. [9] A ∈ RI1×···×IN×I1×···×IN is said diagonal tensor if ai1···iN j1···jN = 0 for
il 6= jl, l = 1, · · · , N . A diagonal tensor I ∈ RI1×···×IN×I1×···×IN is identity if ii1···iN j1···jN =∏N
k=1 δikjk , where

δij =

{
1, i = j,
0, i 6= j.

A is orthogonal if AT ∗N A = I. The singular vallue decomposition(SVD) of tensor A is the
form

A = U ∗N D ∗N VT ,

where U ,V ∈ RI1×···×IN×I1×···×IN are orthogonal tensors and D ∈ RI1×···×IN×I1×···×IN is diagonal
tensor with entries σi1···ini1···in , called the singular values of A. B, C ∈ RI1×···×IN×I1×···×IN are
said left and right inverse of A with respect to ∗N , respectively, if B ∗N A = I and A ∗N C = I.
If B = C, we say that A is invertible and A−1 = B.
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Definition 4. [13] Let A ∈ CI1×···×IN×I1×···×IN . λ ∈ C is said an eigenvalue of A if there
exists a nonzero tensor X ∈ CI1×···×IN , called an eigentensor of A corresponding to λ, such that

A ∗N X = λX .

When N = 1, Definition 4 reduces to the matrix eigenvalue.

Definition 5. [13] A = (ai1···iN j1···jN ) ∈ CI1×···×IN×I1×···×IN is called a Toeplitz tensor if

ai1···iN j1···jN = gi1−j1,··· ,iN−jN , 1≤is,js≤Is, 1≤s≤N ,

where G = (gk1···kN ) ∈ C(2I1−1)×···×(2IN−1) for 1 − Is ≤ ks ≤ Is − 1 and 1 ≤ s ≤ N . We denote
A := toep(G).

Definition 6. An iterative method is said to be convergent of i-th order, if there exist β ∈ R+

such that

‖Ej+1‖ ≤ β ‖Ej‖i , (3)

where Ej is the error obtained in the j-th step of iterative method.

In 1933, Shultz and Hotelling provided the following iterative method, called the Shultz
or Newton-Shultz and denoted by NS, for computing the approxiamte inverse of an invertible
complex matrix A

Xj+1 = Xj(I + Ej), Ej = I −AXj , j = 0, 1, 2, . . . , (4)

where I is the identity matrix with the same order as A.
By using (4), the NS iterative method for computing the approximate inverse of invertible

tensor A ∈ RI1×···×IN×I1×···×IN can be derived as follows:

Xj+1 = Xj ∗N (I + Ej), Ej = I − A ∗N Xj , j = 0, 1, 2, . . . , (5)

where I is the identity tensor with the same order and dimension as A. The higher-order
iterative methods can be considered as follows:

Xj+1 = Xj + Xj ∗N Ej + · · ·+ Xj ∗N Ep−1j . (6)

The hyperpower iteration of order p (6) for computing approxamate inverse of invertible tensor,
requires p tensor-tensor multiplications

Proposition 1. Let A be an invertible tensor. Then the iterative method (5) is convergent to
the inverse of A if ‖E0‖ = ‖I − A ∗N X0‖ ≤ q < 1, and

∥∥Xj −A−1∥∥ ≤ ‖X0‖
1− q

‖I − A ∗N Xj‖ ≤
‖X0‖
1− q

q2
j
.

Proof. By considering the definition Ej and the associative property of Einstein product, we
have



A fast and efficient Newton-Shultz-type iterative method for computing inverses of tensors649

Ej = I − A ∗N Xj = I − A ∗N Xj−1 ∗N (I + Ej−1) = I − A ∗N Xj−1 −A ∗N Xj−1 ∗N Ej−1
= Ej−1 −A ∗N Xj−1 ∗N Ej−1 = (I − A ∗N Xj−1) ∗N Ej−1 = E2j−1.

If we continue this process, we get Ej = E2j
0 , j = 1, 2, . . .. Therefore, we have ‖Ej‖ → 0 as

j →∞ with the assumption ‖E0‖ < 1. So we conclude that Xj → A−1 as j →∞. On the other

hand, ‖E0‖ ≤ q < 1 results in
∥∥A−1∥∥ ≤ ‖X0‖

1− q
and we get

∥∥Xj −A−1∥∥ ≤ ∥∥A−1∥∥ ‖I − A ∗N Xj‖ =
∥∥A−1∥∥ ‖Ej‖ ≤ ‖X0‖

1− q
‖E0‖2

j
≤ ‖X0‖

1− q
q2
j
,

which completes the proof.

Several iterative methods have been proposed based on Eq. (4) to compute the approximate
inverse of the invertible matrix A that are known as the Newton-Shultz-type methods. For
example Frontini and Sormani, from now on denoted by FS, [17] and Li and Li, from now on
denoted by LL, [27], proposed the following methods respectively:

Xj+1 = 1
4Xj(13I −AXj(15I −AXj(7I −AXj))), (FS)

Xj+1 = Xj(4I − 6AXj + 4(AXj)
2 − (AXj)

3), (LL)

which have three and four convergence order. In the numerical examples, we compare the new
method with the three methods NS,FS and LL in the tensor form.

In this paper, we propose a fast, stable, and efficient iterative method based on the Newton-
Shultz method and divided differences which is called the FNS algorithm for computing the
approximate inverse of the invertible tensor A.

The outline of this paper is as follows. In the next section, we propose the FNS method.
The FNS algorithm is the sixth-order convergent and uses only five tensor multiplications per
iteration. Some propositions on the convergence analysis are also expressed and proved in this
section. In addition, we obtain an error bound for a perturbed solution at every iteration. To
verify the theoretical aspects of the paper, the computational complexities of the new algorithm
is presented in Section 3. Using the FNS algorithm, the Moore-Penrose inverse of tensors and
its convergence analysis are expressed in Section 4. In Section 5, we use the proposed algorithm
to obtain a preconditioner for solving the multilinear system A ∗N X = B. In Section 6, some
numerical examples are given to illustrate the efficiency and superiority of FNS. Finally, some
conclusions are shown in Section 7.

2 The Newton-Shultz-type iterative method for tensors

Assume that the sufficiently differentiable function f has a simple root α in the open interval
D ⊆ R, and D contains x0 as an initial approximation of α. We propose a fast Newton-type
method with the sixth order convergence for computing α. For an initial approximation x0 close
enough to α, a fast Newton-type method for computing the root of f(x) is as follows.
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Algorithm 1. A fast Newton-type algorithm
Input x0, f(x)
Begin

1. For j = 0, 1, 2, . . . until convergence Do:

2. uj = xj − f(xj)/f
′(xj).

3. vj = uj − f(uj)/f
′(uj).

4. xj+1 = vj −
(
f [vj , uj ]

)−1
f(vj).

5. EndDo.

End

In the above algorithm

f [xj , xi] =
f(xj)− f(xi)

xj − xi
,

is the two-point divided difference. By taking f(x) = 1
x − a, qj = axj and pj = qj(2− qj), some

steps of Algorithm 1 can be summarized as follows:

f ′(xj) = − 1

x2j
, f [xj , xi] = − 1

xjxi
, xj+1 = xj(2− qj)(3− pj(3− pj)).

The above summary has an important role in the following FNS algorithm.

Algorithm 2. FNS algorithm
Input A,X0

Begin
1. For j = 0, 1, 2, . . . until convergence Do:

2. Qj = A ∗N Xj , Pj = Qj ∗N (2I − Qj).
3. Xj+1 = Xj ∗N (2I − Qj) ∗N (3I − Pj ∗N (3I − Pj)).

4. EndDo.

End

For the sake of the simplicity, from now on, if no other special illustration, we refrain from
writing ∗N in Einstein product of tensors.

Proposition 2. Let Xj+1 be the approximate inverse of A obtained by FNS algorithm and let
Ej+1 = I −AXj+1. If ‖E0‖ < 1 then ‖Ej+1‖ ≤ ‖Ej‖6.

Proof. According to definitions of Qj , Pj and Ej , we have Qj = I−Ej and Pj = (I−Ej)(I+Ej).
By using FNS algorithm, we have

Xj+1 = Xj(I + Ej)(3I − (I − Ej)(I + Ej)(3I − (I − Ej)(I + Ej)))

= Xj(I + Ej)(3I − (I − E2j )(3I − (I − E2j )))

= Xj(I + Ej)(3I − (I − E2j )(2I + E2j ))

= Xj(I + Ej)(3I − (2I + E2j − 2E2j − E4j ))

= Xj(I + Ej)(I + E2j + E4j )

= Xj(I + Ej + E2j + E3j + E4j + E5j ).
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Thus

Ej+1 = I − AXj+1 = I − AXj(I + Ej + E2j + E3j + E4j + E5j )

= I − (I − Ej)(I + Ej + E2j + E3j + E4j + E5j ) = E6j .
(7)

Hence, by taking tensor norm from both sides of the Eq. (7), we obtain

‖Ej+1‖ ≤ ‖Ej‖6. (8)

Using Eq. (8) and mathematical induction, it is not difficult to verify that

‖Ej+1‖ ≤ ‖Ej‖6 ≤ ‖Ej−1‖6
2

≤ · · · ≤ ‖E0‖6
j+1

< 1, j ≥ 0.

Hence, the sequence {‖Ej‖} is monotonic decreasing. This implies that ‖Ej‖ → 0 when j →∞
and thus Xj → A−1 as j →∞. To complete the proof, it should be shown that the sixth order
of convergence is obtained for the sequence {Xj}. For this purpose, we define εj = A−1 −Xj as
the error tensor in the FNS algorithm. Thus we have Aεj = I − AXj = Ej . This implies that
Aεj+1 = (Aεj)6, which gives

εj+1 = εj(Aεj)5. (9)

By taking tensor norm from both sides of Eq. (9), we obtain

‖εj+1‖ ≤ ‖A‖5‖εj‖6. (10)

Eq. (10) shows that the FNS algorithm is convergent of order six.

Proposition 3. Let {Xj} be the sequence generated by the FNS algorithm and the same as-
sumptions of Proposition 2 hold. For j = 0, 1, . . ., let

∆Xj = X̃j −Xj , (11)

be a numerical perturbation that occurs at the j-th exact iterate Xj of FNS algorithm and is
so small that we ignore the terms contain (∆Xj)l for l ≥ 2. Then ‖∆Xj+1‖ ≤ Γ ‖∆X0‖ ,where

Γ = 6j+1
∏j
i=0 max{1, ‖Ei‖5}(1 + 5 ‖A‖ ‖Xi‖).

Proof. Using Step 3 of Algorithm 2, we have

∆Xj+1 = X̃j+1 −Xj+1

= X̃j(I + Ẽj + Ẽ2j + Ẽ3j + Ẽ4j + Ẽ5j )−Xj(I + Ej + E2j + E3j + E4j + E5j )

= (Xj + ∆Xj)
∑5

k=0 Ẽkj −Xj
∑5

k=0 Ekj
= ∆Xj

∑5
k=0 Ẽkj + Xj

∑5
k=0(Ẽkj − Ekj ).

(12)

Taking tensor norm from both sides of Eq. (12), we have

‖∆Xj+1‖ ≤ ‖∆Xj‖
5∑

k=0

∥∥∥Ẽj∥∥∥k + ‖Xj‖
5∑

k=0

∥∥∥Ẽkj − Ekj ∥∥∥ . (13)
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Now using definition Ẽj = I − AX̃j = Ej −A∆Xj , we have∥∥∥Ẽj∥∥∥k =
∥∥(Ej −A∆Xj)k

∥∥ ≤ (‖Ej‖+ ‖A∆Xj‖)k ≤ (‖Ej‖+ ‖A‖ ‖∆Xj‖)k = γk0 , (14)

where γ0 = ‖Ej‖+O(‖∆Xj‖) and k = 0, 1, . . . , 5. In addition, we obtain

∥∥∥Ẽkj − Ekj ∥∥∥ =
∥∥∥(Ej −A∆Xj)k − Ekj

∥∥∥ =

∥∥∥∥∥
k∑
i=0

(−1)i
(k
i

)
E ij(A∆Xj)k−i − Ekj

∥∥∥∥∥
≤ ‖A∆Xj‖

k−1∑
i=0

( k

k−1−i

)
‖Ej‖k−1−i ‖A∆Xj‖i ≤ λk ‖A‖ ‖∆Xj‖ ,

(15)

where

λk =
k−1∑
i=0

( k

k−1−i

)
‖Ej‖k−1−i ‖A∆Xj‖i = k ‖Ej‖k−1 +O(‖∆Xj‖).

By substituting Eqs. (14) and (15) in Eq. (13), we get

‖∆Xj+1‖ ≤ ‖∆Xj‖
5∑

k=0

(γk0 + λk ‖A‖ ‖Xj‖) ≤ (6 max{1, ‖Ej‖5}(1 + 5 ‖A‖ ‖Xj‖)) +O(‖∆Xj‖),

and subsequently

‖∆Xj+1‖ ≤ 6j+1
j∏
i=0

max{1, ‖Ei‖5}(1 + 5 ‖A‖ ‖Xi‖) +O(‖∆Xj‖),

which completes the proof.

As with all iterative methods, for convergence, choosing of initial value X0 is very important
which is true for the FNS method as well. By choosing the following initial value of X0, which
is the logical extension of choosing the initial value for matrix case (see [8]), it holds that
‖I − AX0‖ < 1, when

X0 = αA∗, 0 < α <
2

λ1(A∗A)
,

where λ1(A∗A) = ‖A‖2 is the largest eigenvalue of A∗A [13].

3 Computational aspects

Now, we will analyze the computational complexity of the FNS method. Since the “addition”
and “subtraction” operations are commonly ignored in computational analysis, we only consider
the “multiplication” operation in the algorithm. For this purpose, let us consider the following
computational efficiency index as given by Traub in Appendix C of [41] for matrix

C.E.I = p
1
c ,
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where c stands for the total computational cost of an algorithm and p is the local convergence
order. Let us assume that the cost of tensor-tensor multiplication be unity (as Traub made
in [41] for matrix). Then the computational efficiency index with number of tensor-tensor
multiplication per step becomes

C.E.I = p
1
ηs ,

where η is the number of tensor-tensor multiplications and s is the number of iterations (steps)
that an iterative algorithm requires to converge.

Soderstrom and Stewart in [36] illustrated that the approximate number of iterations, to
converge the Newton-Schultz scheme (4) in a machines precision, is given by

s ≈ 2 log2 κ2(A), (16)

where κ2 denotes the condition number of the matrix A in 2-norm. Hence, similar to (16) under
the same conditions, the required approximate number of iterations, for a p-th order iterative
method to converge [36], is given by

s ≈ 2 logp κ2(A).

Therefore, the computational efficiency index of a p-th order matrix iterative method with η
number of matrix-matrix multiplication per cycle becomes

C.E.I = p

1

η(2 logp κ2(A)) .

For using this index for comparing the FNS method with the others, we define the new index
as follows

C.E.I = p

1

η(2 logp κ2(Φ(A))) , (17)

where Φ(A) is defined as in Definition 1.

Example 1. Using the new index (17), we consider 10 real random tensors of the form
A = 17 ∗ tenrand([25 24 25 24]) ∈ R25×24×25×24. Choosing X0 = αAT with α = 1/‖A‖2
and the stopping criterion ||Ej || < 10−10||E0||, where Ej = I − A ∗2 Xj , we obtain the approxi-
mate inverse of A. A comparison has been made in Figure 1 of the iterative methods NS, FS,
LL and FNS. From Figure 1, we see that the FNS method converges to the exact solution in
less iterations and CPU time, also proves that the new definition of the condition numbers of
a tensor is applicable and can be regarded as a good criterion for comparing various methods.
Here the proposed algorithm shows its dominance in terms of computational efficiency.

The FNS method posses the sixth order of convergence using only five tensor-tensor mul-
tiplication, while the schemes NS, FS and LL reach 2nd, 3rd and 4th orders, respectively, by
consuming 2, 4 and 4 tensor-tensor multiplication.

One can apply the definition of the inverse-finder informational efficiency index as

I.I.E.I =
p
η , (18)
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Figure 1: Comparison result of computational efficiency index.

Table 1: Comparison of the computational complexity for different methods.

Methods NS FS LL FNS

Rate of convergence 2 3 4 6
Number of tensor-tensor multiplications 2 4 4 5
I.I.E.I 2

2 = 1 3
4 = 0.75 4

4 = 1 6
5 = 1.2

in which p stands for the local order of convergence and η is the number of tensor-tensor multi-
plication per computing step.

In Table 1, we illustrate a comparison of rate of convergence, the number of tensor-tensor
multiplications and the index (18) for different methods. The results show that the new estab-
lished method is better than the others. In fact, by comparing these results, one can see that
the proposed method reduces the computational complexity by using less basic operations and
leads to a better equilibrium between high speed and operational cost.

Another index which can be used for comparing Newton-Shultz-type inverse finder methods
is the Numerical Local Convergence Order [37] as follows:

NLCO =
ln

(
‖Ej+1‖
‖Ej‖

)
ln

(
‖Ej‖
‖Ej−1‖

) ,
wherein three last approximations Xj−1, Xj and Xj+1 are used.

This definition is useful when applying an iterative method in the high precision comput-
ing environment and to observe numerically the maximum local convergence order of different
methods for solving academic tests.

Example 2. Let us consider six different random tensors of the form A = 13 ∗ tenrand([12
10 8 12 10 8]) ∈ R12×10×8×12×10×8. Choosing X0 = αAT , α = 1/‖A‖2 and the stopping criterion
||Ej || < 10−10||E0||, we obtained the approximation inverse of A and compared the average of
NLCO of the methods. The numerical results are shown in Table 2. The numerical results for
local convergence orders uphold the theoretical aspects of the paper.
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Table 2: Results of comparisons for different methods in terms of NLCO.

Methods NS FS LL FNS

Average of NLCO 1.9998 3.1266 3.9996 5.9292

Average of iteration 39.3333 23.1667 19.8167 15.3333

4 The Moore-Penrose inverse using FNS

Definition 7. The Moore-Penrose inverse of an arbitrary matrix A ∈ Cm×n denoted by A† is
the matrix X satisfying the following four Penrose conditions

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA.

It is well known that the Moore-Penrose inverse of any arbitrary matrix A is exists. Sun et
al. in [39] extended the Moore-Penrose inverse of tensors via Einstein tensor product as follows.

Definition 8. [39] Let A ∈ CI1×···×IN×J1×···×JN . The tensor X ∈ CJ1×···×JN×I1×···×IN satisfy-
ing

(1) A ∗N X ∗N A = A,

(2) X ∗N A ∗N X = X ,

(3) (A ∗N X )∗ = A ∗N X ,

(4) (X ∗N A)∗ = X ∗N A,

is called the Moore-Penrose inverse of A denoted by A†. If (i), i = 1, 2, 3, 4 of the above
equations holds, then X is called an {i}-inverse of A, denoted by A(i). For a tensor A ∈
CI1×···×IN×I1×···×IN , if A is invertible, then A† = A−1.

In this section by using the FNS algorithm and taking X0 = αA∗ where 0 < α < 2/‖A‖2,
we approximate the Moore-Penrose inverse of A with sixth order convergence.

Proposition 4. For the sequence {Xj} generated by the FNS algorithm and X0 = αA∗, it holds
that (

XjA
)∗

= XjA,
(
AXj

)∗
= AXj , A†AXj = Xj , XjAA† = Xj . (19)

Proof. By using this fact that Xj+1 = Xj(6I − 15Qj + 20Q2
j − 15Q3

j + 6Q4
j −Q5

j ). Consider the
first equation in (19), for j = 0, with X0 = αA∗, we have

(
X0A

)∗
=
(
αA∗A

)∗
= αA∗A = X0A.
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Let the first equation in (19) holds for j = k. For j = k + 1, we have(
Xj+1A

)∗
=
(
Xj(6I − 15Qj + 20Q2

j − 15Q3
j + 6Q4

j −Q5
j )A

)∗
, Qj = AXj

=
(
Xj
(
6I − 15AXj + 20(AXj)2 − 15(AXj)3 + 6(AXj)4 − (AXj)5

)
A
)∗

= 6(XjA)∗ − 15
((
XjA

)∗)2
+ 20

((
XjA

)∗)3 − 15
((
XjA

)∗)4
+ 6
((
XjA

)∗)5 − ((XjA)∗)6
= 6(XjA)− 15

(
XjA

)2
+ 20

(
XjA

)3 − 15
(
XjA

)4
+ 6
(
XjA

)5 − (XjA)6
= Xj

(
6I − 15AXj + 20(AXj)2 − 15(AXj)3 + 6(AXj)4 − (AXj)5

)
A

= Xj(6I − 15Qj + 20Q2
j − 15Q3

j + 6Q4
j −Q5

j )A = Xj+1A,

where the fourth equality uses this fact that (XjA
)∗

= XjA. A similar discussion can be used
to the proof of other relations in (19).

Proposition 5. Let A ∈ CI1×···×IN×J1×···×JN with the singular values σ1 > σ2 > · · · > σr > 0
and the initial approximation X0 = αA∗ where 0 < α < 1/σ21. Then it holds

∥∥A(X0 −A†)
∥∥ < 1.

Proof. Let P,S ∈ CI1×···×IN×I1×···×IN such that P2 = P and PS = SP and ρ(A) = maxλ∈σ(A) |λ|
then ρ(PS) ≤ ρ(S), because if (λ,X ) be the eigenpair of PS then PSX = λX results in
λPX = λX which implies that λ = 0 or PX = X . If PX = X then SX = SPX = PSX = λX ,
i.e. λ is an eigenvalue of S, which implies that ρ(PS) ≤ ρ(S). Set P = AA† and S = AX0 − I.
It is not difficult to see that P2 = P and PS = SP. Thus according to Proposition 4, we have

ρ(A(X0 −A†)) = ρ(A(αA∗ −A†)) ≤ ρ(αAA∗ − I) = max
1≤i≤r

|1− αλi(AA∗)| < 1.

It is well known that there exists a positive constant ε for some tensor norm, such that∥∥∥A(X0 −A†)
∥∥∥ < ρ(A(X0 −A†)) + ε < 1,

which completes the proof.

Proposition 6. For the tensor A with singular values σ1 > σ2 > · · · > σr > 0 and the initial
approximation X0 = αA∗ where 0 < α < 1/σ21, the tensor sequence {Xj} generated by the FNS
algorithm is convergent to the Moore-Penrose inverse of A with sixth order convergence. More

precisely
∥∥∥E ′j+1

∥∥∥ ≤ ∥∥A†∥∥ ‖A‖6∥∥∥E ′j∥∥∥6, where E ′j+1 = Xj+1 −A†.

Proof. Using the properties of A†, we have

(I − AA†)j = I − AA†, (I − AA†)AE ′j = 0, j = 1, 2, 3, . . . . (20)

Thus we obtain
AE ′j+1 = AXj+1 −AA† = AXj+1 − I + I − AA†

= −Ej+1 + I − AA† = −
(
Ej
)6

+ I − AA†,
(21)
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and by using Eq. (20), we have

−(Ej)6 + I − AA† = −(I − AXj)6 + I − AA†

= −(I − AA† +AA† −AXj)6 + I − AA†

= −(I − AA† −AE ′j)6 + I − AA†

= −
[ 6∑
i=0

(−1)i
(6
i

)(
I − AA†

)i(
AE ′j

)6−i]
+ I − AA†

= −
[(
AE ′j

)6
+ I − AA†

]
+ I − AA†

= −
(
AE ′j

)6
.

(22)

By substituting Eq. (22) in Eq. (21), we deduce that

AE ′j+1 = −
(
AE ′j

)6
.

By using Proposition 5 which implies ‖AE ′0‖ < 1 and what was obtained from the proof process
of the Proposition 2, we have∥∥AE ′j+1

∥∥ ≤ ∥∥AE ′j∥∥6 ≤ ‖A‖6∥∥E ′j∥∥6, j = 0, 1, 2, . . . ,

then by the properties of the Moore-Penrose inverse and Proposition 4, we obtain∥∥Xj+1 −A†
∥∥ =

∥∥A†AXj+1 −A†AA†
∥∥ ≤ ∥∥A†∥∥∥∥AXj+1 −AA†

∥∥
=
∥∥A†∥∥∥∥∥AE ′j+1

∥∥∥ ≤ ∥∥A†∥∥ ‖A‖6∥∥∥E ′j∥∥∥6.
This inequality results

∥∥Xj −A†∥∥ → 0 as j → ∞. In other words, the FNS algorithm is
convergent to the Moore-Penrose inverse of A of order six.

Proposition 7. Let A ∈ CI1×···×IN×J1×···×JN . If AX0 = X0A, and {Xj} be the sequence
obtained by FNS, then for every j = 1, 2, . . ., we have

AXj = XjA. (23)

Proof. From FNS, we have

Xj+1 = Xj(2I − AXj)(3I − AXj(2I − AXj)(3I − AXj(2I − AXj))).

Since AX0 = X0A, using the last equation, we have

AX1 = A
(
X0(2I − AX0)(3I − AX0(2I − AX0)(3I − AX0(2I − AX0)))

)
= AX0

(
(2I − AX0)(3I − AX0(2I − AX0)(3I − AX0(2I − AX0)))

)
=
(
X0(2I − X0A)(3I − X0A(2I − X0A)(3I − X0A(2I − X0A)))

)
A

= X1A.
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Thus Eq. (23) holds for j = 1. To complete the proof, we use mathematical induction. Assume
that AXj = XjA, then for all j > 1:

AXj+1 = A
(
Xj(2I − AXj)(3I − AXj(2I − AXj)(3I − AXj(2I − AXj)))

)
= AXj

(
(2I − AXj)(3I − AXj(2I − AXj)(3I − AXj(2I − AXj)))

)
=
(
Xj(2I − XjA)(3I − XjA(2I − XjA)(3I − XjA(2I − XjA)))

)
A

= Xj+1A.

This completes the proof.

Let A ∈ CI1×···×IN×J1×···×JN , X ∈ CJ1×···×JN and B ∈ CI1×···×IN . If there exists a tensor
X̂ satisfying A ∗N X = B, then we call X̂ is a solution of A ∗N X = B and say tensor equation
A ∗N X = B is consistent. Else the system A ∗N X = B is inconsistent and the tensor X̂ which
minimizes ‖A ∗N X − B‖ is called a minimum-norm solution of inconsistent multilinear system
A ∗N X = B.

Proposition 8. If the multilinear system A∗N X = B is inconsistent, then the minimum-norm
solution is X = A† ∗N B.

5 The new preconditioner for solving multilinear system

Consider the multilinear system

A ∗N X = B, (24)

where A ∈ CI1×···×IN×I1×···×IN , X ,B ∈ CI1×···×IN . The direct methods for solving the con-
sistent multilinear system are expensive because a lot of work and storage are required. To
overcome this problem, it is efficient to apply the iterative methods for solving multilinear sys-
tems. Iterative methods may have a poor convergence or even fail to converge. To remedy this
drawback, the iterative methods usually involve a second tensor that transforms the coefficient
tensor A into one favourable tensor. The involved tensor is called a preconditioner. Let M
be a tensor that approximates the inverse of A (M ≈ A−1), then the transformed multilinear
system A ∗N M∗N Y = B, X = M∗N Y will have the same solution as the system (24), and
the convergence rate of iterative methods applied to the preconditioned system might be higher.
Similar to this system that is preconditioned from the right, the left preconditioning is also
possible, i.e.,M∗N A∗N X =M∗N B. Generally, the preconditionerM should be chosen such
that M∗N A or A ∗N M be a good approximation of the identity tensor. Note that it is not
easy to find this kind of preconditioner for explain.

The FNS method can be considered for finding preconditioners of tensors as well. The conver-
gence of order higher than six, allows us to find an efficient approximate inverse. If the stopping
criterion is satisfactory, one may stop, else the obtained approximate inverse can be taken into
account as a preconditioner to cluster the eigenvalues and then allows the iteration processes.
So the storage requirement will be low and the method could successfully be convergent.
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Figure 2: Comparison of eigenvalues of Φ(A), Φ(AMi) and Φ(MjA).

Example 3. We consider the academical tests as follows. Let A = tenrand([n n−1 n n−1]) ∈
Rn×(n−1)×n×(n−1). For n = 30, takeM1 = X5,M2 = X7,M3 = X9 as the right preconditioners,
and for n = 40, let M4 = X3, M5 = X5, M6 = X8 be the left preconditioners of system
A ∗N X = B, where Xj is the approximate inverse of A obtained by FNS. The spectrum of
Φ(AMi), i = 1, 2, 3, Φ(MjA), j = 4, 5, 6 and Φ(A) are depicted in Figure 2. From this figure,
we see that the eigenvalues of the corresponding preconditioned tensor are clustered to 1.
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6 Numerical examples

In this section, we give some numerical examples to compare the FNS algorithm with the other
mentioned iterative methods. All tests were carried out in double precision with a Matlab
code, while the computer specifications are Microsoft Windows 10 Intel(R), Core(TM)i7-7500U,
CPU 2.70 GHz, with 8 GB of RAM. All used codes came from the Matlab tensor toolbox
developed by Bader and Kolda [1, 2].

Example 4. Consider 10 real random tensors of the form A = 33 ∗ tenrand([10 9 8 10 9 8]) ∈
R10×9×8×10×9×8 with X0 = αAT , α = 1/‖A‖2 and the stopping criterion is ||Ej ||/||E0|| < 10−10,
where Ej = I − A ∗N Xj . The comparison results of the algorithms are shown in Figure 3.
We find from Figure 3 that the FNS method converges to the exact solution in fewer iteration
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Figure 3: Numerical results for Example 4.

numbers and elapsed CPU time than the other methods. By multiple tests, we also find that
this result holds, where re-verified that the FNS method is efficient.

Example 5. In this test, we compare the iterative methods for finding the generalized inverse
that discussed in Section 4 for 15 real random tensors of the form A = 25×tenrand([10 9 8 7 6 5])
∈ R10×9×8×7×6×5. We assume that X0 = αAT with α = 1/‖A‖2 is the initial tensor and the
stopping criterion is

max{‖XA − (XA)∗‖ , ‖AX − (AX )∗‖ , ‖AXA−A‖, ‖XAX − X‖} < 10−10.

The results of the mentioned algorithms are depicted in Figure 4. As seen in Figure 4, the
FNS method converges to the exact solution faster and in a fewer number of iterations than
the others. This example further confirms that the FNS method is quite efficient in finding the
Moore-Penrose inverse of tensors.

Example 6. Finally, let X,B ∈ RI1×I2 . We use the left preconditioned conjugate gradient
method for solving the multilinear system A ∗2 X = B, where B = rand(n, n), “rand” is the
Matlab function, and A is real symmetric Toeplitz tensor with A = toep(G) ∈ RI1×I2×I1×I2
and G = gk1,k2 ∈ R(2I1−1)×(2I2−1), given by generating sequence

gk1,k2 = 1
(|k1|+1)(|k2|+1) ,
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Figure 4: Numerical results for Example 5.

Table 3: The iteration number (Iter) and CPU Time (Time) for the Example 6.

I1 = I2 = n n = 10 n = 15 n = 20 n = 25 n = 30

Method Iter Time Iter Time Iter Time Iter Time Iter Time

CG 222 1.3072 867 1.7465 2890 9.6315 4397 18.1790 22414 140.9580
M1CG 8 0.1631 24 0.1771 71 0.7485 72 2.1764 243 6.2495
M2CG 2 0.1021 5 0.1541 17 0.5025 13 1.4922 52 3.2779
M3CG 2 0.0931 2 0.1542 5 0.4561 3 1.2772 12 3.0101

for 1 − Is ≤ ks ≤ Is − 1, s = 1, 2. The generating sequence is multivariate generalization of
the ones in [11]. In this example, we focus our attention on comparison between conjugate
gradient (CG) and preconditioned CG with the preconditioners X8,X10,X12, obtained by the
FNS algorithm. In this case, we take X0 = A/‖A‖2. The stopping criterion is ||Ej || < 10−16,
where Ej = I −A ∗2 Xj . The numerical results are presented in Table 3, where the CPU time
(in seconds) and iteration numbers are denoted by Time and Iter, respectively. M1CG,M2CG
andM3CG, denote the preconditioned CG algorithm with the preconditioners X8, X10 and X12,
respectively.

From Table 3, we find that when the grid size is increasing, it needs more computation time
and iterative steps to find the approximate solution of the tensor equation A∗2X = B. Also we
observe that the iteration number and elapsed time for obtaining the approximate solution by
the preconditioned CG method with the three preconditioners M1, M2 and M3 are less than
the CG method. Therefore, each iteration obtained by the FNS algorithm can be used as an
appropriate preconditioner for solving multilinear system A ∗N X = B.

7 Conclusion

We have presented and analyzed a fast and highly efficient iterative method FNS for computing
the approximate inverse of an invertible tensor. It was shown that the proposed method is
convergent with the local sixth order of convergence with only five tensor-tensor multiplication
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in each step. This makes the method to be interesting for practical problems. Also it was shown
that under certain conditions the proposed method is guaranteed to converge to the Moore-
Penrose and outer inverse of tensors. We used the each iterate, obtained by the FNS method,
as a preconditioner to solve the multilinear system A ∗N X = B. The numerical results show
that the new method is highly efficient.
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