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Abstract. A singularly perturbed convection diffusion equation with boundary turning point is
considered in this paper. A higher order method on piecewise uniform Shishkin mesh is suggested
to solve this problem. We prove that this method is of order O(N−2(lnN)2). Numerical results
are given which validate the analytical results.
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1 Introduction

Many phenomena in biology, chemistry, engineering, physics, etc., can be described by bound-
ary value problems associated with various types of differential equations or systems. Singular
perturbation problems with turning points arise as mathematical models for various phenom-
ena. The numerical analysis of singular perturbation problems has always been far from trivial
because of the boundary layer behavior of the solution. Solutions of singular perturbation prob-
lems undergo rapid changes within very thin layers near the boundary or inside the problem
domain [4, 11, 13, 14, 19]. It is well known that standard numerical methods for solving such
problems are unstable and fail to give accurate results when the perturbation parameter ε is
small. Therefore, it is important to develop suitable numerical methods to these problems whose
accuracy does not depend on the parameter ε, i.e., methods that are parameter uniform con-
vergent. For various approaches on the numerical solution of differential equations with steep,
continuous solutions one may refer to [4, 11,12,19].

Boundary turning point problems arise in geophysics, where it models the heat flow and
mass transport near an oceanic rise [6] and in modeling thermal boundary layers in laminar
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flow [20, Chap 12]. Liseikin [9] have discussed the qualitative behavior of the solutions of
singularly perturbed problems with arbitrary convection coefficients, as well as the exponential
or power boundary layers. Numerical methods for singularly perturbed boundary turning point
problem have been studied by many authors [2,3,10,15,16]. In [22], the authors have considered
singularly perturbed multiple boundary turning point problem of the form

P±k [t, 1] := −εy′′ ± xkb(x)y′ + c(x)y = f(x), y(t) and y(1) is given, (1)

where t = 0 or t = −1 and b(x) > 0, c(x) ≥ 0, x ∈ [t, 1]. The problem (1) discusses all possible
cases modeling turning point behavior for t and k. Uniform methods for semilinear problems
with an attractive boundary point have been studied by Linβ and Vulanovic in [8].

In [1, 17, 18, 21], the authors have studied higher order methods for singularly perturbed
convection diffusion problems. In [15], the authors have proposed a parameter uniform numerical
method for some linear and nonlinear singularly perturbed convection diffusion boundary turning
point problems. They have proved that their method is of almost first order convergent. In this
paper we have suggested a higher order method for linear singularly perturbed boundary turning
point problems which is of almost second order. The constant C used throughout is generic and
positive. We assume that ε ≤ CN−1 is generally the case for discretization of convection diffusion
equations. Moreover, the maximum norm ‖u‖D = max

x∈D̄
|u(x)| is used in error analysis.

Consider the following singularly perturbed convection diffusion problem with boundary
turning point:{

Lεyε(x) = εy′′ε (x) + bε(x)y′ε(x)− c(x)yε(x) = f(x), x ∈ D = (0, 1),

yε(0) = y0, yε(1) = yn,
(2)

where 0 < ε << 1, bε(x) ≥ 0, c(x) ≥ δ > 0 and f(x) are sufficiently smooth functions on D̄
with the following assumptions on convection coefficient:

bε(0) = 0,

bε(x) ≥ βε(x) := θ(1− e−
r
ε
x), r ≥ 2θ > 0,∫ x

t=0
|b′ε(t)|dt ≤ C,

dε(x) := b0(x)− bε(x) satisfies |dε(x)| ≤ |dε(0)|e−
θ
2ε
x,

(3)

where b0(x) := lim
ε→0

bε(x), b0(0) := lim
x→0

b0(x) and b0 ∈ C2(D̄). This same condition on convection

coefficient b(x) ≥ β(x) > 0 has been studied in semilinear convection difussion problem [8]. The
differential operator defined in problem (2) satisfies the following minimum principle.

2 Analytical results

Theorem 1. Let Lε be the differential operator defined in (2) and ψ(x) ∈ C2(D) ∩ C0(D̄). If
ψ(0) ≥ 0, ψ(1) ≥ 0 and Lεψ(x) ≤ 0 for x ∈ D, then ψ(x) ≥ 0,∀ x ∈ D̄.
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To derive error estimates, we need sharper bounds on the derivatives of the solution yε. We
derive this using the following decomposition of the solution yε into regular component vε and
layer component wε. Since bε does not satisfy the bound bε ≥ C > 0 for all x ∈ D̄, we study the
problem 

L∗vε(x) = εv′′ε (x) + b0(x)v′ε(x)− c(x)vε = f(x), x ∈ D,

vε(0) =
3∑
i=0

εivi(0) and vε(1) = yε(1),
(4)

where vε = v0(x) + εv1(x) + ε2v2(x) + ε3v3(x) and v0(x), v1(x), v2(x), v3(x) satisfy

b0(x)v′0(x)− c(x)v0(x) = f(x), v0(1) = yn,

b0(x)v′1(x)− c(x)v1(x) = −v′′0(x), v1(1) = 0,

b0(x)v′2(x)− c(x)v2(x) = −v′′1(x), v2(1) = 0,

L∗v3(x) = −v′′2(x), v3(0) = v3(1) = 0.

Note that in problem (4), the coefficient bε(x), of the first derivative, has been replaced by b0(x).
We incorporate the error (L∗ − Lε)vε into the layer component wε, defined as the solution of{

Lεwε(x) = dε(x)v′ε(x), x ∈ D,
wε(0) = yε(0)− vε(0) and wε(1) = 0.

(5)

The following theorem generalizes a result from [15].

Theorem 2. For each integer k, satisfying 0 ≤ k ≤ 4, the derivatives of the solutions vε(x) and
wε(x) of (4) and (5), respectively, satisfy the following bounds:

|v(k)
ε (x)| ≤ C(1 + ε3−k) and |w(k)

ε (x)| ≤ Cε−ke−θx/2ε, x ∈ D̄. (6)

Proof. Since v0(x), v1(x), v2(x) are independent of ε and v3(x) is the solution of the problem
(4), we have ‖v3‖≤ C and so ‖vε‖≤ C(1 + ε3). To bound the derivatives of v3, integration by
parts gives

x∫
0

b0(t)v′3(t)dt = [b0(t)v3(t)]x0 −
x∫

0

b′0(t)v3(t)dt. (7)

Now, ∣∣∣∣∣∣
x∫

0

−b0(t)v′3(t) + c(t)v3(t)− v′′2(t)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
x∫

0

−b0(t)v′3(t)dt+

x∫
0

c(t)v3(t)dt−
x∫

0

v′′2(t)dt

∣∣∣∣∣∣
≤ |b0(x)v3(x)|+ |b0(0)v3(0)|+

x∫
0

∣∣b′0(t)v3(t)
∣∣ dt

+

x∫
0

|c(t)v3(t)| dt+

x∫
0

∣∣v′′2(t)
∣∣ dt

≤ C‖v3‖, (8)
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where C depends on ‖b0‖, ‖b′0‖ and ‖c‖. By the mean value theorem, there exists z ∈ (0, ε) such
that ∣∣εv′3(z)

∣∣ ≤ 2‖v3‖. (9)

Now integrating the differential equation L∗v3(x) defined in (4), we get

εv′3(x)− εv′3(0) =

x∫
0

v′′2(t)− b0(t)v′3(t) + c(t)v3(t)dt, ∀ x ∈ D. (10)

Letting x = z and substituting (8) and (9) in (10), we obtain∣∣εv′3(0)
∣∣ ≤ C‖v3‖. (11)

Using Eqs. (11) in (10), we deduce that∣∣εv′3(x)
∣∣ ≤ C‖v3‖, ∀ x ∈ D̄, (12)

which is the required bound for k = 1. Then, from (2), we have

εv′′3 = −v′′2 − b0v′3 + cv3 and εv′′′3 = (−v′′2 − b0v′3 + cv3)′,

from which we obtain successively the required bounds on the second and third derivatives. A
similar argument holds for k = 4. Therefore, we have

|v(k)
ε (x)| ≤ C(1 + ε3−k), 0 ≤ k ≤ 4.

For the bound on layer component wε, we consider the functions

φ±(x) = |wε(0)|e
− 1

2ε

x∫
0

βε(t)dt
± wε(x), x ∈ D.

Clearly φ±(0) ≥ 0 and φ±(1) ≥ 0. Using the assumptions on the coefficient bε(x), we have

1

2
βε(x)2 + εβ′ε(x) ≥ θ2

2
.

Now,

Lεφ
±(x) ≤ − 1

2ε

((
1

2
β2
ε + εβ′ε

)
(x)− 2ε|dε(0)|‖y′ε‖

)
e
−θx
2ε ≤ 0.

Then, by Theorem 1, we get

|wε(x)| ≤ |wε(0)|e
− 1

2ε

x∫
0

βε(t)dt
≤ Ce

−θx
2ε . (13)

Using the mean value theorem and (13), there exists a point n ∈ (1− ε, 1) such that

ε|w′ε(n)| ≤ |wε(1− ε)| ≤ Ce
−θx
2ε . (14)



Second order difference scheme for singularly perturbed boundary turning point problems 637

Integrating (5) on [η, 1], for any η > 0 and using wε(1) = 0 from (2), we have

ε|w′ε(η)− w′ε(1)| ≤ (‖bε‖+‖c‖)|wε(η)|+ C

θ
|dε(0)|εe

−θ
2ε
η + Ce

−θ
2ε
η. (15)

Letting η = n, and then using (14) with (15), we get ε|w′ε(1)| ≤ Ce
−θ
2ε
η. Similarly, letting

η = x ∈ D̄, we get ε|w′ε(x)| ≤ Ce
−θ
2ε
x, which is the required bound for k = 1. From the

differential equation, we have

εw′′ε = −bεw′ε + cwε and εw′′′ε = (−bεw′ε + cwε)
′,

from which we obtain successively the required bounds on the second and third derivatives. A
similar arguments holds for k = 4. Therefore, we have

|w(k)
ε (x)| ≤ Cε−ke−θx/2ε, 0 ≤ k ≤ 4,

which completes the proof.

3 Numerical analysis

3.1 Discretization of mesh

The fitted piecewise uniform mesh is constructed by dividing D̄, into two subintervals [0, σ] and
[σ, 1], for some transition point σ = min{1

2 ,
4ε
θ lnN}. On each subinterval, a uniform mesh with

N/2 mesh intervals is placed. We define the piecewise uniform mesh:

D̄N
ε =

{
xi : xi =

{
2iσ/N, 0 ≤ i ≤ N/2,
σ + 2(i−N/2)(1− σ)/N, N/2 < i ≤ N

}
, DN

ε := D̄N
ε \{x0, xN},

condensing at the boundary point at x0 = 0. The mesh widths are given by

hi = xi − xi−1 =

{
H1 = 2σ/N, i = 1, 2, . . . , N/2,

H2 = 2(1− σ)/N, i = N/2 + 1, . . . , N.

3.2 Hybrid difference scheme

We discretize (2) by the hybrid difference scheme, where we use central difference scheme

LNc Yε(xi) =
2ε

hi + hi+1

[
Yε(xi+1)− Yε(xi)

hi+1
− Yε(xi)− Yε(xi−1)

hi

]
+ bε(xi)

[
Yε(xi+1)− Yε(xi−1)

hi + hi+1

]
− c(xi)Yε(xi) = f(xi), (16)

in the fine mesh region and midpoint scheme

LNmYε(xi) =
2ε

hi + hi+1

[
Yε(xi+1)− Yε(xi)

hi+1
− Yε(xi)− Yε(xi−1)

hi

]
+ b̄ε(xi)

[
Yε(xi+1)− Yε(xi)

hi+1

]
−
[
c(xi)Yε(xi) + c(xi+1)Yε(xi+1)

2

]
= f̄(xi), (17)
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in the coarse region where b̄ε(xi) = (bε(xi) + bε(xi+1))/2; similarly for f̄(xi). Thus the hybrid
difference scheme for the boundary value problem (2) isL

N
ε Yε(xi) =

{
LNc Yε(xi) = fi, for 1 ≤ i ≤ N/2− 1,

LNmYε(xi) = f̄i, for N/2 ≤ i ≤ N − 1,

Yε(x0) = y0, Yε(xN ) = yn.

(18)

From [5], we have the following truncation error for (18)

|LNε (Yε − yε)(xi)| ≤

{
εH2

1‖y
(4)
ε ‖+H2

1‖bε‖‖y
(3)
ε ‖, i = 1, . . . , N/2− 1,

εH2‖y(3)
ε ‖+ C(‖bε‖,‖b′ε‖)H

2
2 (‖y(3)

ε ‖+ ‖y(2)
ε ‖), i = N/2, . . . , N − 1.

(19)

To guarantee the monotonicity property of the difference operator LNε , we impose the fol-
lowing mild assumption on the minimum number of mesh points

N

ln N
≥ 4
‖bε‖
θ
. (20)

3.3 Error analysis

Theorem 3. Assume that the inequality (20) holds. Then the operator LNε defined by (18)
satisfies a discrete minimum principle, i.e., if φi and ψi are mesh functions that satisfy φ0 < ψ0,
φN < ψN and LNε φi ≤ LNε ψi for i = 1, . . . , N − 1, then φi ≤ ψi for 1 ≤ i ≤ N − 1.

Proof. Refer [7, Lemma 3.1].

Theorem 4. The solution Yε(xi) satisfies the bound

‖Yε‖D̄Nε ≤ C max
{
|Yε(x0)|, |Yε(xN )|, ‖LNε Yε‖DNε

}
.

Proof. Refer [4, Lemma 2.9]

As in the continuous case, we decompose the solution Yε into sum of a discrete regular
component Vε and discrete layer component Wε. We define the regular component as the
solution of the following problem:{

LN∗ Vε(xi) = f(xi), xi ∈ DN
ε ,

Vε(x0) = vε(0) and Vε(xN ) = vε(1),
(21)

and the layer component is defined as:{
LNε Wε(xi) = (LN∗ − LNε )Vε(xi),

Wε(x0) = yε(0)− vε(0) and Wε(xN ) = wε(1).
(22)

Theorem 5. Let Vε and vε be the solution of the problems (21) and (4), respectively. Then the
error of the regular component satisfies the bound

|(Vε − vε)(xi)| ≤ CN−2, xi ∈ D̄N
ε .
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Proof. Using (19), ε ≤ CN−1 and bounds on the derivatives of vε, we have

|LNε (Vε − vε)(xi)| ≤

{
εH2

1‖v
(4)
ε ‖+H2

1‖bε‖v
(3)
ε ‖, i = 1, . . . , N/2− 1,

εH2‖v(3)
ε ‖+ C(‖bε‖,‖b′ε‖)H

2
2 (‖v(3)

ε ‖+ ‖v(2)
ε ‖), i = N/2, . . . , N − 1,

≤

{
CN−2, for i = 1, 2, . . . , N/2− 1,

CN−1(ε+N−1), for i = N/2, . . . , N − 1,

≤ CN−2, xi ∈ DN
ε .

Applying Theorem 4 to the mesh function (Vε − vε)(xi), we get the required result.

Theorem 6. Let Wε be the numerical solution of the problem (22) and wε be the solution of
(5). Then the error of the layer component satisfies

|(Wε − wε)(xi)| ≤ CN−2(lnN)2, xi ∈ D̄N
ε . (23)

Proof. The mesh is piecewise uniform and σ = 4ε lnN/θ. The mesh spacing in the subinterval
(0, σ) is H1 = 2σ/N and in the subinterval (σ, 1) is H2 = 2(1− σ)/N .

If xi ∈ [σ, 1), then by using the triangle inequality and the bound on wε given in (6), we have

|(Wε − wε)(xi)| ≤ |Wε(xi)|+ |wε(xi)| ≤ CN−2.

Now, for xi ∈ [0, σ), we conclude that

LNε (Wε − wε)(xi) = LNε Wε(xi)− LNε wε(xi)
= dε(xi)D

0Vε − dε(xi)D0vε

= dε(xi)D
0(Vε − vε).

Then from (3) and [17, Lemma 5.2], we have |LNε (Wε − wε)(xi)| ≤ CN−2(lnN)2, xi ∈ [0, σ).
Applying Theorem 4, we get

|(Wε − wε)(xi)| ≤ CN−2(lnN)2, xi ∈ D̄N
ε ,

which completes the proof.

Theorem 7. Let yε(x) be the solution of the problem (2) and Yε(xi) be the corresponding nu-
merical solution of (18). Then for sufficiently large N , the maximum pointwise error satisfies
the following error bound

sup
0<ε≤1

‖Yε − yε‖D̄Nε ≤ CN
−2(lnN)2. (24)

Proof. This follows from

(Yε − yε)(xi) = ((Vε − vε) + (Wε − wε))(xi), ∀xi ∈ D̄N
ε ,

and Theorems 5 and 6.
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Figure 1: Graph of the numerical solution of for N = 27 and ε = 10−2.

4 Experimental analysis

In this section, the theoretical results obtained in the earlier sections are verified experimentally
through Examples 1 and 2.

Example 1. {
εy′′ε (x) + 2 tanh

(
4x
ε

)
y′ε(x)− (1− cos(3x))yε(x) = 1

2 − x,
yε(0) = 1, yε(1) = 1.

Example 2. {
εy′′ε (x) + 2(1− e−4x/ε)y′ε(x)− (1 + x)yε(x) = cos(2x),

yε(0) = 0, yε(1) = 2.

The graphs of numerical solution of Examples 1 and 2 are plotted in the Figure 1. The
computed maximum pointwise errors EN and the uniform rates of convergence pN , using the
double mesh principle (see [4]) are displayed in Tables 1 and 2. The computed rates are in line
with the theoretical rates of convergence established in Theorem 7. Example 1 is the test problem
discussed in [15], where they have proved their method is of almost first order convergent. Error
plot in given in Figure 3 which shows that the maximum pointwise error EN decreases as N
increases.

5 Discussion

A higher order method was proposed for a class of linear singularly perturbed convection diffusion
equations with boundary turning point. Riordan and Quinn [15] have proposed an almost
first order convergent numerical method for some linear and nonlinear singularly perturbed
convection diffusion boundary turning point problems. Example 1 is the test problem discussed
in [15]. But we have proved that our numerical method is of almost order 2 which is evident
from Table 1 and also supported by loglog plot and error plot given in Figures 2 and 3. One
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Table 1: Computed maximum pointwise errors EN and order of convergence pN of Example 1
for various values of ε and N .

ε\N 32 64 128 256 512 1024 2048 4096

10−1 6.1305e-3 1.4809e-3 3.7066e-4 9.2927e-5 2.3488e-5 6.0077e-6 1.5709e-6 5.6965e-7
10−2 1.5770e-2 5.6421e-3 2.0428e-3 6.1557e-4 2.0669e-4 6.4173e-5 1.9585e-5 5.8978e-6
10−3 1.5857e-2 5.6667e-3 2.0499e-3 6.1692e-4 2.0664e-4 6.3909e-5 1.9437e-5 5.8037e-6
10−4 1.5865e-2 5.6690e-3 2.0505e-3 6.1696e-4 2.0657e-4 6.3839e-5 1.9402e-5 5.7820e-6
10−5 1.5866e-2 5.6692e-3 2.0505e-3 6.1697e-4 2.0656e-4 6.3832e-5 1.9398e-5 5.7797e-6
10−6 1.5866e-2 5.6692e-3 2.0505e-3 6.1697e-4 2.0656e-4 6.3831e-5 1.9397e-5 5.7795e-6
10−7 1.5866e-2 5.6692e-3 2.0505e-3 6.1697e-4 2.0656e-4 6.3831e-5 1.9397e-5 5.7794e-6
10−8 1.5866e-2 5.6692e-3 2.0505e-3 6.1697e-4 2.0656e-4 6.3831e-5 1.9397e-5 5.7794e-6

EN 1.5866e-2 5.6692e-3 2.0505e-3 6.1697e-4 2.0669e-4 6.4173e-5 1.9585e-5 5.8978e-6

pN 1.4847 1.4672 1.7327 1.5777 1.6874 1.7122 1.7315 -

Table 2: Computed maximum pointwise errors EN and order of convergence pN of Example 2
for various values of ε and N .

ε\N 32 64 128 256 512 1024 2048 4096

10−1 1.1017e-2 2.8613e-3 6.9589e-4 1.6365e-4 3.5804e-5 1.4265e-5 7.1177e-6 3.5552e-6
10−2 2.9427e-2 1.0359e-2 3.5811e-3 1.1252e-3 3.7628e-4 1.1690e-4 3.5326e-5 1.0400e-5
10−3 2.9398e-2 1.0352e-2 3.5765e-3 1.1263e-3 3.7676e-4 1.1732e-4 3.5628e-5 1.0573e-5
10−4 2.9395e-2 1.0351e-2 3.5760e-3 1.1263e-3 3.7678e-4 1.1735e-4 3.5646e-5 1.0584e-5
10−5 2.9395e-2 1.0351e-2 3.5759e-3 1.1263e-3 3.7678e-4 1.1735e-4 3.5648e-5 1.0585e-5
10−6 2.9395e-2 1.0351e-2 3.5759e-3 1.1263e-3 3.7678e-4 1.1735e-4 3.5648e-5 1.0585e-5
10−7 2.9395e-2 1.0351e-2 3.5759e-3 1.1263e-3 3.7678e-4 1.1735e-4 3.5648e-5 1.0585e-5
10−8 2.9395e-2 1.0351e-2 3.5759e-3 1.1263e-3 3.7678e-4 1.1735e-4 3.5648e-5 1.0585e-5

EN 2.9427e-2 1.0359e-2 3.5811e-3 1.1263e-3 3.7678e-4 1.1735e-4 3.5648e-5 1.0585e-5

pN 1.5063 1.5324 1.6688 1.5798 1.6829 1.7189 1.7518 -
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Figure 2: Loglog plot of pointwise error calculated in Tables 1 and 2 for different values of ε.
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Figure 3: Error plot of computed maximum pointwise error calculated in Tables 1 and 2 for
different values of N .

more example and its corresponding numerical results are given through Table 2, Figures 1, 2
and 3 which further validate our theoretical results.
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