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Abstract. This paper deals with the mathematical modeling of the behavior of a reinforced
rectangular thermo-elastic plate with a thin insulating stiffener. We use a variational asymptotic
analysis, with respect to the thickness of the inserted body, in order to identify limit models
that reflect its effect on the plate. We carry out a mathematical modeling for a stiffener of high
rigidity and a stiffener of moderate rigidity.
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1 Introduction

Mathematical modeling is a powerful tool, widely used in science and engineering. It consists in
developing mathematical descriptions of various real-world phenomena and enable investigating,
understanding analyzing and predicting the behavior of systems in a large variety of areas. In this
context, we focus in this paper on the mathematical modeling of physical phenomena arising from
elasticity and mechanical structures fields. More precisely, we deal with the asymptotic modeling
of the behavior of a Thermo-Elastic rectangular plate reinforced by a thin insulating stiffener
on a part of its boundary. Such structures are widely used in many branches of mechanics,
civil and structural engineering such as bridges or storage tanks, and a growing attention was
paid to the modeling of their behavior in the last decades. Indeed, the addition of stiffeners
to structures aims to increase their strength and prevent from damages or buckling. Besides,
the proprieties of the constitutive material of the stiffener is of a great importance and has a
significant impact on the behavior of the reinforced structure. In several situations, especially
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in the design of insulating structures, thermally non-conductive materials are usually chosen in
order to conserve the thermal energy by reducing heat loss or heat gain.

In this direction, the motivation of this study is twofold. It aims to:

• Provide simplified mathematical models, more suitable for numerical computations. In-
deed, the discretization (by FEM method) inside the domain occupied by the thin stiffener
needs very thin meshes and may increase the computational cost. That’s why, an appro-
priate modeling of the behavior of such structures becomes necessary.

• Predict the behavior of elastic multi-structures according to the physical characteristics
of their constitutive materials. We will be led to make the assumption that the physical
coefficients of the stiffener vary as functions of its thickness, and identify the limit model
describing the behavior of the structure, as this thickness approaches zero. The nature
of the dependence of these coefficients on the thickness influences on the effects of the
stiffener obtained at the limit. This analysis can also be seen as a way to optimize the
choice of the thickness of the stiffener so as to have the desired effect on the behavior of
the structure. Indeed, in several situations dealing with the design of the reinforcement of
structures, the engineers would like to have just a mechanical effect inducing an additional
resistance and strength to the structure, without obtaining a thermal effect which could
generate possible damages related to the propagation of heat.

The idea of asymptotic modeling of the effect of thin layers has been investigated in several
papers in electromagnetic (see [2–4,6]) or in structural mechanics (see [1,7,9–15]). The strategy
consists in making use of the asymptotic methods (by considering the thickness of the layer as
a small parameter) and modeling the behavior of the solution by eliminating the layer “geomet-
rically” and reproducing its effect by new conditions on the region on which it is joined. More
precisely, we seek an asymptotic model by reducing the layer to a boundary and approximating
its effect by new conditions on this boundary. In [13], one of the authors of the present paper
considered the thermo-elastic Von Karman model for a reinforced plate with a thin stiffener of
high thermal conductivity and modelled its effect in the case where the thermal conductivity
and the rigidity vary as δ−1 (δ being the thickness of the stiffener). In the present work, we
investigate the case of an insulating stiffener, where the thermal conductivity vary as δ and the
coefficient of thermal expansion as δ2. We first consider the case where the stiffener is very
rigid (with Young’s modulus varying as δ−1), which leads to an approximate model into which
the mechanical effect of the stiffener appears. By contrast, the thermal effect of the stiffener is
not considered. After, we deal with a stiffener of less rigidity, by letting the young’s modulus
varying as δ−a, where a is any real number satisfying 0 < a < 1. In this situation, neither the
thermal nor the mechanical effects are incorporated in the limit model. Here, the layer even
stiff, its rigidity is not sufficiently enough to induce mechanical effects on the plate and since it
is insulating, the thermal effect is also neglected. The structure behaves as if the stiffener was
not there.

It should be pointed out that the main difficulty in carrying out the mathematical modeling
described above is related to the nonlinear aspect of the boundary value problem considered. The
other major novelty in this paper consists in considering thermal coefficients varying as positive
power of δ (for the thermal coefficients) and also, for the second part, the rigidity varying as
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δ−a, where 0 < a < 1. This assumptions induces a lack of boundedness of the components
of the solution in the appropriate spaces. All this, required then the introduction of auxiliary
statements and other arguments in order to carry out the asymptotic analysis of the related
problem and identify the limit models.

The paper is organized as follows: The second section is devoted to the description of the
boundary value problem and its variational formulation. In the third section, following the
ideas of Ciarlet (see [5]), we first transform the problem into a problem posed over a domain
that doesn’t depend on the small parameter δ. Thus, we establish a priori estimates that permit
to pass through the limit in the variational problem. In the fourth section we use an asymptotic
variational approach to identify limit models for the reinforced rectangular plate. We model
both the effect of an insulating stiffener of high rigidity and moderate rigidity.

2 The Nonlinear model

2.1 Statement of the problem

We consider a bi-dimensional rectangular plate occupying the set Ω̄+ = [0, 1]× [0, 1] of boundary
∂Ω+ = Σ̄∪ Γ̄+, where Σ = ]0, 1[×{0}. The plate is clamped on the portion Γ+ of its boundary
and is reinforced by a thin rigid layer on the other part Σ. The thin stiffener occupies the set
Ω̄δ
− = [0, 1] × [−δ, 0] of boundary ∂Ωδ

− = Σ̄δ
− ∪ Σ̄ ∪ Γ̄δ−, where Σδ

− = ]0, 1[ × {−δ}. These two
elastic bodies form together an heterogeneous elastic multi-structure, viewed as a rectangular
plate occupying the set Ω̄δ = [0, 1] × [−δ, 1], where Ωδ = Ω+ ∪ Σ ∪ Ωδ

−. For our forthcoming
study, we consider the following nonlinear thermo-elastic model for the structure Ω̄δ (see [8,13]
for example):

• Equations of motion in Ωδ × (0, T ):

ρu′′ − div
{
C [ε (u) + f (∇w)]

}
+ λ∇φ = 0,

ρ [I −∆]w′′ +D∆2w − div
{
C [ε (u) + f (∇w)]∇w

}
+ λ∆θ = 0, (1)

ρφ′ − k∆φ+ λdivu′ = 0,

ρθ′ − k∆θ − λ∆w′ = 0.

• Free boundary conditions on Σδ
− × (0, T ):

C [ε (u) + f (∇w)]n = 0, D [∆w + (1− ν)B1w] = 0,

D [∂n∆w + (1− ν) ∂τB2w]− ρ∂nw′′ − C [ε (u) + f (∇w)]n.∇w + λ∂nθ = 0, (2)

k∂nθ + λ∂nw
′ = 0, k∂nφ− λu′n = 0.

• Clamped boundary conditions on Γ+ ∪ Γδ− × (0, T ):

u = 0, w = ∂nw = 0, θ = 0, φ = 0. (3)
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Figure 1: A plate reinforced with a thin stiffener.

• Transmission conditions on Σ× (0, T ):

[[u]] = 0, [[w]] = [[∂nw]] = 0, [[θ]] = [[φ]] = 0,

[[C [ε (u) + f (∇w)]n]] = 0, [[D [∆w + (1− ν)B1w]]] = 0, (4)[[
k∂nθ + λ∂nw

′]] = 0,
[[
k∂nφ− λu′n

]]
= 0,[[

D [∂n∆w + (1− ν) ∂τB2w]− ρ∂nw′′ − C [ε (u) + f (∇w)]n.∇w + λ∂nθ
]]

= 0.

We associate with the equations (1)-(4) the initial conditions in Ωδ:

u (0) = u0, u′ (0) = u1, w (0) = w0, w′ (0) = w1, θ (0) = θ0, φ (0) = φ0, (5)

where u0 ∈
[
H1(Ωδ)

]2
, u1 ∈

[
L2(Ωδ)

]2
, w0 ∈ H2(Ωδ), w1 ∈ H1(Ωδ), θ0, φ0 ∈ H1(Ωδ). The

variables w and (u1, u2) represent respectively the vertical (bending) and in-plane displacement
of the structure (plate-layer). θ and φ describe the average temperature affecting the vertical
and horizontal displacement, respectively. ε (u) is the linearised strain tensor defined by the
formulae ε (u) =

(
∇u+∇Tu

)
/2 and C is a fourth order tensor that belongs to S, the space of

2× 2 symmetric matrices, given by:

C (ξ) = D
[
ν (trξ) IS + (1− ν) ξ

]
, ξ ∈ S,

where IS is the identity matrix. The function f is defined by f (s) = (1/2) s ⊗ s, s ∈ R2 and
the trace operators B1 and B2 are given by:

B1w ≡ 2n1n2∂
2
xyw − n2

1∂
2
yw − n2

2∂
2
xw, B2w ≡

(
n2

1 − n2
2

)
∂2
xyw + n1n2

(
∂2
yw − ∂2

xw
)
,

where n = (n1, n2) is the unit normal to Σ oriented outwardly of Ω+ and τ = (−n2, n1) stands
for the tangential unit vector. We denote by D = E/(1−ν2) the flexural rigidity of the structure,
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E being the Young modulus, ν the Poisson’s ratio, ρ is the mass density, k the coefficient of
thermal conductivity and λ = αD(1+ν)/2, where α denotes the coefficient of thermal expansion.
We assume that 0 < ν < 1

2 and that all these physical and thermal coefficients are piecewise
positive constants: E, ρ, k, α, ν are equal to E+, ρ+, k+, α+, ν+ (resp. Eδ−, ρδ−, kδ−, αδ−, ν−)
in Ω+ (in Ωδ

− resp.). Accordingly, D = D+, λ = λ+ in Ω+ and Dδ
−, λδ− in Ωδ

−. All over this
study, we will make the assumption that these coefficients are independent of δ in the plate Ω+

(the Poisson’s ratio ν is supposed independent of δ in both the plate and the layer). Finally, we
denote by [[ · ]] the jump through the interface Σ and g′, g′′ stand for the time derivatives of a
function g.

2.2 Variational setting

Let (w, u, φ, θ) be a classical solution of (1)-(5) and consider the following spaces:

W (Ωδ) =
{
w ∈ H2(Ωδ), w|Γ = ∂nw|Γ = 0

}
, V (Ωδ) =

{
w ∈ H1(Ωδ) ; w|Γ = 0

}
,

U(Ωδ) =
{
u ∈ H1(Ωδ)×H1(Ωδ) ; u|Γ = 0

}
.

Denoting by 〈 · , · 〉D the scalar product in
[
L2
(
D
)]l

, l ∈ N, it follows from Green’s formulas
that an appropriate variational formulation of (1)-(5) reads:

(P)



Find u ∈ L∞
(
0, T ;U(Ωδ)

)
, w ∈ L∞

(
0, T ;W (Ωδ)

)
, w′ ∈ L∞

(
0, T ;V (Ωδ)

)
,

u′ ∈ L∞
(

0, T ;
[
L2(Ωδ)

]2)
, φ ∈ L∞

(
0, T ;L2(Ωδ)

)
∩ L2

(
0, T ;V (Ωδ)

)
,

θ ∈ L∞
(
0, T ;L2(Ωδ)

)
∩ L2

(
0, T ;V (Ωδ)

)
, such that:

ρ〈u′, û〉′
Ωδ

+ 〈C [ε (u) + f (∇w)] , ε (û)〉Ωδ + λ〈∇φ, û〉Ωδ + ρ [〈w′, ŵ〉Ωδ + 〈∇w′,∇ŵ〉Ωδ ]
′

+a(w, ŵ) + 〈C [ε (u) + f (∇w)]∇w,∇ŵ〉Ωδ − λ〈∇θ,∇ŵ〉Ωδ + ρ〈φ, φ̂〉′
Ωδ

+k〈∇φ,∇φ̂〉Ωδ − λ〈u′,∇φ̂〉Ωδ + ρ〈θ, θ̂〉′
Ωδ

+ k〈∇θ,∇θ̂〉Ωδ + λ〈∇w′,∇θ̂〉Ωδ = 0,

∀(û, ŵ, φ̂, θ̂) ∈ U(Ωδ)×W (Ωδ)× V (Ωδ)× V (Ωδ), with the initial conditions (5), where:

a(w, ŵ) =

∫
Ωδ
D
[ (
∂2
xw + ν∂2

yw
)
∂2
xŵ + 2 (1− ν) ∂2

xyw∂
2
xyŵ +

(
∂2
yw + ν∂2

x

)
∂2
yŵ
]
dΩδ.

We can refer to [8] for the well-posedness of the problem (P).

3 The scaled problem

3.1 Scaling

In order to carry out an asymptotic analysis of the problem (P) as the small parameter δ goes
to zero, and because the unknowns are defined on the set Ωδ which itself vary with δ, our first
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task naturally consists in transforming (P) into a problem posed over a set that doesn’t depend
on δ. Accordingly, we let Ω− = ]0, 1[× ]−1, 0[ and perform the scaling:{

Ω− −→ Ωδ
−,

(x, z) −→ (x, y) = (x, δz).
(6)

We identify Σ with Σ×{0} and set Σ− = Σ×{1}, Γ− = ∂Ω−\(Σ∪Σ−) and Ω = Ω+∪Σ∪Ω−.
For a function ζ and a vector field v = (v1, v2) defined on Ωδ

−, we associate ζδ and vδ defined on
Ω− by: ζδ(x, z) = ζ(x, δz) and vδ(x, z) = (v1(x, δz), δv2(x, δz)). Clearly, we have ∂y = δ−1∂z
and

1∫
0

0∫
−δ

ζdxdy = δ

1∫
0

0∫
−1

ζδdxdz.

We denote by uδ−, wδ−, θδ− and φδ− the functions obtained respectively from u|Ωδ−
, w|Ωδ−

, θ|Ωδ−
and φ|Ωδ−

through the scaling (6) and set uδ = (uδ+, u
δ
−), wδ = (wδ+, w

δ
−), θδ = (θδ+, θ

δ
−) and

φδ = (φδ+, φ
δ
−), where uδ+ = u|Ω+

, wδ+ = w|Ω+
, θδ+ = θ|Ω+

and φδ+ = φ|Ω+
.

After the scaling (6), (P) is transformed into a new problem posed on the fixed domain Ω.
We introduce the following functional spaces:

W δ(Ω) =
{

(ŵ+, ŵ−) ∈ H2(Ω+)×H2(Ω−), ŵ+|Σ = ŵ−|Σ, ∂nŵ+|Σ = δ−1∂zŵ−|Σ,

ŵ+|Γ+
= ∂nŵ+|Γ+

= 0, ŵ−|Γ− = ∂nŵ−|Γ− = 0
}
,

V δ(Ω) =
{

(ŵ+, ŵ−) ∈ H1(Ω+)×H1(Ω−), ŵ+|Σ = ŵ−|Σ, ŵ+|Γ+
= ŵ−|Γ− = 0

}
,

U δ(Ω) =
{

(û+, û−) ∈
[
H1(Ω+)

]2 × [H1(Ω−)
]2
, û−1|Σ = û+1|Σ, û−2|Σ = δû+2|Σ,

û+|Γ+
= û−|Γ− = 0

}
.

Using the above notations, we reformulate the variational problem (P) in the following form

(Pδ)



Find uδ ∈ L∞(0, T ;U δ(Ω)), wδ ∈ L∞(0, T ;W δ(Ω)), (wδ)′ ∈ L∞(0, T ;V δ(Ω)),

φδ, θδ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;V δ(Ω)),

such that:

ρ+〈(uδ+)′, û+〉′Ω+
+ ρδ−δ

[
〈(uδ−1)′, û−1〉′Ω− + δ−2〈(uδ−2)′, û−2〉′Ω−

]
+ ρ+〈(wδ+)′, ŵ+〉′Ω+

+ ρδ−δ〈(wδ−)′, ŵ−〉′Ω− + ρ+b+
[
(wδ+)′, ŵ+

]′
+ ρδ−δb

δ
−
[
(wδ−)′, ŵ−

]′
+D+a+(wδ+, ŵ+) +Dδ

−δa
δ
−(wδ−, ŵ−)

+ λ+c+(φδ+, û+) + λδ−δc
δ
−(φδ−, û−)− λ+b+(θδ+, ŵ+)− λδ−δbδ−(θδ−, ŵ−)

+ ρ+〈φδ+, φ̂+〉′Ω+
+ ρδ−δ〈φδ−, φ̂−〉′Ω− + k+b+(φδ+, φ̂+) + kδ−δb

δ
−(φδ−, φ̂−)

− λ+d+

[
(uδ+)′, φ̂+

]
− λδ−δdδ−

[
(uδ−)′, φ̂−

]
+ ρ+〈θδ+, θ̂+〉′Ω+

+ ρδ−δ〈θδ−, θ̂−〉′Ω−
+ λ+b+

[
(wδ+)′, θ̂+

]
+ λδ−δb

δ
−
[
(wδ−)′, θ̂−

]
+ k+b+(θδ+, θ̂+) + kδ−δb

δ
−(θδ−, θ̂−)

+N+(uδ+, w
δ
+, û+, ŵ+) +Dδ

−δN
δ
−(uδ−, w

δ
−, û−, ŵ−) = 0,

(7)
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for all (û, ŵ, φ̂, θ̂) ∈ U δ(Ω)×W δ(Ω
)
× V δ(Ω)× V δ(Ω), where:

a+(wδ+, ŵ+) =

∫
Ω+

[(
∂2
xw

δ
+ + ν+∂

2
yw

δ
+

)
∂2
xŵ+ + 2 (1− ν+) ∂2

xyw
δ
+∂

2
xyŵ+

+
(
∂2
yw

δ
+ + ν+∂

2
xw

δ
+

)
∂2
yŵ+

]
dxdy,

aδ−(wδ−, ŵ−) =

∫
Ω−

[(
∂2
xw

δ
− + δ−2ν−∂

2
zw

δ
−

)
∂2
xŵ− + 2 (1− ν−) δ−1∂2

xzw
δ
−δ
−1∂2

xzŵ−

+
(
δ−2∂2

zw
δ
− + ν−∂

2
xw

δ
−

)
δ−2∂2

z ŵ−

]
dxdz,

b+(wδ+, ŵ+) =

∫
Ω+

∇wδ+∇ŵ+dxdy, bδ−(wδ−, ŵ−) =

∫
Ω−

[
∂xw

δ
−∂xŵ− + δ−2∂zw

δ
−∂zŵ−

]
dxdz,

c+(φδ+, û+) =

∫
Ω+

∇φδ+û+dxdy, cδ−(φδ−, û−) =

∫
Ω−

[
∂xφ

δ
−û−1 + δ−2∂zφ

δ
−û−2

]
dxdz,

d+((uδ+)′, φ̂+) =

∫
Ω+

(uδ+)′∇φ̂+dxdy, dδ−((uδ−)′, φ̂−) =

∫
Ω−

[
(uδ−1)′∂xφ̂− + δ−2(uδ−2)′∂zφ̂−

]
dxdz,

N+(uδ+, w
δ
+, û+, ŵ+) = 〈C[ε(uδ+) + f(∇wδ+)], ε(û+)〉Ω+ + 〈C

[
ε(uδ+) + f(∇wδ+)

]
∇wδ+,∇ŵ+〉Ω+ ,

N δ
−(uδ, wδ, û, ŵ) =

∫
Ω−

{
[∂xu

δ
−1 + 1

2(∂xw
δ
−)2 + ν−

δ2 (∂zu
δ
−2 + 1

2(∂zw
δ
−)2)][∂xû−1 + ∂xw

δ
−∂xŵ−]

+ 1−ν−
2δ2 [∂zu

δ
−1 + ∂xu

δ
−2 + ∂xw

δ
−∂zw

δ
−][∂zû−1 + ∂xû−2 + ∂xw

δ
−∂zŵ− + ∂zw

δ
−∂xŵ−]

+ 1
δ2 [ 1

δ2 (∂zu
δ
−2 + 1

2(∂zw
δ
−)2) + ν−(∂xu

δ
−1 + 1

2(∂xw
δ
−)2)][∂zû−2 + ∂zw

δ
−∂zŵ−]

}
dxdz.

We associate with (Pδ) the scaled initial data obtained by performing the scaling (6) in (5).

3.2 A priori estimates

Here, we must establish a priori estimates that allow us to pass through the limit in the scaled
variational problem. Let (uδ, wδ, φδ, θδ) the solution of (Pδ). We denote:

Eδ(t) =
1

2

{
ρ+

∥∥(uδ+)′(t)
∥∥2

L2(Ω+)
+ ρδ−δ

∥∥(uδ−)′(t)
∥∥2

L2(Ω−)
+ ρ+

∥∥(wδ+)′(t)
∥∥2

L2(Ω+)

+ ρδ−δ
∥∥(wδ−)′(t)

∥∥2

L2(Ω−)
+ ρ+

∥∥φδ+(t)
∥∥2

L2(Ω+)
+ ρδ−δ

∥∥φδ−(t)
∥∥2

L2(Ω−)
+ ρ+

∥∥θδ+(t)
∥∥2

L2(Ω+)

+ ρδ−δ
∥∥θδ−(t)

∥∥2

L2(Ω−)
+ ρ+b+((wδ+)′(t), (wδ+)′(t)) + ρδ−δb

δ
−((wδ−)′(t), (wδ−)′(t))

+D+a+(wδ+(t), wδ+(t)) +Dδ
−δa

δ
−(wδ−(t), wδ−(t)) +N+(wδ+(t), uδ+(t), uδ+(t), wδ+(t))

+Dδ
−δN

δ
−(wδ−(t), uδ−(t), uδ−(t), wδ−(t))

}
.

Proposition 1. We suppose that Eδ(0) is bounded independently of δ. Then:

• wδ+ and (wδ+)′ are bounded independently of δ in L∞(0, T,H2(Ω+)) and L∞(0, T,H1(Ω+)),
respectively.
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• uδ+ and (uδ+)′ are bounded independently of δ in L∞(0, T, [H1(Ω+)]2) and L∞(0, T, [L2(Ω+)]2),
respectively.

• φδ+, θδ+ are bounded independently of δ in L∞(0, T, L2(Ω+)).

•
√
ρδ−δ(δ

−1∂zw
δ
−)′,

√
ρδ−δ(∂xw

δ
−)′,

√
Eδ−δδ

−2

(
∂zu

δ
−2 +

1

2
(∂zw

δ
−)2

)
,
√
Eδ−δδ

−1∂2
xzw

δ
−,√

Eδ−δ

(
∂xu

δ
−1 +

1

2
(∂xw

δ
−)2

)
,
√
Eδ−δδ

−2∂2
zw

δ
−,
√
Eδ−δδ

−1
(
∂xu

δ
−2 + ∂zu

δ
−1 + ∂xw

δ
−∂zw

δ
−
)

and
√
Eδ−δ∂

2
xw

δ
− are bounded independently of δ in L∞(0, T, L2(Ω−)).

•
√
ρδ−δ(u

δ
−1)′ and

√
ρδ−δ(δ

−1uδ−2)′ are bounded independently of δ in L∞(0, T, L2(Ω−)).

•
√
ρδ−δφ

δ
−, and

√
ρδ−δθ

δ
− are bounded independently of δ in L∞(0, T, L2(Ω−)).

• ∇φδ+ and ∇θδ+ are bounded independently of δ in L2(0, T, L2(Ω+)).

•
√
kδ−δ∂xφ

δ
−,
√
kδ−δ∂xθ

δ
−,
√
kδ−δδ

−1∂zφ
δ
− and

√
kδ−δδ

−1∂zθ
δ
− are bounded independently of

δ in L2(0, T, L2(Ω−)).

Proof. Letting û = (uδ)′, ŵ = (wδ)′, θ̂ = θδ and φ̂ = φδ in the variational formulation (7),
integrating from 0 to t, we get

Eδ(t) + k+

t∫
0

∥∥∥∇θδ+(t)
∥∥∥2

L2(Ω+)
dt+ k+

t∫
0

∥∥∥∇φδ+(t)
∥∥∥2

L2(Ω+)
dt+ δkδ−

t∫
0

bδ−(θδ−, θ
δ
−)dt

+ δkδ−

t∫
0

bδ−(φδ−, φ
δ
−)dt = Eδ(0),

first for smooth solutions which is then extended by density to all weak solutions. Using Poincaré
and Korn’s Inequalities, we obtain the previous a priori estimates.

4 Asymptotic modeling of the stiffened plate

4.1 Case of a high rigid insulating layer

In this section we investigate the situation where the elastic plate Ω+ is reinforced with an
insulating thin layer with high rigidity. More precisely, we make the assumption that Eδ− =
δ−1E−, ρδ− = δρ− and kδ− = δk−. We let αδ− = δ2α−.

Owing to the a priori estimates stated in Proposition 1, we can assert that, up to a subse-
quence, there exist w̃±, ũ±, φ̃+ and θ̃+ such that:

• wδ± −→ w̃±, uδ± −→ ũ±, weakly* in L∞
(
0, T ;H2(Ω±)

)
and L∞

(
0, T ; (H1(Ω±))2

)
, respec-

tively.
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• φδ+ −→ φ̃+, θδ+ −→ θ̃+, weakly* in L∞(0, T, L2(Ω+)) and weakly in L2(0, T,H1(Ω+)).
In order to give more information about this weak limit, we introduce the spaces:

W (Ω+) =
{
w ∈ H2(Ω+), w|Γ+

= ∂nw|Γ+
= 0, w|Σ ∈ H2

0 (Σ), ∂nw ∈ H1
0 (Σ)

}
,

U(Ω+) =
{
u ∈ (H1(Ω+))2, u|Γ+

= 0, u1|Σ ∈ H1
0 (Σ)

}
. (8)

Proposition 2. The limit (ũ, w̃, φ̃, θ̃) is characterized as follows:
• w̃+ ∈ L∞(0, T,W (Ω+)) and (w̃+)′ ∈ L∞(0, T,H1

Γ+
(Ω+)),

• ũ+ ∈ L∞(0, T, U(Ω+)) and (ũ+)′ ∈ L∞(0, T, (L2(Ω+))2),

• φ̃+, θ̃+ ∈ L∞(0, T, L2(Ω+)) ∩ L2(0, T,H1
Γ+

(Ω+)).

• Moreover, we have:

w̃− = w̃+|Σ, ũ−1 = ũ+1|Σ, ũ−2 = 0.

Proof. The proof follows from the a priori estimates of Proposition 1 and the transmission
conditions. For wδ, these estimates lead to the fact that ∂2

z w̃− = 0, which combined with the
transmission condition ∂nw

δ
+|Σ = δ−1∂zw

δ
−|Σ gives, at the limit ∂zw̃− = 0. Using once again the

transmission conditions, we get w̃− = w̃+|Σ. In addition, we can easily show that

0∫
−1

δ−1∂zw
δ
−dz → ∂nw̃+|Σ, (9)

weakly* in L∞(0, T ;H1(Σ)). Likewise, same arguments lead to the proprieties stated for ũ, φ̃
and θ̃.

Proposition 3. The following convergences hold true, weakly* in L∞(0, T, L2(Σ)):

•
∫ 0

−1
∂2
xw

δ
−dz

∗
⇀ ∂2

xw̃+|Σ,

∫ 0

−1
δ−1∂2

xzw
δ
−dz

∗
⇀ ∂x∂nw̃+|Σ, (10)

•
∫ 0

−1
δ−2∂2

zw
δ
−dz

∗
⇀ − ν−∂2

xw̃+|Σ, (11)

•
∫ 0

−1

(
∂xu

δ
−1 +

1

2
(∂xw

δ
−)2
)
dz

∗
⇀ ∂xũ+1|Σ +

1

2
(∂xw̃+|Σ)2, (12)

•
∫ 0

−1
δ−2
(
∂zu

δ
−2 +

1

2
(∂zw

δ
−)2
)
dz

∗
⇀ − ν−

(
∂xũ+1|Σ +

1

2
(∂xw̃+|Σ)2

)
, (13)

•
∫ 0

−1
δ−1
(
∂xu

δ
−2 + ∂zu

δ
−1 + ∂xw

δ
−∂zw

δ
−
)
dz

∗
⇀ 0. (14)

Proof. The limits (10) follow from the a priori estimates of Proposition 1 and the transmission
conditions. The limit (11) is obtained by applying the variational problem (7) with the test

functions: û+ = û− = 0, φ̂+ = φ̂− = 0, θ̂+ = θ̂− = 0, ŵ+ = 0 and ŵ− = δ2%(x) z
2

2 , where %
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is a smooth enough function, and passing through the limit, as δ goes to zero. It remains now
to prove the three last limits, which require more investigation because of the nonlinear terms
involved in their expressions. Recalling the fact that wδ− −→ w̃− weakly* in L∞(0, T,H2(Ω−)),
it follows, by a compactness argument that

wδ− −→ w̃− strongly in L∞(0, T,H2−ε(Ω−)),

as δ goes to zero, for all ε > 0. Consequently, we get

∂xw
δ
− −→ ∂xw̃− strongly in L∞(0, T,H1−ε(Ω−)).

Using the Sobolev embedding H1−ε(Ω−) ↪→ L
2
ε (Ω−), we deduce that ∂xw

δ
− −→ ∂xw̃−

strongly in L∞(0, T, L4(Ω−)), which implies the convergence of (∂xw
δ
−)2 towards (∂xw̃−)2 in

L∞(0, T, L2(Ω−)). Accordingly, owing to the fact that w̃− = w̃+|Σ and ũ−1 = ũ+1|Σ, we obtain
(12).

Similarly, the other limits follow by using same arguments.

The following Theorem gives the main result of this section which consists in the identification
of the limit model, posed only over the domain of the plate Ω+. To this end, we first fix the
limit behavior of the initial data and assume that there exist smooth enough functions w∗+, w∗∗,
φ∗, θ∗, u∗+, u∗∗ such that:

• w0δ
+ and

∫ 0

−1
w0δ
− dz converge to w∗+ and w∗+|Σ weakly in H2(Ω+) and H2(Σ), respectively.

• u0δ
+1 and u0δ

+2 converge to u∗+1, u∗+2 weakly in H1(Ω+).

• φ0δ and θ0δ converge to φ∗, θ∗ weakly in H1(Ω).

•
∫ 0

−1
u0δ
−1dz and

∫ 0

−1
u0δ
−2dz converge to u∗+1|Σ, 0 weakly in H1(Σ).

• w1δ
+ and u1δ converge to w∗∗ and u∗∗ weakly in H1(Ω) and [L2(Ω)]2 respectively.

Thus, the limit problem is identified in the following Theorem.

Theorem 1. The weak limit (ũ+, w̃+, φ̃+, θ̃+) verify:

• w̃+ ∈ L∞(0, T,W (Ω+)), (w̃+)′ ∈ L∞(0, T,H1
Γ+

(Ω+)),

• ũ+ ∈ L∞(0, T, U(Ω+)), (ũ+)′ ∈ L∞(0, T, [L2(Ω+)]2),

• θ̃+, φ̃+ ∈ L∞(0, T, L2(Ω+)) ∩ L2(0, T,H1
Γ+

(Ω+)), and solve the variational problem

(P0)


ρ+〈ũ′+, û+〉′Ω+

+ ρ+〈w̃′+, ŵ+〉′Ω+
+ ρ+b+(w̃′+, ŵ+)′ +D+a+(w̃+, ŵ+)

+aΣ(w̃+, ŵ+) + λ+c+(φ̃+, û+)− λ+b+(θ̃+, ŵ+) + ρ+〈φ̃+, φ̂+〉′Ω+
+ k+b+(φ̃+, φ̂+)

−λ+d+(ũ′+, φ̂+) + ρ+〈θ̃+, θ̂+〉′Ω+
+ λ+b+(w̃′+, θ̂+) + k+b+(θ̃+, θ̂+)

+N+(ũ+, w̃+, û+, ŵ+) +NΣ(ũ+, w̃+, û+, ŵ+) = 0,
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∀(û+, ŵ+, φ̂+, θ̂+) ∈ U(Ω+)×W (Ω+)×H1
Γ+

(Ω+)×H1
Γ+

(Ω+), with the initial conditions:

ũ+(0) = u∗+, ũ′+(0) = u∗∗+ , w̃+(0) = w∗+, in Ω+,

w̃′+(0) = w∗∗+ , φ̃+(0) = φ∗+, θ̃+(0) = θ∗+ in Ω+,

w̃+(0) = w∗+|Σ, ũ+(0) = u∗+|Σ on Σ, (15)

where:

aΣ(w̃+, ŵ+) = E−

∫
Σ

[(
∂2
xw̃+|Σ

) (
∂2
xŵ+|Σ

)
+

2

1 + ν−

(
∂x∂nw̃+|Σ

) (
∂x∂nŵ+|Σ

)]
dx,

NΣ(ũ+, w̃+, û+, ŵ+) = E−

∫
Σ

[
∂xũ+1|Σ +

1

2

(
∂xw̃+|Σ

)2] [
∂xû+1|Σ +

(
∂xw̃+|Σ

) (
∂xŵ+|Σ

)]
dx.

Proof. The strategy consists in passing through the limit in the scaled variational problem
(7) with some adequate test functions. Let û+ ∈ D(Ω+) ∩ U(Ω+), ŵ+ ∈ D(Ω+) ∩ W (Ω+),
φ̂+ ∈ D(Ω+)∩H1

Γ+
(Ω+) and θ̂+ ∈ D(Ω+)∩H1

Γ+
(Ω+), that we suppose independent of δ. (Next,

the analysis may be extended for all functions of U(Ω+), W (Ω+) and H1
Γ+

(Ω+) by density). We
apply the variational problem (7) with the test functions:

û =

{
û+ in Ω+,

û− =
(
û+1|Σ, δû+2|Σ

)
in Ω−,

ŵ =

{
ŵ+ in Ω+,

ŵ− = ŵ+|Σ + δz∂nŵ+|Σ in Ω−,

φ̂ =

{
φ̂+ in Ω+,

φ̂− = φ̂+|Σ in Ω−,
θ̂ =

{
θ̂+ in Ω+,

θ̂− = θ̂+|Σ in Ω−.

In order to identify the limit variational problem, we pass through the limit in all the forms
involved in the formulation of (7). We can easily identify the limit of the forms indexed by
“+” which act on the domain Ω+. Nevertheless, the nonlinear form N+(· , · , · , · ) requires
the use of compactness arguments and Sobolev embedding theorems. We will focus here on
the forms acting on the domain of the stiffener. Let us begin by investigating the behavior of
the forms involving the thermal components of the solution. To this end, let us first note that
kδ−δb

δ
−(θδ−, θ̂−) may be written in the following form (recall that ∂z θ̂− = 0)

kδ−δb
δ
−(θδ−, θ̂−) =

√
kδ−δ

∫
Ω−

√
kδ−δ∂xθ

δ
−∂xθ̂−dxdz,

which, using Holder inequality yields∣∣∣kδ−δbδ−(θδ−, θ̂−)
∣∣∣ ≤√kδ−δ ∥∥∥∥√kδ−δ∂xθδ−∥∥∥∥

L2(Ω−)

∥∥∥∂xθ̂−∥∥∥
L2(Ω−)

.

Multiplying the previous form by ζ(t) ∈ D(]0, T [) and integrating from 0 to T , we get∣∣∣∣∣∣kδ−δ
T∫

0

bδ−(θδ−, θ̂−)ζ(t)dt

∣∣∣∣∣∣ ≤
√
kδ−δ

T∫
0

∥∥∥∥√kδ−δ∂xθδ−∥∥∥∥
L2(Ω−)

∥∥∥∂xθ̂−∥∥∥
L2(Ω−)

|ζ(t)| dt,
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which, using Cauchy- Schwarz inequality gives∣∣∣∣∣∣kδ−δ
T∫

0

bδ−(θδ−, θ̂−)ζ(t)dt

∣∣∣∣∣∣ ≤ C
√
kδ−δ

 T∫
0

∥∥∥∥√kδ−δ∂xθδ−∥∥∥∥2

L2(Ω−)


1
2
 T∫

0

∥∥∥∂xθ̂−∥∥∥2

L2(Ω−)


1
2

≤ C ′
√
kδ−δ

∥∥∥∥√kδ−δ∂xθδ−∥∥∥∥
L2(0,T,L2(Ω−))

∥∥∥∂xθ̂+

∥∥∥
L2(Σ)

,

where C, C ′ are constants independent of δ. The a priori estimates of Proposition 1 state

that
∥∥∥√kδ−δ∂xθδ−∥∥∥2

L2(0,T,L2(Ω−))
is bounded independently of δ. Besides,

∥∥∥∂xθ̂+

∥∥∥2

L2(Σ)
is also

independent of δ. Thus, since
√
kδ−δ → 0, we deduce that kδ−δb

δ
−(θδ−, θ̂−) goes to zero, as δ goes

to zero in D′(]0, T [).
In the same manner, we can show that the limit of kδ−δb

δ
−(φδ−, φ̂−) vanish as δ → 0. For

λδ−δc
δ
−(φδ−, û−), substituting the test functions introduced above, we get∣∣∣λδ−δcδ−(φδ−, û−)

∣∣∣ =

∣∣∣∣ δ2E−α−
2(1− ν−)

∫
Ω−

(
∂xφ

δ
−û+1 + δ−1∂zφ

δ
−û+2

)
dxdz

∣∣∣∣
=

∣∣∣∣∣ δE−α−

2(1− ν−)
√
k−

∫
Ω−

(√
kδ−δ∂xφ

δ
−û+1 +

√
kδ−δδ

−1∂zφ
δ
−û+2

)
dxdz

∣∣∣∣∣
≤ δE−α−

2(1− ν−)
√
k−

[∥∥∥∥√kδ−δ∂xφδ−∥∥∥∥
L2(Ω−)

‖û+1‖L2(Σ)

+

∥∥∥∥√kδ−δδ−1∂zφ
δ
−

∥∥∥∥
L2(Ω−)

‖û+2‖L2(Σ)

]
.

Thus, using once again Cauchy Schwarz inequality, we obtain, for ζ(t) ∈ D(]0, T [),∣∣∣∣∣∣
T∫

0

λδ−δc
δ
−(φδ−, û−)ζ(t)dt

∣∣∣∣∣∣ ≤ C δE−α−

(1− ν−)
√
k−

[∥∥∥∥√kδ−δ∂xφδ−∥∥∥∥
L2(0,T,L2(Ω−))

‖û+1‖L2(Σ)

+

∥∥∥∥√kδ−δδ−1∂zφ
δ
−

∥∥∥∥
L2(0,T,L2(Ω−))

‖û+2‖L2(Σ)

]
,

where C is a constant independent of δ. Owing to the boundedness of
∥∥∥√kδ−δ∂xφδ−∥∥∥

L2(0,T,L2(Ω−))

and
∥∥∥√kδ−δδ−1∂zφ

δ
−

∥∥∥
L2(0,T,L2(Ω−))

independently of δ, and since
δE−α−

(1− ν−)
√
k−
→ 0, we deduce

that λδ−δc
δ
−(φδ−, û−) goes to zero in D′(]0, T [).

As far as concern λδ−δd
δ
−((uδ−)′, φ̂−), we can show that∣∣∣∣∣∣

T∫
0

λδ−δd
δ
−((uδ−)′, φ̂−)ζ(t)dt

∣∣∣∣∣∣ ≤ C δE−α−
2(1− ν−)

√
ρ−

∥∥∥∥√ρδ−δ(uδ−1)′
∥∥∥∥
L∞(0,T,L2(Ω−))

∥∥∥∂xφ̂+

∥∥∥
L2(Σ)

,
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where C is independent of δ. The right-hand side of above goes to zero, as δ goes to zero, thanks

to the boundedness of
∥∥∥√ρδ−δ(uδ−1)′

∥∥∥
L∞(0,T,L2(Ω−))

and the fact that
δE−α−

2(1− ν−)
√
ρ−
→ 0.

Now, we will investigate the behavior of the forms lying on the mechanical behavior of
the structure. The limits (10) and (11) permit to conclude that Dδ

−δa
δ
−(wδ−, ŵ−) converges

towards aΣ(w̃+, ŵ+). Besides, arguing as for kδ−δb
δ
−(θδ−, θ̂−), we can show that the limit of

ρδ−δb
δ
−((wδ−)′, ŵ−)′ vanish, when δ → 0. As far as concern the nonlinear form

Dδ
−δN

δ
−(uδ−, w

δ
−, û−, ŵ−), its limit as δ goes to zero may be achieved thanks to Sobolev embed-

dings, Holder inequality and some nonlinear techniques. To this end, we start by investigating
the limit of the first part involved in Dδ

−δN
δ
−(uδ−, w

δ
−, û−, ŵ−). Recalling the expressions of

Dδ
−δN

δ
−(uδ−, w

δ
−, û−, ŵ−) and its limit NΣ(ũ+, w̃+, û+, ŵ+), we denote by Aδ(uδ, wδ) and A(ũ, w̃)

the quantities:

Aδ(uδ, wδ) =

[(
∂xu

δ
−1 +

1

2
(∂xw

δ
−)2

)
+
ν−
δ2

(
∂zu

δ
−2 +

1

2
(∂zw

δ
−)2

)]
,

A(ũ, w̃) = (1− ν2
−)

(
∂xũ+1|Σ +

1

2
(∂xw̃+|Σ)2

)
.

Note that, in this case, Dδ
−δ doesn’t depend of δ, so it is omitted in proving the desired limit.

Clearly, we can show that

∫
Ω−

Aδ(uδ, wδ)∂xû−1dxdz converges towards

∫
Σ
A(ũ, w̃)∂xû+1dx in

D′(]0, T [) by using the convergences (12) and (13) and the definition of the weak* convergence.

Let us now prove that

∫
Ω−

Aδ(uδ, wδ)∂xwδ−∂xŵ−dxdz converges to

∫
Σ
A(ũ, w̃)∂xw̃+∂xŵ+dx.

Note that

∫
Σ
A(ũ, w̃)∂xw̃+∂xŵ+dx =

0∫
−1

∫
Σ
A(ũ, w̃)∂xw̃+∂xŵ+dxdz and that we can write

∫
Ω−

{
Aδ(uδ, wδ)∂xwδ−∂xŵ− −A(ũ, w̃)∂xw̃+∂xŵ+

}
dxdz

=

∫
Ω−

{[
Aδ(uδ, wδ)−A(ũ, w̃)

]
∂xw̃+∂xŵ+ +Aδ(uδ, wδ)∂xwδ− [∂xŵ− − ∂xŵ+]

+ Aδ(uδ, wδ)
[
∂xw

δ
− − ∂xw̃+

]
∂xŵ+

}
dxdz.

Thus, for ζ(t) ∈ D(]0, T [), we obtain∣∣∣∣∣∣
T∫

0

(∫
Ω−

{
Aδ(uδ, wδ)∂xwδ−∂xŵ− −A(ũ, w̃)∂xw̃+∂xŵ+

}
dxdz

)
ζ(t)dt

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
T∫

0

∫
Ω−

[
Aδ(uδ, wδ)−A(ũ, w̃)

]
∂xw̃+∂xŵ+ζ(t)dxdzdt

∣∣∣∣∣∣
+

T∫
0

∥∥∥Aδ(uδ, wδ)∥∥∥
L2(Ω−)

∥∥∥∂xwδ−∥∥∥
L6(Ω−)

‖∂xŵ− − ∂xŵ+‖L3(Ω−) |ζ(t)| dt
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+

T∫
0

∥∥∥Aδ(uδ, wδ)∥∥∥
L2(Ω−)

∥∥∥∂xwδ− − ∂xw̃+

∥∥∥
L6(Ω−)

‖∂xŵ+‖L3(Ω−) |ζ(t)| dt

≤

∣∣∣∣∣∣
T∫

0

∫
Ω−

[
Aδ(uδ, wδ)−A(ũ, w̃)

]
∂xw̃+∂xŵ+ζ(t)dxdzdt

∣∣∣∣∣∣
+ C

{∥∥∥Aδ(uδ, wδ)∥∥∥
L∞(0,T,L2(Ω−))

∥∥∥∂xwδ−∥∥∥
L∞(0,T,L6(Ω−))

‖∂xŵ− − ∂xŵ+‖L3(Ω−)

+
∥∥∥Aδ(uδ, wδ)∥∥∥

L∞(0,T,L2(Ω−))

∥∥∥∂xwδ− − ∂xw̃+

∥∥∥
L∞(0,T,L6(Ω−))

‖∂xŵ+‖L3(Ω−)

}
,

where the above inequalities come after many uses of the Hölder inequality: ‖fg‖Lr ≤ ‖f‖Lp ‖g‖Lq ,

for any p, q, such that
1

p
+

1

q
=

1

r
; 0 < p < q < +∞. Hence, since ∂xw̃+ and ∂xŵ+ belong

to H1(Σ), their product is in L2(Σ). This yields ∂xw̃+∂xŵ+ζ(t) ∈ L1(0, T, L2(Σ)). Then, we
deduce from the convergence (12) and (13) and the definition of the weak * convergence that
the first part of the right hand side of the above inequality goes to zero as δ → 0. Besides, since
∂xw

δ
− −→ ∂xw̃− weakly* in L∞(0, T,H1(Ω−)), we deduce, using a compactness argument, that

∂xw
δ
− −→ ∂xw̃− strongly in L∞(0, T,H1−ε(Ω−)) for all ε > 0. Owing to the Sobolev embedding

H1−ε(Ω−) ↪→ L
2
ε (Ω−), we obtain that ∂xw

δ
− −→ ∂xw̃− = ∂xw̃+|Σ strongly in L∞(0, T, L6(Ω−))

as δ goes to zero. This embedding implies also that
∥∥∂xwδ−∥∥L∞(0,T,L6(Ω−))

is bounded inde-

pendently of δ. Combining these results with the fact that
∥∥Aδ(uδ, wδ)∥∥

L∞(0,T,L2(Ω−))
and

‖∂xŵ+‖L3(Ω−) are bounded independently of δ, we deduce that the remaining parts of the above
inequality vanish at the limit.

Using the same arguments, we prove that the other parts involved in Dδ
−δN

δ
−(uδ−, w

δ
−, û−, ŵ−)

go to zero inD′(]0, T [). Finally, taking into account the above assertions, the passage through the
limit in both the variational formulation and the initial conditions leads to the limit approximate
model.

Remark 1. The limit variational problem obtained above is, formally, equivalent to the following
boundary value problem:

• Equations of motion in Ω+ × (0, T ):

ρ+ũ
′′
+ − div

{
C [ε(ũ+) + f(∇w̃+)]

}
+ λ∇φ̃+ = 0,

ρ+ [I −∆] w̃′′+ +D+∆2w̃+ − div
{
C [ε(ũ+) + f(∇w̃+)]∇w̃+

}
+ λ+∆θ̃+ = 0,

ρ+φ̃
′
+ − k+∆φ̃+ + λ+divũ

′
+ = 0,

ρ+θ̃
′
+ − k+∆θ̃+ − λ+∆w̃′+ = 0.

• Clamped boundary conditions on Γ+ × (0, T ):

ũ+ = 0, w̃+ = ∂nw̃+ = 0, θ̃+ = 0, φ̃+ = 0,
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• New approximate boundary conditions on Σ× (0, T ):

tτC [ε(ũ+) + f(∇w̃+)]n = E−∂x

(
∂xũ+1 +

1

2
(∂xw̃+)2

)
,

tnC [ε(ũ+) + f(∇w̃+)]n = 0,

D+ [∆w̃+ + (1− ν+)B1w̃+] = −Q(w̃+),

D+ [∂n∆w̃+ + (1− ν+)∂τB2w̃+]− ρ+∂nw̃
′′
+ − C [ε(ũ+) + f(∇w̃+)]n.∇w̃+ + λ+∂nθ̃+

= P (w̃+)− E−∂x
[
(∂xũ+1 +

1

2
(∂xw̃+)2)∂xw̃+

]
,

k+∂nθ̃+ + λ+∂nw̃
′
+ = 0, k+∂nφ̃+ − λ+ũ

′
+n = 0,

where:

P (w̃+) = E−∂
4
xw̃+ and Q(w̃+) = − 2E−

1 + ν−
∂2
x∂nw̃+.

Recall that tn (resp. tτ) is the transposed vector of n (resp. τ). The above system is associated
with the initial conditions (15). Note that the boundary value problem described above follows
from the variational problem (P0). The clamped boundary conditions are incorporated in the
spaces W (Ω+) and U(Ω+). As far as concern the new approximate boundary conditions, they
come naturally by making use of the Green’s Formulas in (P0).

Remark 2. As a perspective, the question of existence and uniqueness of the solution of the
model obtained here represents a matter of further investigation. One may try to establish the
well-posedness of the limit problem by adapting the analysis carried out in [8] for a single plate.
The unicity of the solution allows the convergence of the whole sequence.

Remark 3. The asymptotic modeling we carried out in this section leads to a new model posed
only over the domain Ω+, which is nothing but the reference configuration of the plate. The
domain of the layer disappears in the formulation of this new model. Only the mechanical effect
of this later appears in the limit problem, which is expressed by the additive terms involved in the
right-hand sides of the boundary conditions imposed on the interface Σ. Moreover, this effect
is also expressed by means of the new initial conditions imposed on Σ. These new boundary
and initial conditions are in some sense the ”memory” of the vanishing layer. Besides, they are
not standard: they involve derivatives of order equal to that of the interior differential operator.
This type of Boundary conditions is called ”Ventcel conditions” in the literature.

Remark 4. Note that the choice of the behavior of αδ− is not fortuitous. When kδ− varies as δ
and Eδ− varies as δ−1, the coefficient of thermal expansion must behave as δ1+ε ; ε > 0 in order
to obtain a vanishing thermal effect at the limit.

4.2 Case of an insulating moderately rigid layer

The goal of this section is to show that an insulating layer may be rigid but not sufficiently
enough to induce mechanical effects on the plate. It’s the case when the rigidity Eδ− vary as δ−a,
where a is any real number satisfying 0 < a < 1. To this end, we make the assumption that
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Eδ− = δ−aE− and let the other physical coefficients vary as for the insulating high rigid stiffener
case.

Owing to the a priori estimates stated in Proposition 1, we can assert that, up to a subse-
quence, there exist w̃+, ũ+, φ̃+ and θ̃+ such that

• wδ+ −→ w̃+, uδ+ −→ ũ+, weakly* in L∞(0, T ;H2(Ω+)) and L∞(0, T ; (H1(Ω+))2) respec-
tively.

• φδ+ −→ φ̃+, θδ+ −→ θ̃+ weakly* in L∞(0, T, L2(Ω+)) and weakly in L2(0, T,H1(Ω+)).

Remark 5. Unlike the high stiff layer case, the a priori estimates of Proposition 1 do not lead
to the boundedness of wδ− and uδ− in L∞(0, T ;H2(Ω−)) and L∞(0, T ; (H1(Ω−))2) respectively.

In this situation, it’s
√
δ1−aE−w

δ
− and

√
δ1−aE−u

δ
− that benefit from this property. Neverthe-

less, the forthcoming analysis requires some estimates about the displacement components of the
solution. Thus, we next establish some auxiliary results and statements which play a key role in
the identification of the limit problem.

Lemma 1. Let v ∈ H1(Ω−). The following estimate holds true:

‖v‖2L2(Ω−) ≤ C
[
‖∂zv‖2L2(Ω−) +

∥∥v|Σ∥∥2

L2(Σ)

]
,

where C is a constant independent of δ.

Proof. For all z, −1 < z < 0, we can write

v2(x, z) = v2(x, 0)− 2

0∫
z

v(x, ξ)∂ξv(x, ξ)dξ.

Thus, using Holder inequality, it follows

1∫
0

∣∣v2(x, z)
∣∣ dx ≤ 1∫

0

∣∣v2(x, 0)
∣∣ dx+ 2

1∫
0

0∫
−1

|v∂zv| dxdz

≤
∥∥v|Σ∥∥2

L2(Σ)
+ 2 ‖v‖L2(Ω−) ‖∂zv‖L2(Ω−) .

Integrating from −1 to 0, with respect to the variable z, and owing to the generalized Young’s

inequality: ab <
a2

2ε
+
εb2

2
, for ε = 2, we get the desired estimate.

Proposition 4. Let v ∈W δ(Ω). We have:

‖∂zv−‖2L2(Ω−) ≤ C
[∥∥∂2

zv−
∥∥2

L2(Ω−)
+ δ2

∥∥∂nv+|Σ
∥∥2

L2(Σ)

]
,

‖v−‖2L2(Ω−) ≤ C
[∥∥∂2

zv−
∥∥2

L2(Ω−)
+ ‖v+‖2H2(Ω+)

]
,

where C is a constant independent of δ.
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Proof. v− being in H2(Ω−), we apply the previous lemma for ∂zv− and deduce

‖∂zv−‖2L2(Ω−) ≤ C
[∥∥∂2

zv−
∥∥2

L2(Ω−)
+
∥∥∂zv−|Σ∥∥2

L2(Σ)

]
.

Making use of the transmission condition ∂zv−|Σ = δ∂nv+|Σ, we get the first estimate stated in
this proposition. Finally, since δ2 << 1, the second estimate follows by applying once again
the Lemma and taking advantage of the transmission conditions and the continuity of the trace
operator.

Proposition 5. The component wδ− verifies∥∥∥wδ−∥∥∥
L∞(0,T,L2(Ω−))

≤ C,

where C is a constant independent of δ.

Proof. The a priori estimates stated in Proposition 1 assert that
√
δ1−aE−δ

−2∂2
zw

δ
− is bounded

independently of δ in L∞(0, T, L2(Ω−)), which implies that
1√
δa+3

∥∥∂2
zw

δ
−
∥∥
L∞(0,T,L2(Ω−))

≤ C

and consequently,
∥∥∂2

zw
δ
−
∥∥
L∞(0,T,L2(Ω−))

≤ C
√
δa+3 ≤ C ′, since δ << 1 (C and C ′ are constants

independent of δ). Besides, wδ+ is bounded in L∞(0, T,H2(Ω+)). The conclusion follows from
Proposition 4.

In order to pass through the limit in (7), we need the following lemma (which can easily be
proved):

Lemma 2. Let vδ ∈ L∞(0, T,H1(Ω−)). If vδ −→ ṽ weakly* in L∞(0, T, L2(Ω−)) and for
0 < a < 1,

√
δ1−aE−∂xv

δ −→ h̃ weakly* in L∞(0, T, L2(Ω−)), then h̃ = 0.

Theorem 2. The weak limit (ũ+, w̃+, φ̃+, θ̃+) verifies:

• w̃+ ∈ L∞(0, T,H2
|Γ+

(Ω+)), (w̃+)′ ∈ L∞(0, T,H1
|Γ+

(Ω+)),

• ũ+ ∈ L∞(0, T, (H1
|Γ+

(Ω+))2), (ũ+)′ ∈ L∞(0, T, [L2(Ω+)]2),

• θ̃+, φ̃+ ∈ L∞(0, T, L2(Ω+)) ∩ L2(0, T,H1
|Γ+

(Ω+)), and solve the variational problem

(P̃0)


ρ+〈ũ′+, û+〉′Ω+

+ ρ+〈w̃′+, ŵ+〉′Ω+
+ ρ+b+(w̃′+, ŵ+)′ + a+(w̃+, ŵ+) + λ+c+(φ̃+, û+)

−λ+b+(θ̃+, ŵ+) + ρ+〈φ̃+, φ̂+〉′Ω+
+ k+b+(φ̃+, φ̂+)− λ+d+(ũ′+, φ̂+)

+ρ+〈θ̃+, θ̂+〉′Ω+
+ λ+b+(w̃′+, θ̂+) + k+b+(θ̃+, θ̂+) +N+(ũ+, w̃+, û+, ŵ+) = 0,

for all (û+, ŵ+, φ̂+, θ̂+) ∈ (H1
|Γ+

(Ω+))2×H2
|Γ+

(Ω+)×H1
|Γ+

(Ω+)×H1
|Γ+

(Ω+), with the initial
conditions:

ũ+(0) = u∗+, ũ
′
+(0) = u∗∗+ , w̃+(0) = w∗+, in Ω+ (16)

w̃′+(0) = w∗∗+ , φ̃+(0) = φ∗+, θ̃+(0) = θ∗+ in Ω+. (17)
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Proof. Let û+ ∈ D(Ω+)∩ (H1
|Γ+

(Ω+))2, ŵ+ ∈ D(Ω+)∩H2
|Γ+

(Ω+), φ̂+ ∈ D(Ω+)∩H1
|Γ+

(Ω+) and

θ̂+ ∈ D(Ω+) ∩H1
|Γ+

(Ω+). We apply the variational problem (7) with the test functions:

û =

{
û+ in Ω+,

û− =
(
û+1|Σ, δû+2|Σ

)
in Ω−,

ŵ =

{
ŵ+ in Ω+,

ŵ− = ŵ+|Σ + δz∂nŵ+|Σ in Ω−,

φ̂ =

{
φ̂+ in Ω+,

φ̂− = φ̂+|Σ in Ω−,
θ̂ =

{
θ̂+ in Ω+,

θ̂− = θ̂+|Σ in Ω−.

In the limit study of the problem (Pδ), only the behavior of the forms Dδ
−δa

δ
−(wδ−, ŵ−) and

Dδ
−δN

δ
−(uδ−, w

δ
−, û−, ŵ−) change from the high stiff layer case. Using same arguments as for

the justification of the limit of kδ−δb
δ
−(θδ−, θ̂−) in the proof of Theorem 1, we can show that

Dδ
−δa

δ
−(wδ−, ŵ−) goes to zero, as δ goes to zero in D′(0, T ). Let us focus on the behavior of

Dδ
−δN

δ
−(uδ−, w

δ
−, û−, ŵ−) and prove that its limit is equal to zero in D′(0, T ). We start by

investigating the first part of this form. Using the same notations as for the proof of Theorem 1,

recalling the fact that Dδ
−δ =

δ1−aE−
1− ν2

−
, using Hölder inequalities, we obtain, for ζ(t) ∈ D(]0, T [) :

∣∣∣∣∣∣
T∫

0

(
Dδ
−δ

∫
Ω−

Aδ(uδ, wδ)∂xwδ−∂xŵ−dxdz

)
ζ(t)dt

∣∣∣∣∣∣
=

∣∣∣∣∣∣
T∫

0

(
1

1− ν2
−

∫
Ω−

(√
δ1−aE−Aδ(uδ, wδ)

)(√
δ1−aE−∂xw

δ
−

)
∂xŵ−dxdz

)
ζ(t)dt

∣∣∣∣∣∣
≤ C

1− ν2
−

∥∥∥√δ1−aE−Aδ(uδ, wδ)
∥∥∥
L∞(0,T,L2(Ω−))

∥∥∥√δ1−aE−∂xw
δ
−

∥∥∥
L∞(0,T,L6(Ω−))

∥∥∂xŵ+|Σ
∥∥
L3(Ω−)

,

where C is a positive constant independent of δ. Owing to the Proposition 1, we deduce that∥∥∥√δ1−aE−Aδ(uδ, wδ)
∥∥∥
L∞(0,T,L2(Ω−))

is bounded independently of δ. Besides,
∥∥∥∂xŵ+|Σ

∥∥∥
L3(Ω−)

doesn’t depend on δ. It remains then to show that the limit of
∥∥∥√δ1−aE−∂xw

δ
−

∥∥∥
L∞(0,T,L6(Ω−))

vanish as δ goes to zero, which will essentially be done by making use of Lemma 2. Indeed,
the Proposition 5 shows that wδ− is bounded independently of δ in L∞(0, T, L2(Ω−)), thus,
up to a subsequence, wδ− −→ w0 weakly* in L∞(0, T, L2(Ω−)). Moreover, from the a priori

estimates of Proposition 1, we get that
√
δ1−aE−w

δ
− is bounded in L∞(0, T,H2(Ω−)), which

implies the boundedness of
√
δ1−aE−∂xw

δ
− in L∞(0, T,H1(Ω−)). So, up to a subsequence,√

δ1−aE−∂xw
δ
− −→ w1 weakly* in L∞(0, T,H1(Ω−)). Using a compactness argument, we obtain√

δ1−aE−∂xw
δ
− −→ w1 strongly in L∞(0, T,H1−ε(Ω−)) for all ε > 0. By the Sobolev embedding

H1−ε(Ω−) ↪→ L
2
ε (Ω−), we deduce that

√
δ1−aE−∂xw

δ
− −→ w1 strongly in L∞(0, T, Lp(Ω−)), for

all p ≥ 1. Using Lemma 2, we deduce that w1 = 0 and consequently, the right-hand side of the
above inequality goes to zero as δ → 0.

In the same manner, using same arguments, we show that all the other parts of the nonlinear
form Dδ

−δN
δ
−(uδ−, w

δ
−, û−, ŵ−) goes to zero as δ → 0. By adopting a similar formulation as for

the inequality above, it suffices to show, in addition, that
√
δ1−aE−δ

−1∂zw
δ
− converges to zero
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in L∞(0, T, L6(Ω−)) when δ → 0, which follows from the Proposition 2, the consequences of
Proposition 1 and from the Sobolev embeddings.

Remark 6. As far as concern the boundary value problem associated with the above asymptotic
model, it is described by the same equations of motion on Ω+ and clamped boundary conditions
on Γ+ as those identified in the case of a high rigid stiffener. Nevertheless, the difference lies in
the limit initial conditions (16) and the new approximate boundary conditions on the interface
Σ, which in the case of the moderately rigid stiffener read:

• New approximate boundary conditions on Σ× (0, T ):

tτC [ε(ũ+) + f(∇w̃+)]n = 0, tnC [ε(ũ+) + f(∇w̃+)]n = 0,

D+ [∆w̃+ + (1− ν+)B1w̃+] = 0,

D+ [∂n∆w̃+ + (1− ν+)∂τB2w̃+]− ρ+∂nw̃
′′
+ − C [ε(ũ+) + f(∇w̃+)]n.∇w̃+ + λ+∂nθ̃+ = 0,

k+∂nθ̃+ + λ+∂nw̃
′
+ = 0, k+∂nφ̃+ − λ+ũ

′
+n = 0.

Note that in the expression of these new boundary conditions, neither the Thermal effect nor
the mechanical effect of the stiffener are taken into account. The influence of the layer is here
asymptotically negligible in comparison with the effect obtained for the high stiff layer case. This
conclusion is in accordance with the physical intuition: the material constituting the coating is
not sufficiently rigid, so its effect on the deformation of the plate vanish.

5 Conclusion

In this paper, we have modelled the behavior of reinforced plate with an insulating thin stiff
layer on a portion of its boundary. Using a variational asymptotic approach, we have studied
the asymptotic behavior of this structure when the thickness of the stiffener approaches zero.
We have identified asymptotic models that reflect the effect of this latter on the plate, according
to its rigidity: very stiff or moderately stiff. In both cases, the thermal effect of this inserted
body doesn’t appear in the asymptotic model, which is in concordance with the physical intu-
ition, because its constitutive material is insulating. Nevertheless, its mechanical effect is taken
into account only when it is very stiff. For a moderately rigid material, neither thermal nor
mechanical effect of the stiffener appear in the limit model. As a perspective, the question of
well-posedness of the asymptotic model obtained in this paper, which is rather delicate, repre-
sents a matter of further investigation and elaboration in a forthcoming paper. The idea consists
in trying to adapt the analysis carried out in [8], for a single plate. Besides, one of challenging
other questions, which motivated the modeling we have carried out here is also the numerical
analysis of the obtained model. Finally, let us notice that the asymptotic analysis we have
described here is of wide applicability: many extensions may be made to other elastic models
and other geometrical configurations.
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