
The approximate solution of one dimensional

stochastic evolution equations by meshless methods

Mahdi Jalili, Rezvan Salehi∗

Department of Applied Mathematics, Faculty of Mathematical SciencesTarbiat Modares
University, P.O. Box 14115-134, Tehran, Iran

Email(s): mahdi jalili@modares.ac.ir, r.salehi@modares.ac.ir

Journal of Mathematical Modeling

Vol. 9, No. 4, 2021, pp. 599-609. Research Article JMM
�
�

�
�

�
�

�
�

Abstract. In this article, we develop an iterative scheme based on the meshless methods to sim-
ulate the solution of one dimensional stochastic evolution equations using radial basis function
(RBF) interpolation under the concept of Gaussian random field simulation. We use regular-
ized Kansa collocation to approximate the mean solution at space and the time component is
discretized by the global θ-weighted method. Karhunen-loève expansion is employed for simu-
lating the Gaussian random field. Statistical tools for numerical analysis are standard deviation,
absolute error, and root mean square. In this work, we solve two major problems for showing
the convergence, and stability of the presented method on two problems. The first problem is
the semilinear stochastic evolution problem, and the second one is stochastic advection-diffusion
model with different control values.
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1 Introduction

The randomness of nature can be seen in every particle and most of these particles have a
dynamic where mathematician can model these dynamics by partial differential equations. Real-
world dynamical systems have a stochastic source which these models are so-called stochastic
partial differential equations (SPDEs). A lot of challenges exist through modeling and simulation
of SPDEs but the most important and hard challenge is finding an analytical solution to SPDEs.
In the last two decades, the usability of numerical methods to approximate the solution of SPDEs
has been shown extreme growth.

In the last two decades, many numerical methods have been employed to find the mean
solution of SPDEs where some variations of them are finite difference, finite element, chaos
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expansions, and spectral methods. Any of these numerical methods need to have a connection
between the world of approximation and the space of the stochastic process.

The area of meshless methods structured on reproducing kernel Hilbert space (RKHS) has
a strong connection with the stochastic process since all of the stochastic process defined on a
probability space like (Ωx,Fx,Fx) filtered on time by Ft can be generated by spatial covariance
functions selected from RBFs. For more details see [1]. Additionally, the Karhunen-Loève ex-
pansion (approach) for simulation of stochastic process needs the Mercer representation theorem
which is defined on RKHS.

Various numerical methods are applied to find the approximate solution of one dimensional
SPDEs. For instance, finite difference methods (FDM), finite element methods (FEM) [10,11,14],
method of lines (MOL) [16] and spectral chaos expansion (SCE) [9]. But these methods have
some disadvantages like dimensionality and non-stability. The main objective of using meshless
methods is to handle these problems. Previous works on meshless methods for approximate
solution of SPDEs can be found in [2–7].

In this paper, we present a straightforward form of the collocation method based on RBF
interpolation to approximate the solution of SPDEs. After discretizing the problem in time, we
apply the regularized Kansa approach to solve the obtained stochastic boundary-value problem.
Indeed, we simulate the stochastic part by Karhune-Loève expansion and develop an iterative
scheme to approximate the solution of SPDE. Then by using the exact solution and concepts of
Gaussian random field (GRF) and employing statistical tools, we numerically present conver-
gence, stability, and efficiency of our method.

The paper is organized as follows. In Section 2, we discuss the main problem and present
stochastic descriptions. In Section 3, we discuss the previous meshless methods in detail. In
Section 4, we present the regularized Kansa collocation method for solving boundary-value
problems. In Section 5, we develop an iterative scheme for applying discussed method in
Section 4 on SPDEs. in Section 6, we solve some numerical examples and report some results.
In Section 7, we note some major conclusions of the current work.

2 Object problem

In this work, we study the one dimensional stochastic evolution equations formulated as:

∂U

∂t
= AU + f + σ

∂W

∂t
, on [a, b]× [0, T ], (1)

where A is linear differential operator, f is deterministic source function, W is time-spatial
Q-Wiener process, and σ is noise level. The Q-Wiener process has major properties as defined
below.

Definition 1. A Rd-valued stochastic process {W (t,x) : t ≥ 0} is a Q-Wiener process if:

1. W (0,x) = 0;

2. W (t,x) is a continuous function (R+)d → Rd for each trajectory (sample path) ω ∈ Ωx;

3. W (t,x) is Ft-adapted and W (t,x)−W (s,x) is independent of Fs for s < t;
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4. W (t,x)−W (s,x) ∼ Normal(0, (t− s)Q(x)), ∀ 0 ≤ s ≤ t.

Theoretical aspects of the Q-Wiener process are very useful but in applied settings, we need
to numerically discretize the process. Some of the numerical approaches to simulate the Q-
Wiener process are the Fourier series, Mercer representation, and Karhunen-Loève expansion.
In this work, we choose Karhunen-Loève expansion since it has very fast convergence in Hilbert
space. Also, we set all of the theory in RKHS, because of the good results of the eigenvalue
structure of Karhunen-Loève expansion.

Theorem 1. [15] Let W (t,x) be the Q-Wiener process. Then Karhunen-Loève expansion
(approach) of W (t,x) is:

W (t,x) =

∞∑
j=1

√
qjψj(x)βj(t), a.s., (2)

where βj(t) is independent identical distributed(i.i.d) Ft-Brownian motions, qj and ψj(x) are
corresponding eigenvalues and eigenfunctions, respectively.

The spatial covariance function Q in the definition of Q-Wiener process can be any RBF but
to have similarity with literature we set the inverse multiquadric function for coloring Wiener
process.

3 Previous works

Meshless methods have been widely used in various areas such as interpolation, finding solution
of ODEs and PDEs, artificial intelligence, and statistical smoothing. Kansa collocation method
which was first introduced by Kansa in [12] is one of the fastest and most flexible methods
for solving ODE/PDE problems based on RBF interpolation. The firstly introduced Kansa
collocation method is named asymmetric Kansa and applied for a strong form approximation
of problems. Fasshauer in [8] developed a symmetric Kansa collocation based on Hermite-
RBF interpolation which has some good and bad properties. The most important advantage of
symmetric Kansa collocation is the existence of error bounds. But this method needs the double
continuous RBFs and therefore the collocation matrix is built based on the double evaluation
of differential operator.

The well-posedness of the asymmetric Kansa method is not guaranteed because the inversion
procedure is ill-conditioned for small or big shape parameters. Besides this method can not be
applied for strictly conditional positive definite RBFs. Hence we develop a regularized Kansa
method for overcoming these problems and leading good calibrated results.

4 Regularized Kansa collocation method

In this section, we present the main motivation of our methodology for solving SPDEs. Let the
multivariate monomial product basis P for Rd be denoted by

∏m−1
P and set

M =

(
m+ d− 1

d

)
= dim(

m−1∏
P

).
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The interest in RBFs comes from the ability of RBF interpolation to approximate a wide
range of unknown functions. Actually, the RBF interpolation tries to reconstruct F in the way:

F (x) ≈
N∑
j=1

cjΦ(x,xj) +

M∑
k=1

dkP (x).

Added polynomial terms to RBF interpolation has two major goals:

1. Passing ill-conditioning problem of inversion at collocation matrix;

2. Global use of conditionally strictly positive definite RBFs.

Due to adding this polynomial term and to ensure the well-posedness, the following condition,
known as the orthogonality condition, should be added:

N∑
k=1

ckP (xk) = 0.

Hence the matrix form of interpolation can be denoted as:[
K P
PT O

] [
c
d

]
=

[
F
0

]
, (3)

where K := Φ(xi,xj)|N,N
i,j=1, the matrix P is defined by [P (xk)] for k = 1, . . . , N , and O and 0

are M ×M zero matrix and M × 1 zero vector, respectively.
Now let us apply these setting to a general form of boundary value problem (BVP){

Au = f, in Ω,

Bu = g, on ∂Ω,
(4)

where the differential and boundary operators A and B are continuously defined and f , g are
source functions for interior and boundary domains, respectively. After applying operators on
the interpolation matrix (3), we obtain the collocation system as: AΦ(xi,xj)|

Nρ,N
i,j=1 AP (xj)|

Nρ
j=1

BΦ(xi,xj)|N,N
i=Nρ+1,j=1 BP (xj)|Nj=Nρ

(P (xj)|Nj=1)T O

[c
d

]
=

fg
0

 . (5)

5 Temporal iterative scheme

In the last section, we present a strong form for solving steady-state BVPs but the real-world
problems are dynamic. Hence for the numerical solution to these problems, we need to discretize
the problem temporally. Some time discretization schemes are forward Euler, backward Euler,
Crank-Nicolson schemes which in this work for having a general form of these schemes, we use
the global θ-weighted method.
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By taking nth instant of evolution as tn we can discretize (1) as:

Un+1 − Un

δt
= (θAUn+1 + (1− θ)AUn) + fn+1 + σ

Wn+1 −Wn

δt
,

where Un+1 := U(tn+1,x) and so on. As we discussed in the Definition 1, we can set Wn+1 −
Wn = ξn+1, where ξn+1 ∼ Normal(0, δtσ2Q) in which Q is the selected covariance function on
the interior domain points. Hence, we get:

Un+1 − δtθAUn+1 = Un + δt(1− θ)AUn + fn+1 + σξn+1.

After simplification, one can obtain:

[I − δtθA]Un+1 = [I + δt(1− θ)A]Un + fn+1 + σξn+1,

and by taking Un+1 = KCn+1, we have:

[(I − δt θA)K]Cn+1 = [(I + δt (1− θ)A)K]Cn + fn+1 + σξn+1, (6)

where K is the interpolation matrix from (3) and its inversion is guaranteed. Besides, since A
is a linear operator, if we consider δt θ such that ‖δt θA‖ < 1 then the inversion of (I − δt θA)
is assured [13]. Therefore by choosing proper temporal sizes, the matrix [(I − δt θA)K] is
invertible. So by setting M := [(I − δt θA)K]−1[(I + δt (1 − θ)A)K], the tractable iterative
scheme can be rewritten as:

Cn+1 =MCn + f̃n+1 + σξ̃n+1, (7)

here f̃n+1 = [(I − δt θA)K]−1 fn+1, and ξ̃n+1 = [(I − δt θA)K]−1 ξn+1. We can show the
stability of our method by examine ρ(M) < 1 which ρ is the spectral radius.

Finally, the approximation of mean solution can be obtained by:

Ûn+1 = K?Cn+1,

where K? is N? × N interpolation matrix with N? is the quantity of test points and Cn+1 is
obtained by solving (7).

6 Numerical examples

In this section, we study two stochastic evolution equations. The simulations are implemented
in Matlab 2020b program on a Linux Intel Core i5-4200U machine with 4GB RAM. The first
considered problem is the one dimensional stochastic heat equation and the second example is
the stochastic advection-diffusion problem. A fundamental tool to measure the accuracy and
efficiency is the fill distance which is calculated as:

h = hX,Ω := sup
xj∈Ω

min
xi∈X
‖xi − xj‖2,

where X is the trial points set and Ω is computational space domain.



604 M. Jalili, R. Salehi

6.1 Gaussian random field

The ξn+1 in scheme (7) is considered as a GRF. In general form if we take a look at all of
the time duration, there exists a GRF that is simulated by ξn+1 which in application and
implementation is faster and from a probabilistic view, it is theoretically consistent. As we
mentioned in Section 2, the inverse multiquadric

Φ(r) =
1√

ε2 + r2
,

is used for simulation of GRF.

6.2 RBF selection

As we mentioned above, RKHS and particularly the native space of any RBF are special. Wend-
land in [17] described some of these spaces. In this work, our selection is the following cubic
Matèrn RBF

φ(r) = exp(−εr)(15 + 15εr + 6(εr)2 + (εr)3), ε is shape parameter

which is C6-continuous. Here, we set the shape parameter as ε := 0.165
√
N , where N is the

total number of test points.
The applied error norms to illustrate the efficiency of our method are:

L∞ := ‖E[u(t, x)− û(t, x)]‖∞,

RMS :=
1√
N
‖E[u(t, x)− û(t, x)]‖2.

In all the examples, we set M = 2, which means we use the monomials {1, x}.

Example 1. Suppose the following one dimensional stochastic heat equation

∂U

∂t
= (

∂2U

∂x2
+ f(U)) + σ

∂W

∂t
, in [0, T ]× [0, 1], (8)

where f(U) is the non-linear continuous source function. Initial value and boundary conditions
can be obtained from analytical mean solution E[U(t, x)] = 10 exp(t)x2(1−x)2. We set δt = 0.001
and absolute error, and standard deviation are calculated at different time, spatial, and statistical
realizations.

In Table 1, the numerical errors at t = 1 for different values of h and related sample paths s
are reported. The evolution of absolute mean error for different time snapshots is illustrated at
Figure 1. It is clear that if we set σ = 0, SPDE changes to PDE which we show this situation
in Figure 2. Additionally, as we mentioned above, the numerical stability of our method can be
demonstrated by eigenvalues of M which is depicted in Figure 2.

Theoretically, when the magnitude of realizations (sample paths) grows, the scheme needs
to act like the deterministic situation. Indeed, based on mean square continuity definition of
stochastic processes, which is defined very well in [15], the regularity of the stochastic process
is assured. We show this property of our scheme in Figure 3. In simulations, we set δt = 0.01
and s = 1600. This setting is logical because when realizations go bigger, our scheme becomes
deterministic.
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Table 1: Numerical study at t = 1.0 for Example 1.

h s = sample path L∞ RMS
1
4 50 2.06137× 10−1 1.6828× 10−1

1
8 200 4.62771× 10−2 2.22171× 10−2

1
16 800 4.09351× 10−3 2.71034× 10−3

1
32 3200 7.90971× 10−4 5.65657× 10−4

0 0.2 0.4 0.6 0.8 1

x

0

1

2

3

4

5

6

7

8

L
 E

rr
o

r

10
-4

t=1

t=0.5

t=0.25

(a) Absolute mean error at t = 0.25, 0.5, 1.0
with h = 1

32 and s = 3200 for Example 1.

0 0.2 0.4 0.6 0.8 1

x

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

S
T

D

t=1

t=0.5

t=0.25

(b) Standard deviation at t = 0.25, 0.5, 1.0 with
h = 1

32 and s = 3200 for Example 1.

Figure 1: Absolute mean error and Standard deviation for Example 1 at different values.
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Figure 2: Determinstic solution error and Stability for Example 1.
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(a) Stochastic (b) Deterministic

Figure 3: Regularity in time of our method through comparison of stochastic solution with
deterministic solution for Example 1.

Table 2: Numerical study at t = 1.0 for Example 2.

h s L∞ RMS
1
4 50 5.8788× 10−1 3.38101× 10−1

1
8 200 6.9528× 10−2 2.36504× 10−2

1
16 800 9.41844× 10−3 4.87357× 10−3

1
32 3200 3.39924× 10−3 2.17714× 10−3

Example 2. Consider the stochastic reaction-diffusion equation as:

∂U

∂t
= (γ

∂2U

∂x2
− ν ∂U

∂x
) + σ∂tW,

where γ is the reaction coefficient and ν is the diffusion coefficient. The expected mean solution
or analytical mean solution is given as [16]:

E[U(t, x)] =
1√

4t+ 1
exp

(
− (x− 0.2− νt)2

γ(4t+ 1)

)
.

Through this Example, we set δt = 0.001. The computed errors for γ = 0.01 and ν = 0.6
are summarized in Table 2. Also, in Figure 4 absolute mean errors and standard deviations at
t = 0.25, 0.5, 1.0 are plotted. Additionally, the stability of our method and 15 sample paths of
the stochastic solution are shown in Figure 5.

7 Conclusion

In the present paper, a collocation method based on the RBF approximation for the numerical
solution of the one dimensional stochastic evolution equations has been proposed. The time
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Figure 4: Absolute mean error and Standard deviation for Example 2 at different values.
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Figure 5: Some of stochastic solutions and Stability for Example 2.

variable was discretized by the global θ-weighted method and meshless collocation was applied
on the space variable. The Q-Wiener process, which simulates the Gaussian random field (GRF)
of the problem, was approximated by Karhunen-Loève expansion. Inverse multiquadric (IMQ)
RBF was used as a spatial covariance function for coloring the GRF. Numerical aspects of error
analysis were computed by absolute error (L∞), standard deviation, and root mean square error
(RMS). The simplicity and strong form of our approach make this method more useful in real
world problems. The regularity in time was numerically shown and this regularity makes the
presented method statistically consistent.
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