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Abstract. In this study, alpha power Maxwell (APM) distribution is obtained by applying al-
pha power transformation, a reparametrized version of the Exp-G family of distributions, to the
Maxwell distribution. Some tractable properties of the APM distribution are provided as well.
Parameters of the APM distribution are estimated by using the maximum likelihood method.
The APM distribution is used to model a real data set and its modeling capability is compared
with different distributions, which can be considered its strong alternatives.
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1 Introduction

Statistical distributions are used for modeling data in almost every field of science. Maxwell
distribution is one of these distributions, particularly in studies involved with Physics and Chem-
istry. It was first formed for describing speeds of molecules in thermal equilibrium by Maxwell
[20]. In addition to applications in Physics and Chemistry, Tyagi and Bhattacharya [29,30] used
the Maxwell distribution for the first time in Statistics for modeling lifetime data. The Maxwell
distribution is a submodel of the generalized Weibull (GW) distribution proposed by Al-Mutairi
and Agarwal [1]. Thus, it shows some useful features of the GW distribution in terms of lifetime
testing; see Beker and Roux [5]. Some theoretical properties of the Maxwell distribution are
studied in previous works, e.g., see Arslan et al. [3] and references therein. For the sake of
brevity, these are not provided here.

The probability density function (pdf) and cumulative distribution function (cdf) of the

∗Corresponding author.
Received: 20 October 2020 / Revised: 12 March 2021 / Accepted: 13 March 2021
DOI: 10.22124/jmm.2021.17987.1553

c© 2021 University of Guilan http://jmm.guilan.ac.ir

http://jmm.guilan.ac.ir


586 N. Erdogan, K. Bagci, T. Arslan, H.E. Celik

Maxwell distribution are
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)2
)
, y > 0, σ > 0, (1)

and
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Γ(3/2)
Γ

[( y
σ

)2
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3
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]
, y > 0, σ > 0, (2)

respectively. Here, σ is the scale parameter, Γ(·) is the Gamma function and Γ(·, ·) is the
incomplete Gamma function defined as

Γ(x, s) =

∫ x

0
us−1e−udu.

Hereinafter, random variable Y following the Maxwell distribution will be denoted by Y ∼
Maxwell(σ).

As it is known, skewness and kurtosis measures are functions of the shape parameter(s).
If a distribution does not have a shape parameter, skewness and kurtosis measures take only
constant values. This result delimits the modeling capability of a distribution. For example, the
Maxwell distribution only takes values 2.0589 and 0.3217 for the skewness and kurtosis measures,
respectively. The shape parameter also gives extra flexibility to the hazard rate function (hrf)
of a distribution used in lifetime data analysis. The shape of the hrf of a distribution can
be variate based on the shape parameter(s). For example, the hrf of Maxwell distribution,
hY (y;σ) = fY (y;σ)/(1 − FY (y;σ)), can only be increasing function for different values of the
scale parameter σ. The Maxwell distribution density and hrf plots for certain values of σ are
given in Figure 1.

(a) pdf (b) hrf

Figure 1: The plots of density and hrf of the Maxwell distribution for certain values of σ.

Different forms of the Maxwell distribution have been studied in the literature. For example,
Voda [32] derived generalized Maxwell distribution by using a modified Weibull hazard rate.
Kazmi et al. [18] used a two-component mixture of the Maxwell distribution for censored data.
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Iriarte and Astorga [13] and Iriarte et al. [14] proposed the transmuted Maxwell (TM) and
Gamma-Maxwell (GM) distributions, respectively. They also provided the method of moment
(MoM) and maximum likelihood (ML) estimators of the unknown distribution parameters and
performed an application on the wind speed data. Sharma et al. [27] introduced the extended
Maxwell distribution and provided some statistical inference. Yadav et al. [33] proposed a
new generalization of the Maxwell distribution using the power transformation of the Maxwell
random variable. Sindhu et al. [28] obtained the inverted Maxwell mixture distribution. They
provided the ML and Bayesian estimations of reliability function as well. Acitas et al. [2] derived
slash Maxwell distribution and compared its modeling performance with its rivals.

There are several methods for extending/generating distribution. Lee et al. [19] summarized
these methods under some topics such as the method of differential equations, quantile function,
and transformation of random variables. Recently, Mahdavi and Kundu [21] used distribution
generating method called alpha power transformation (APT). Let FT (t) be a cdf of a random
variable T . The APT of the FT (t) for t ∈ R is

FAPT (t) =


αFT (t) − 1

α− 1
, α > 0, α 6= 1,

FT (t), α = 1.

Then, the corresponding pdf is

fAPT (t) =


lnα

α− 1
fT (t)αFT (t), α > 0, α 6= 1,

fT (t), α = 1.

The idea of the APT method is based on adding an extra parameter to the existing distribution.
This method has some useful properties and features due to its easy applicability; see Mahdavi
and Kundu [21] for further information.

It should be emphasized that the APT method is obtained by reparametrization α = exp(−λ)
of the exp-G family of distributions introduced by Barreto-Souza and Simas [4]. It is also
equivalent to the “truncated-exponential skew-symmetric” family of distributions proposed by
Nadarajah et al. [22] as stated in Jones [16]. Despite the fact that the APT method is a
reparametrized version of the exp-G family of distributions, the APT terminology will be used
in remaining of this study to be parallel to the recent literature.

In the literature, there exist many different distributions obtained by using APT method.
For example; Nassar et al. [23], Dey et al. [7], Mahdavi and Kundu [21], Dey et al. [9], Unal et
al. [31], Hassan et al. [12], Dey et al. [10], Ihtisham et al. [15] used APT method on the Weibull,
generalized Exponential, Exponential, Lindley, inverted Exponential, extended Exponential,
inverse Lindley, Pareto distributions, respectively. See also Dey et al. [8], in the context of the
Weibull distribution.

The motivation of this study comes from the improvement of the modeling capability of the
Maxwell distribution in terms of the skewness and kurtosis measures via the APT method. The
resulting distribution is called alpha power Maxwell (APM) distribution. Some properties of
the APM distribution, such as weighted representation, mixture representation, and stochastic
ordering, are shown. The ML estimations of the unknown parameters of the APM distribution



588 N. Erdogan, K. Bagci, T. Arslan, H.E. Celik

are provided. A real data set is used to show the implementation of the APM distribution
and compare its modeling performance with its strong rivals. Note that the earlier version of
this study was presented at International Conference on Data Science, Machine Learning and
Statistics (DMS-2019); see Erdogan et al. [11].

The rest of this study is organized as follows. Section 2 includes the derivation of the
APM distribution and some properties of it. Estimation of its parameters via the ML method
is provided in Section 3. A real data set is used to show the implementation of the APM
distribution in Section 4. The paper is finalized with some concluding remarks in Section 5.

2 The APM distribution

In this section, the APT method is applied to the Maxwell distribution. The resulting distribu-
tion is called alpha power Maxwell (APM), and from now on, the random variable X following
the APM distribution will be denoted by X ∼ APM(α, σ).

The pdf, cdf, survival functions, hrf, and quantile function of the APM distribution are
obtained. Then, moments of the APM distribution are given. Also, some tractable properties,
such as mixing representation, weighted representation, and stochastic ordering, are provided.

Definition 1. Let X ∼ APM(α, σ), then the random variable X has the pdf

fX(x;α, σ) =


lnα

α− 1

4
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σ

)2
exp

[
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)2
]
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Γ
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2
, 3
2

]
, x > 0, α > 0, α 6= 1,

fY (x;σ), x > 0, α = 1,

(3)
and the corresponding cdf is

FX(x;α, σ) =


α

1
Γ(3/2)

Γ
[
( xσ )

2
, 3
2

]
− 1

α− 1
, x > 0, α > 0, α 6= 1,

FY (x;σ), x > 0, α = 1.

(4)

Here, σ(> 0) is the scale parameter, and α is the shape parameter.

Proposition 1. Let α→ 1, then the APM distribution tends to the Maxwell distribution, i.e.

lim
α→1

fX(x;α, σ) −→ fY (x;σ).

Proof. It follows from lim
α→1

lnα

α− 1
= 1 and lim

α→1
αFY (y;σ)=1. See also Barreto-Souza and Simas [4],

p. 86, in the context of the exp-G famiy of distributions.

Definition 2. The survival function and hrf of the APM distribution, i.e. SX(x;α, σ) and
hX(x;α, σ), are

SX(x;α, σ) =

 α
α−1

(
1− α

1
Γ(3/2)

Γ
[
( xσ )

2
, 3
2

]
−1
)
, x > 0, α > 0, α 6= 1,

SY (x;σ), x > 0, α = 1
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and

hX(x;α, σ) =


4

σΓ(1/2) ln(α)
(
x
σ

)2
exp

[
−
(
x
σ

)2] α
1

Γ(3/2)
Γ[( xσ )2

, 32 ]−1

1−α
1

Γ(3/2)
Γ[( xσ )2

, 32 ]−1
, x > 0, α > 0, α 6= 1,

fY (x;σ)
SY (x;σ) , x > 0, α = 1,

respectively. Here, SY (x;σ) is survival function of the Maxwell distribution, i.e. 1− FY (x;σ).

In Figure 2, the pdf and hrf of the APM(α, σ) distribution are plotted for the different values
of shape parameter α, where σ is taken to be 1 for the sake of simplicity.

(a) pdf (b) hrf

Figure 2: The shape of density and hrf of the APM(α, σ) distribution for different values of the
shape parameter; σ = 1.

Note that, in Figure 2(b), the Maxwell distribution is represented by dashed line (−−). It
can be easily seen from Figure 2(b) that the shape parameter provides flexibility to the hrf of
the APM distribution. The shape of the hrf of the APM distribution can be concave and convex
for certain values of α. It should be realized that the hrf of the APM distribution tends to
Maxwell’s counterpart when α→ 1.

Remark 1. Note that the APM distribution tends to the Maxwell distribution when shape
paramter α equals 1. Therefore, Definitions 3-7 and Theorem 1 are obtained for α 6= 1, i.e., not
for the Maxwell distribution, for the sake of brevity.

Definition 3. The p-th quantile of the APM distribution is

xp = σ

(
Γ−
[
Γ(3/2)

ln(1 + p(α− 1))

lnα
,
3

2

]) 1
2

, 0 < p < 1, α > 0, α 6= 1,

where Γ−(·, ·) is the inverse of the incomplete Gamma function.
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Definition 4. The APM distribution is expressed as a weighted distribution given below

fX(x) =
fY (x)w(x;α)

c
,

where w(x) = αFY (x) and c = E [w(X)]. Here, c represents a normalizing constant and E[·]
denotes the expected value of it. The weight function w(X) can be increasing or decreasing
according to α > 1 or α < 1, respectively.

Definition 5. The APM distribution has the following mixture representation for α > 1:

X =

Y, with probability
(

lnα
α−1

)
,

Z, with probability 1−
(

lnα
α−1

)
,

where Y ∼Maxwell(σ) and Z have the following pdf,

fZ(z) =
lnα

α− 1− lnα
fY (z)

[
αFY (z) − 1

]
.

Definition 6.
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∫ ∞
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xrfy(x;σ)αFY (x;σ)dx

=
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4
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2
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Note that the closed-form of the expression for E(Xr) may not be straightforward. There-
fore, the values of variance (V ar[X]), expected value (E[X]), skewness (

√
β1) and kurtosis (β2)

measures of the APM distribution are tabulated for the certain values of shape parameter α;
see Table 1.

Table 1: The E[X], V [X],
√
β1 and β2 values of the APM distribution for the certain values of

α; σ = 0.5.

α
0.1 0.5 0.99 1.001 2 5

E[X] 0.4252 0.5185 0.5635 0.5643 0.6107 0.6704
V ar[X] 0.0404 0.0530 0.0566 0.0567 0.0585 0.0580√

β1 1.1018 1.6107 2.0508 2.0597 2.7772 4.4553
β2 0.2378 0.2997 0.3215 0.3218 0.3347 0.3366

It can be seen from the Table 1 that when α approaches to 1, the corresponding measures
of the APM distribution converges to those of the Maxwell distribution; i.e. E[X] = 0.5642,
V ar[X] = 0.0567,

√
β1 = 2.0589, β2 = 0.3217. Also, for an illustration, the skewness and

kurtosis measures of the APM distribution are plotted in Figure 3(a) - 3(b), respectively.
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(a) skewness (b) kurtosis

Figure 3: The plots for the skewness and kurtosis measures of the APM distribution for different
values of the shape parameter α.

Remark 2. Notice that the Maxwell distribution has only a scale parameter, i.e., it does not
have a shape parameter; therefore, it has deficiencies in terms of the skewness and kurtosis
measures. Thus, the Maxwell distribution cannot adequately model data having more skewness
and/or kurtosis values than its. In contrast to the Maxwell, the APM distribution has one shape
parameter; therefore, its skewness and kurtosis measures take values in a broader range than the
Maxwell counters.

Definition 7. The pdf, cdf, hrf, and mean residual life function(mrlf) of a positive random
variable X are represented by fX(.), FX(.), hX(.) and mX(.), respectively, and those of another
positive random variable Y are represented by fY (.), FY (.), hY (.) and mY (.), respectively. Then,
the following definitions are given.

• The stochastic order (X ≤(sto) Y ) if FX(x) ≤ FY (x) for all x;

• The hazard rate order (X ≤(hro) Y ) if hX(x) ≤ hY (x) for all x;

• The mean residual life order (X ≤(mrlo) Y ) if mX(x) ≤ mY (x) for all x;

• The likelihood ratio order (X ≤(lro) Y ) if fX(x)
fY (x) decrease in x.

Remark 3. Let X and Y be random variables following any distributions. Then, [X ≤(lro)

Y ]⇒ [X ≤(hro) Y ]⇒ [X ≤(mrlo) Y ]⇒ [X ≤(sto) Y ] ; see Shaked and Shanthikumar [26].

Theorem 1. Let X1 ∼ APM(α1, σ) and X2 ∼ APM(α2, σ). If α1 < α2, then [X1 ≤(lro) X2],
[X1 ≤(hro) X2], [X1 ≤(mrlo) X2], and [X1 ≤(sto) X2].

Proof. For any x, the likelihood ratio order is

fX1(x)

fX2(x)
=

(
α2 − 1

α1 − 1

)(
lnα1

lnα2

)(
α1

α2

) 1
Γ(3/2)

Γ
[
( xσ )

2
, 3
2

]
,
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r(x) =
d

dx
ln

(
fX1(x)

fX2(x)

)
=

4

σΓ(1/2)

(x
σ

)2
exp

(
−
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σ

)2
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ln

(
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)
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Now, r(x) < 0 if α1 < α2 and hence X1 ≤(lro) X2. The other orderings are immediately following
from the Remark 3.

3 Parameter estimation

In this section, the ML estimations for parameters α and σ of the APM distribution are provided.
The ML methodology is based on the maximization of the likelihood or log-likelihood (lnL)
function. Let x1, x2, . . . , xn be a random sample from the APM distribution. Then, the lnL
function of the APM distribution is

lnL = n ln

(
4√
π

)
+ n ln

(
lnα

α− 1

)
− n lnσ + 2

n∑
i=1

ln
(xi
σ

)
−

n∑
i=1

(xi
σ

)2

+
lnα

Γ(3/2)

n∑
i=1

Γ

[(xi
σ

)2
,
3

2

]
.

(5)

The estimate values of the α and σ, points in which the lnL function attains its maximum, are
the solutions of likelihood equations

∂lnL

∂α
=

n

α lnα
− n

α− 1
+

1

α

1

Γ(3/2)

n∑
i=1

Γ

[(xi
σ

)2
,
3

2

]
= 0, (6)

and
∂lnL

∂σ
= −3n

σ
+

2

σ

n∑
i=1

(xi
σ

)2
− 2 lnα

σ4Γ(3/2)

n∑
i=1

x3
i exp

[
−
(xi
σ

)2
]

= 0, (7)

respectively.

Likelihood equations (6) and (7) can not be solved explicitly since they are nonlinear func-
tions of parameters α and σ. Therefore, iterative methods such as Newton-Raphson (NR) should
be utilized to obtain the solution of these equations simultaneously.

The two-dimensional NR algorithm consists of the following steps.

Step 1. Set k = 0, then give the initial values of the parameters, i.e., α0 and σ0.

Step 2. Obtain the values αk+1 and σk+1 by using the equation

αk+1

σk+1

 =

αk
σk

−

∂2 lnL

∂α2
(αk, σk)

∂2 lnL

∂α∂σ
(αk, σk)

∂2 lnL

∂σ∂α
(αk, σk)

∂2 lnL

∂σ2
(αk, σk)


−1 

∂ lnL

∂α
(αk, σk)

∂ lnL

∂σ
(αk, σk)

 .

Step 3. Repeat Step 1 and Step 2 for (k = 1, 2, . . . ) until |αk+1 − αk| ≤ ε and |σk+1 − σk| ≤ ε.
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Here, elements of the Hessian matrix which includes second partial derivates of the lnL
concerning the α and σ are

∂2lnL

∂α2
=

n

(α− 1)2
− n

α2(lnα)2
− n

α2 lnα
− 1

α2Γ(3/2)

n∑
i=1

Γ

[(xi
σ

)2
,
3

2

]
,

∂2lnL

∂σ2
=

3n

σ2
− 6

σ2

n∑
i=1

(xi
σ

)2
+

8 lnα

σ5Γ(3/2)

n∑
i=1

x3
i exp

[
−
(xi
σ

)2
]

− 4 lnα

σ7Γ(3/2)

n∑
i=1

x5
i exp

[
−
(xi
σ

)2
]
,

and
∂2lnL

∂σ∂α
= − 2

ασ4Γ(3/2)

n∑
i=1

x3
i exp

[
−
(xi
σ

)2
]
.

Remark 4. To find the ML estimates of parameters α and σ which the lnL function in (5)
attains its maximum, optimization functions such as fminunc and fminsearch that are available
in MATLAB can also be used. However, as stated in Jones and Naufaliy [17], “the log-likelihood
surface is not always very well behaved since one or more parameters of the distributions are
made to depend on covariates. Therefore optimisation functions should be run from several
starting points in order to ensure that the global maximum of the likelihood is found.” Using a
population-based method, e.g., the genetic algorithm, particle swarm, simulated annealing, can
also be recommended to alleviate this problem. These optimization functions are also available
in MATLAB.

4 Application

In this section, a real data set is modeled by using the APM distribution. Then, the modeling
performance of the APM distribution is compared with its strong alternatives, which can be
the TM proposed by Iriarte and Astorga [13] and the GM introduced by Iriarte et al. [14]
distributions. Note that alpha power transformed extended exponential (APEE) distribution
from Hassan et al. [12] is also considered in the application to make comparisons complete.

In the comparisons, information criterion lnL, and goodness-of-fit measures, e.g., Kolmogorov-
Smirnov (KS), Cramér-von Mises (CvM), Anderson Darling (AD), root-mean-squared error
(RMSE), and coefficient of determination (R2), are considered. According to these criteria, the
smaller values of the KS, CvM, AD, and RMSE, and bigger values of the lnL and R2 imply bet-
ter modeling performance. The ML method is performed to obtain estimates of the unknown
distribution parameters via the NR procedure given in Section 3 and optimization function
fminunc available in MATLAB.

In the application part of the study, data set including 100 observations on breaking stress
of carbon fibres (in GBA) is considered. The breaking stress data set is taken from the Nichols
and Padgett [24] and given in Table 2.
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Table 2: The values for the brekaing stress of carbon fibres (in GBA).

0.39 0.81 0.85 0.98 1.08 1.12 1.17 1.18 1.22 1.25 1.36 1.41 1.47 1.57 1.57
1.59 1.59 1.61 1.61 1.69 1.69 1.71 1.73 1.80 1.84 1.84 1.87 1.89 1.92 2.00
2.03 2.03 2.05 2.12 2.17 2.17 2.17 2.35 2.38 2.41 2.43 2.48 2.48 2.50 2.53
2.55 2.55 2.56 2.59 2.67 2.73 2.74 2.76 2.77 2.79 2.81 2.81 2.82 2.83 2.85
2.87 2.88 2.93 2.95 2.96 2.97 2.97 3.09 3.11 3.11 3.15 3.15 3.19 3.19 3.22
3.22 3.27 3.28 3.31 3.31 3.33 3.39 3.39 3.51 3.56 3.6 3.65 3.68 3.68 3.68
3.7 3.75 4.2 4.38 4.42 4.7 4.9 4.91 5.08 5.56

The ML estimates of the unknown parameters for the APM, TM, and GM distributions are
given in Table 3. The values of the lnL and goodness-of-fit measures of the APM, TM, and GM
distributions are also given in Table 3.

Table 3: The ML estimates of the parameters along with the values of the lnL and goodness-of-fit
measures for each of the distribution.

Parameter estimates Comparison criteria

Distribution α̂ β̂ γ̂ θ̂ λ̂ σ̂ lnL KS CvM AD RMSE R2

APM 2.7401 — — — — 2.0751 -141.2245 0.0593 0.0611 0.3739 0.0241 0.9929
GM 1.1814 — — 0.2194 — — -141.4539 0.0722 0.0884 0.4482 0.0284 0.9902
TM — — — 0.4473 -0.4155 — -141.2552 0.0633 0.0681 0.3879 0.0253 0.9922

APEE 319.9195 143.0375 1.4600 — — — -142.6702 0.0874 0.1349 0.6510 0.0352 0.9850

The Hessian matrix of the model at the estimated parameter values α̂ and σ̂ is
∂2 lnL

∂α2
(α̂, σ̂)

∂2 lnL

∂α∂σ
(α̂, σ̂)

∂2 lnL

∂σ∂α
(α̂, σ̂)

∂2 lnL

∂σ2
(α̂, σ̂)

 =

[
−1.0556 −11.5910
−11.5910 −176.1922

]
, (8)

and determinant of the Hessian matrix equals to 51.6295. As stated Example 7.2.12 p. 322 in
Casella and Berger [6], lnL(α, σ) has a local maximum at (α̂, σ̂) if following conditions hold

a.
∂

∂α
lnL(α, σ)

∣∣∣∣
α=α̂,σ=σ̂

= 0 and
∂

∂σ
lnL(α, σ)

∣∣∣∣
α=α̂,σ=σ̂

= 0;

b.
∂2

∂α2
lnL(α, σ)

∣∣∣∣
α=α̂,σ=σ̂

< 0 and
∂2

∂σ2
lnL(α, σ)

∣∣∣∣
α=α̂,σ=σ̂

< 0;

c.
∂2

∂α2
lnL(α, σ)

∂2

∂σ2
lnL(α, σ)−

(
∂2

∂α∂σ
lnL(α, σ)

)2
∣∣∣∣∣
α=α̂,σ=σ̂

> 0.

It is clear from the Hessian matrix given in (8) that conditions (a)-(c) have been satisfied. Note
that the NR procedure given in Section 3 and also optimization function fminunc available in
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MATLAB are run from several starting points to ensure that the value of lnL(α̂, σ̂), −141.2245, is
the global maximum.

According to the lnL values given in Table 3, the APM distribution can be considered as an
alternative to the TM and GM distributions since it has larger lnL values than its rivals. Also,
it can be concluded that the APM distribution is preferable over the TM and GM distributions
when goodness-of-fit measures are taken into account. Note that Qian [25] used two-parameter
exponentiated exponential (EE) and three-parameter exponentiated Weibull (EW) distributions
to model breaking stress data. The lnL values of the EE and EW distributions are obtained as
-146.1823 and -141.3320, respectively.

The fitting performance of the APM distribution is illustrated in Figure 4(a). The surface
plot for the lnL function of the APM distribution for the data set considered in the application
is given in Figure 4(b). It is clear from Figure 4(b) that the ML estimates of parameters α and
σ are the points on which the lnL function attains its maximum.

(a) fitted cdf plot (b) lnL surface plot

Figure 4: The fitted cdf and lnL surface plots of the APM distribution.

5 Conclusions

In this paper, the APM distribution, which is flexible for modeling unimodal positive skew data
sets, is obtained. Actually, this study is motivated by the extensive use of the Maxwell distribu-
tion in Physics and Statistics. It is clear that the generalization of the Maxwell distribution, as
the APM distribution, provides more flexibility to analyze lifetime data. Some statistical prop-
erties of the APM distribution are obtained. The ML method is used in estimating unknown
parameters of the APM distribution. Results in an application show that the APM distribution
is preferable over its strong rivals.
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