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Abstract. In this paper, we study the bonus-malus model denoted by BMk(n). It is an irre-
ducible and aperiodic finite Markov chain but it is not reversible in general. We show that if
an irreducible, aperiodic finite Markov chain has a transition matrix whose secondary part is
represented by a nonnegative, irreducible and periodic matrix, then we can estimate an explicit
upper bound of the coefficient of the leading-order term of the convergence bound. We then
show that the BMk(n) model has the above-mentioned periodicity property. We also determine
the characteristic polynomial of its transition matrix. By combining these results with a previ-
ously studied one, we obtain essentially complete knowledge on the convergence of the BMk(n)
model in terms of its stationary distribution, the order of convergence, and an upper bound of
the coefficient of the convergence bound.

Keywords: Bonus-malus system, Markov chains, convergence to stationary distribution, the Perron-

Frobenius theorem.
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1 Introduction

For an irreducible, aperiodic finite Markov chain, the spectral properties of its transition matrix
are closely related with its asymptotic behavior. Indeed, such a matrix has the leading simple
eigenvalue 1 and an associated positive eigenvector which, after normalizing, gives a unique
stationary distribution. In addition, the second largest eigenvalues, more precisely their common
absolute value and the maximal multiplicity in the minimal polynomial, determine the order
of convergence to the stationary distribution. However, the convergence bound includes an
indeterminacy due to a positive constant.

In this paper, we show that if the transition matrix of such a finite Markov chain has a
certain property, which we call (P (N)), then we can estimate an explicit upper bound of the
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leading-order coefficient of the convergence bound.

Next we introduce the bonus-malus finite Markov chain model BMk(n), which is named
after a system of insurance premiums (see [2] for background). We then show that the transi-
tion matrix of this model has the above-mentioned property. Furthermore, we determine the
characteristic polynomial of the transition matrix. Thus, for the bonus-malus Markov chain
model, we gain more detailed knowledge on its spectrum and the convergence to its stationary
distribution.

2 Convergence theorem for irreducible, aperiodic finite Markov
chains with periodic secondary parts

For an integer n ≥ 2, let F denote an n × n real matrix which is nonnegative, irreducible and
aperiodic. The Perron-Frobenius theorem implies the following facts:

• The matrix F has a positive eigenvalue λ∗ > 0 of algebraic multiplicity 1 such that λ∗
equals the spectral radius of F , and an associated positive eigenvector x ∈ Rn, x > 0.

• The transpose of F , denoted by F T , also has λ∗ as an eigenvalue and an associated positive
eigenvector u ∈ Rn, u > 0.

• We normalize x = (xi) and u = (ui) such that ‖x‖1 =
∑n

i=1 xi = 1 and uTx =
∑n

i=1 uixi =
1.

• Suppose furthermore that F is a column stochastic matrix, then we have λ∗ = 1 and
u = (1, 1, . . . , 1)T .

Proposition 1. Keeping the above notation, let W1(F ) be the eigenspace of F associated to
λ∗; equivalently, W1(F ) is the one-dimensional subspace in Rn spanned by x, and let W2(F ) be
the hyperplane in Rn orthogonal to u; namely, W2(F ) =

{
ξ ∈ Rn

∣∣ uT ξ =
∑
uiξi = 0

}
. Then,

identifying F as a linear transformation on Rn, both W1(F ) and W2(F ) are invariant under the
action of F , and we have a direct sum decomposition Rn = W1(F )

⊕
W2(F ); equivalently, for

each i = 1, 2 the restriction of F to Wi(F ), denoted by Fi, is a linear transformation of Wi(F )
and F = F1

⊕
F2. Clearly F1 = λ∗idW1(F ). We call F2 the secondary part of F . If additionally

F is column stochastic, then λ∗ = 1 and W2(F ) = {ξ ∈ Rn |
∑
ξi = 0} as noted above.

Proof. Consider the rank-one n × n matrix P = xuT . Then P is idempotent and P commutes
with F . Indeed, P is idempotent because P 2 = x(uTx)uT = xuT = P . Next FP = FxuT =
λ∗xu

T . Since F Tu = λ∗u, we have uTF = λ∗u
T . Hence, PF = xuTF = λ∗xu

T . Thus
FP = PF . Therefore we have an F -invariant direct sum decomposition Rn = Im (P )

⊕
Ker (P ).

Clearly Im (P ) = W1(F ). Hence, if we show that Ker (P ) = W2(F ) then we are done. Let
ξ ∈ Ker (P ). Then Pξ = x(uT ξ) = 0. Since x > 0, we have uT ξ = 0. Hence ξ ∈ W2(F ). The
converse is also true. Thus Ker (P ) = W2(F ). This completes the proof.

Now consider the following property for nonnegative, irreducible and aperiodic matrices. Let
F and F2 be as in Proposition 1. Let n ≥ 3 and let N denote an integer such that 2 ≤ N ≤ n−1.



On the spectral properties and convergence of the bonus-malus Markov chain model 575

We say that F has property (P (N)) if the secondary part F2 is represented by an (n−1)×(n−1)
matrix which is nonnegative, irreducible and periodic with period N . In the next section we
present an example of a matrix which has this property.

Assume that F has property (P (N)). Let ϕ(t) denote the characteristic polynomial of F ,
and ψ(t) the characteristic polynomial of F2. Since F = F1

⊕
F2, we have ϕ(t) = (t− λ∗)ψ(t).

The Perron-Frobenius theorem for nonnegative, irreducible and periodic matrices applied to F2

implies the following facts (See [1, Chapter XIII, §5]):

• The polynomial ψ(t) is of the form ψ(t) = trψ(tN ) for some polynomial ψ(X) ∈ R[X] and
an integer r ≥ 0.

• The polynomial ψ(X) has a unique maximal positive real root α > 0 which is simple and
0 < α1/N < λ∗.

Henceforth we consider the case where F is a transition matrix of an irreducible, aperiodic
finite Markov chain. In particular, F is column stochastic and hence its leading eigenvalue
λ∗ = 1. Then, a well-known convergence theorem for irreducible, aperiodic finite Markov chains
says that starting from any initial distribution ξ ∈ Dn, the series {F νξ}∞ν=0 converges to a unique
stationary distribution 0 < x ∈ Dn. Here Dn = {ξ ∈ R+

n | ‖ξ‖1 =
∑
ξi = 1} is the set of prob-

ability distributions on {1, 2, . . . , n}, and R+
n is the nonnegative orthant in Rn. In the following

we present a proof of the convergence theorem when F has property (P (N)). Furthermore,
we show that in this case we can gain more knowledge on the leading-order coefficient of the
convergence bound.

Recall that the L1-operator norm of an n × n complex matrix M is defined by ‖M‖1 =
max‖ξ‖1=1 ‖Mξ‖1 where the norm on the right-hand side is the L1-vector norm on Cn. It is
known that ‖M‖1 = max1≤j≤n

∑n
i=1 |Mij |. See [3, Section 5.6]. Therefore, if M is an n×n real

column stochastic matrix, then ‖M‖1 = 1.

Theorem 1. Let F be the transition matrix of an irreducible, aperiodic finite Markov chain.
Suppose that F has property (P (N)). Let P = xuT where x is the normalized positive eigenvector
of F associated to its leading eigenvalue 1 and u = (1, 1, . . . , 1)T . Then, there exists a positive
constant C > 0, and for any ε > 0 there exists an integer N ′ > 0 such that

‖F ν − P‖1 ≤ (C + ε)ρν for all ν ≥ N ′, (1)

where 0 < ρ < 1 is the second largest positive eigenvalue of F (namely, ρ = α1/N in the above
notation). Explicitly, one can take

C = 2n−1
N−1∑
l=0

|ϕ′(λl)|
−1
, (2)

where ϕ(t) is the characteristic polynomial of F , λl = ρωl, 0 ≤ l ≤ N − 1, ω = exp (2πi/N).

Proof. Considering the spectral decomposition of F , seen as a linear transformation on Cn, we
have the following formula valid for ν ≥ n

F ν =
∑

λ∈σ(F )

sλ−1∑
j=0

(
ν

j

)
λν−j(F − λIn)jπλ(F ),
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where σ(F ) ⊂ C is the set of eigenvalues of F , and sλ denotes the multiplicity of λ ∈ σ(F )
in the minimal polynomial (note that sλ is the maximal size of Jordan blocks of F associated
to λ) and πλ(F ) denotes the projection matrix onto the generalized eigenspace associated to
λ ∈ σ(F ). See [4, (6.1.39), (6.1.41)].

The set σ(F ) contains 1 and λl, 0 ≤ l ≤ N − 1. Since these eigenvalues are simple, we have
s1 = sλl = 1, 0 ≤ l ≤ N − 1. Note also that P = π1(F ). Therefore we have

F ν = P +
N−1∑
l=0

λl
νπλl(F ) +

∑
|λ|<ρ

sλ−1∑
j=0

(
ν

j

)
λν−j(F − λIn)jπλ(F ).

Hence, we have

‖F ν − P‖1 ≤ C1ρ
ν + C2

∑
|λ|<ρ

νsλ−1|λ|ν ,

where C1 =
∑N−1

l=0 ‖πλl(F )‖1 and C2 is a positive number which does not depend on ν. In
the above inequality, the second term on the right-hand side is dominated by ρν as ν tends to
infinity. For, if |λ| < ρ then νsλ−1|λ|νρ−ν = νsλ−1(|λ|/ρ)ν → 0 (as ν →∞).

Finally we show that C given by (2) is an upper bound of C1 by using the properties of the
Mahler measure of polynomials. It suffices to show that ‖πλl(F )‖1 ≤ 2n−1|ϕ′(λl)|−1 for each
0 ≤ l ≤ N − 1. We divide the proof in three steps.

Step 1: Each projection matrix πλ(F ) can be expressed as a polynomial in F with complex
coefficients via partial fraction decomposition of 1/ϕ(t). See [4, (6.1.38a), (6.1.38b)]. Since
every λl is a simple eigenvalue, the polynomial expression of πλl(F ) is πλl(F ) = clϕ̂l(F ) where
cl = Res(1/ϕ(t), λl) = 1/ϕ′(λl) and ϕ̂l(t) = ϕ(t)/(t − λl) ∈ C[t]. Note that ϕ̂l is monic and of
degree n− 1.

Step 2: For a complex polynomial f(t) of degree d, written by

f(t) = a0t
d + a1t

d−1 + · · ·+ ad = a0(t− α1) · · · (t− αd),

with a0 6= 0, the length is defined by L(f) =
∑d

i=0 |ai| and the Mahler measure is defined by

M(f) = |a0|
∏d
i=1 max{|αi|, 1} = |a0|

∏
|αi|≥1 |αi|. It is known that L(f) and M(f) satisfy the

inequality M(f) ≤ L(f) ≤ 2dM(f). See [5, Sections 6-8]. The set of roots of ϕ̂l(t) is σ(F )\{λl}.
Therefore, all the roots of ϕ̂l(t) except for 1 lie inside the unit disk. Hence, by definition, we
have M(ϕ̂l) = 1. The above inequality implies that L(ϕ̂l) ≤ 2n−1M(ϕ̂l) = 2n−1.

Step 3: Since F is column stochastic, ‖F‖1 = 1. Therefore, for any f(t) =
∑d

i=0 ait
d−i ∈ C[t],

we have

‖f(F )‖1 =

∥∥∥∥ d∑
i=0

aiF
d−i
∥∥∥∥
1

≤
d∑
i=0

|ai|‖F d−i‖1 ≤
d∑
i=0

|ai|‖F‖1d−i =

d∑
i=0

|ai| = L(f).

By combining the above results, we have

‖πλl(F )‖1 = ‖clϕ̂l(F )‖1 ≤ |cl|L(ϕ̂l) ≤ 2n−1|ϕ′(λl)|
−1
.

This completes the proof.
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We add a remark. Without assuming that F has property (P (N)), if all second largest
eigenvalues of F are simple, then inequality (1) still holds where ρ should be taken as the
common absolute value of the second largest eigenvalues of F . The estimate of an upper bound
of the leading-order coefficient in the above proof is also applicable to this case. If F has second
largest eigenvalues that are not simple, then in the right-hand side of inequality (1), ρν should be
replaced by νs−1ρν where s denotes the maximal multiplicity of the second largest eigenvalues in
the minimal polynomial of F . In this case, we can estimate an upper bound of the leading-order
coefficient as a sum of the length of the polynomials corresponding to λ−(s−1)(F − λIn)s−1πλ(F )
over the second largest eigenvalues λ such that sλ = s.

3 The bonus-malus Markov chain model

Following [2], we introduce a family of time-homogeneous finite Markov chains, called the bonus-
malus model and denoted by BMk(n), where n ≥ 2 is the number of states and k is an integer
parameter such that 1 ≤ k ≤ n− 1.

The BMk(n) model can be seen as a random walk on a bounded integer line, denoted by
{1, 2, . . . , n}, with the following transition rules:

• From interior states i ∈ {2, . . . , n − 1}, the probability of moving one step down is p and
moving k steps up is q(= 1− p). If i+ k > n, then the terminal state is n.

• There are two boundary states i = 1 and n. From i = 1, the probability of staying in the
same state is p and moving k steps up is q. From i = n, the probability of moving one
step down is p and staying in the same state is q.

This model arose from the bonus-malus system for insurance premiums used in automobile
insurance and workers’ compensation insurance. Under this system, the insurance premium of
an individual insured member in a given period is adjusted upwards or downwards according to
the occurrence of accidents in the preceding period. For more background information of this
model, see [2].

The transition matrix of the BMk(n) model is given by the following n× n matrix

A =

k





p p


0 p
. . .

. . .

0 p

n− k


q 0

. . .
. . .

q
. . .

. . .
. . .

. . . 0 0 · · · 0 p
q q · · · q q

,

where

Aij =


p, if i = max {j − 1, 1},
q, if i = min {j + k, n},
0, otherwise,
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for i, j ∈ {1, 2, . . . , n}. Observe that A is a nonnegative and column stochastic matrix. Further,
as shown in [2], A is irreducible and aperiodic.

When k = 1 and p = 1/2, the BMk(n) model reduces to a simple symmetric random walk on
a bounded integer line with self-loops (laziness) at both boundary states. In this special case A is
symmetric and has a uniform stationary distribution; hence, it is reversible. However, in general
BMk(n) Markov chains are not reversible, nor do they have uniform stationary distributions.

Note that in the special case of k = n− 1, the convergence to the stationary distribution of
the model is fully analyzed (see [2, Section 3.3]). Therefore, in the remainder of this paper we
focus on the cases in which n ≥ 3 and 1 ≤ k ≤ n− 2.

Theorem 2. Let n and k be integers such that n ≥ 3 and 1 ≤ k ≤ n − 2. Then the transition
matrix A of the BMk(n) model has property (P (k + 1)). Explicitly, we have

U−1AU =

[
1

Ã2

]
.

Here

Ã2 =

k




0 p


0 p
. . .

. . .

n− k − 1


q

. . .
. . .

. . .
. . . p

q 0 · · · 0

, (3)

where

(Ã2)ij =


p, if i = j − 1,

q, if i = j + k,

0, otherwise,

for i, j ∈ {1, 2, . . . , n− 1} is nonnegative, irreducible and periodic with period k + 1; and, U is
the following n× n nonsingular matrix composed of n column vectors

U =
[
x, e1 − e2, e2 − e3, . . . , en−1 − en

]
,

where x ∈ Rn, x > 0 is a positive eigenvector of A associated to its eigenvalue 1, and {ei}ni=1 is
the standard basis of Rn. We call Ã2 the period matrix of the BMk(n) model.

Proof. We know that Ax = x. Note that E = {ei − ei+1}n−1i=1 forms a basis of the subspace
W2(A) = {ξ ∈ Rn |

∑
ξi = 0}. Thus U is nonsingular.

To find Ã2, we note

A(ei − ei+1) =


q(ek+1 − ek+2), for i = 1,

p(ei−1 − ei) + q(ek+i − ek+i+1), for 2 ≤ i ≤ n− k − 1,

p(ei−1 − ei), for n− k ≤ i ≤ n− 1.
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This shows that the linear transformation A2 on W2(A) is represented by the matrix Ã2 of the
form (3) with respect to the basis E . The following example shows the calculation of Ã2 for
n = 5, k = 2.

AE =


p p 0 0 0
0 0 p 0 0
q 0 0 p 0
0 q 0 0 p
0 0 q q q




1
−1 1

−1 1
−1 1

−1

 =


0 p 0 0
0 −p p 0
q 0 −p p
−q q 0 −p
0 −q 0 0



=


1
−1 1

−1 1
−1 1

−1




0 p 0 0
0 0 p 0
q 0 0 p
0 q 0 0

 = EÃ2,

where E denotes the 5× 4 matrix listing horizontally the column vectors of E .

The matrix Ã2 is nonnegative although not stochastic. Observe that the directed graph
associated with matrix Ã2 is strongly connected and periodic with period k + 1. Hence Ã2 is
irreducible and periodic with period k + 1. Figure 1 depicts the directed graph of the period
matrix for n = 6, k = 3, which has period 4.

p p p p

① ② ③ ④ ⑤

q q

Figure 1: Directed graph associated with the period matrix of BM3(6).

This completes the proof.

4 The characteristic polynomial of the BMk(n) transition matrix

Let ϕn,k(t) and ψn−1,k(t) denote the characteristic polynomials of the transition matrix A and the
period matrix Ã2 of the BMk(n) model, respectively. We know that ϕn,k(t) = (t− 1)ψn−1,k(t).
Next we determine ψn−1,k(t).

Theorem 3. Let n and k be integers such that n ≥ 3 and 1 ≤ k ≤ n−2. Let n−1 = m(k+1)+r
where m ≥ 0 and 0 ≤ r ≤ k. Then we have

ψn−1,k(t) = trfn−1,k(t),

where fn−1,k(t) = (pkq)mfn−1,k(t
k+1/(pkq)) for some fn−1,k(X) ∈ Z[X] of degree m, constructed

in the following way. For integers µ ≥ 0, 0 ≤ ν ≤ k, write f(µ,ν)(X) = fµ(k+1)+ν,k(X) and define
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them recursively by
f(0,ν)(X) = 1, for 0 ≤ ν ≤ k,

f(µ+1,ν)(X) = X.f(µ,k)(X)−
ν∑

α=0

f(µ,α)(X), for µ ≥ 0, 0 ≤ ν ≤ k.
(4)

The proof of Theorem 3 requires some preliminary steps. For each integer j such that
1 ≤ j ≤ n− 1, let [Ã2]j denote the j× j matrix obtained from Ã2 by deleting its first (n− j− 1)

rows and columns, and put Yj = tIj−[Ã2]j where Ij is the identity matrix of size j. Observe that

for j such that k+1 ≤ j ≤ n−1, [Ã2]j is the period matrix of BMk(j+1). Hence ψj,k(t) = detYj
for k + 1 ≤ j ≤ n− 1. We extend this notation by setting ψj,k(t) = detYj for 1 ≤ j ≤ k as well
and ψ0,k(t) = 1. For simplicity, henceforth we will write ψj = ψj,k(t) and c = pkq.

Lemma 1. With the above notation, ψj ∈ R[t], 0 ≤ j ≤ n− 1, satisfy the following equations{
ψj = tj , for 0 ≤ j ≤ k,
ψj = tψj−1 − cψj−k−1, for k + 1 ≤ j ≤ n− 1.

(5)

Proof. For 0 ≤ j ≤ k, we have

ψj = detYj =

∣∣∣∣∣∣∣∣∣∣
t −p 0 0

t
. . . 0
. . . −p

t

∣∣∣∣∣∣∣∣∣∣
= tj .

For k + 1 ≤ j ≤ n− 1, we have

ψj = detYj =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t −p
t −p

. . .
. . .

−q . . .
. . .

. . .
. . . −p

−q 0 · · · t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Expand the above determinant along the first column, which has only two nonzero entries. The
contribution from (1, 1) entry equals tdetYj−1 = tψj−1. The contribution from (k + 1, 1) entry
is

(−1)k(−q)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−p

∗ . . .

∗ ∗ −p
Ok,j−k−1

∗ · · · ∗
...

...
...

∗ · · · ∗
Yj−k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,
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where the upper-left block is a k × k lower triangular matrix whose diagonal entries are all
equal to −p, the upper-right block is a k × (j − k − 1) matrix whose entries are all zero,
and the lower-right block is identical to Yj−k−1. Hence the contribution from (k + 1, 1) entry
equals (−1)k(−q)(−p)k detYj−k−1 = −cψj−k−1. Therefore we have ψj = tψj−1 − cψj−k−1. This
completes the proof.

The difference equation ψj = tψj−1 − cψj−k−1 is written in the matrix form ψj
...

ψj−k

 = M

 ψj−1
...

ψj−k−1

 ,
where M is the following (k + 1)× (k + 1) matrix

M =


t −c
1 0

1
. . .
. . .

. . .

1 0

 .

Lemma 2. The (k + 1)-th power of the above matrix M is given by

Mk+1 =


tk+1 − c −ct −ct2 · · · −ctk

tk −c −ct · · · −ctk−1
...

...
...

...

t2 0
... · · · −ct

t 0 0 · · · −c

 .

Proof. Observe first that

Mk =


tk −c −ct · · · −ctk−1
tk−1 0 −c · · · −ctk−2

...
...

...
...

t 0 0 · · · −c
1 0 0 · · · 0

 .

We show the k = 3 case by direct calculation, which explains the proof in the general case.

M =


t 0 0 −c
1 0 0 0
0 1 0 0
0 0 1 0

 , M2 =


t2 0 −c −ct
t 0 0 −c
1 0 0 0
0 1 0 0

 , M3 =


t3 −c −ct −ct2
t2 0 −c −ct
t 0 0 −c
1 0 0 0

 .
Next we claim that Mk+1 = tMk − cIk+1. This follows from the Cayley-Hamilton theorem
by noting that the characteristic polynomial of M is det (xIk+1 −M) = xk+1 − txk + c. By
combining these two results, we have the required expression of Mk+1.
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Proof of Theorem 3. Note first that from Eq. (4) it follows that f(µ,ν)(X) ∈ Z[X] and deg f(µ,ν)(X) =
µ for all integers µ ≥ 0, 0 ≤ ν ≤ k. Write ψ(µ,ν) = ψµ(k+1)+ν and

yµ =

ψ(µ,k)
...

ψ(µ,0)

 ∈ R[t]k+1.

It then suffices to show that

yµ =


tkf(µ,k)(t)

...
tf(µ,1)(t)

f(µ,0)(t)

 for µ ≥ 0.

We induct on µ. For µ = 0, indeed we have y0 = (ψk, . . . , ψ1, ψ0)
T =

(
tk, . . . , t, 1

)T
. Assume

that the above relation holds for µ. Then by Lemma 1, yµ+1 satisfies yµ+1 = Mk+1yµ. For
0 ≤ ν ≤ k, let (yµ)ν denote yµ’s (ν + 1)-th component from the bottom. Then by Lemma 2, we
have

(yµ+1)ν = tν+1(yµ)k − c(yµ)ν − ct(yµ)ν−1 − · · · − ct
ν(yµ)0.

By the induction hypothesis, (yµ)j = tjf(µ,j)(t) for 0 ≤ j ≤ k. Hence we have

(yµ+1)ν = tν+1tkf(µ,k)(t)− ctνf(µ,ν)(t)− ctνf(µ,ν−1)(t)− · · · − ctνf(µ,0)(t)

= tν
[
tk+1f(µ,k)(t)− c

(
f(µ,ν)(t) + f(µ,ν−1)(t) + · · ·+ f(µ,0)(t)

)]
.

By the construction of f(µ+1,ν)(X) and noting that f(µ,ν)(t) = cµf(µ,ν)(X) where X = tk+1/c,
we have

(yµ+1)ν = tνcµ+1

(
X.f(µ,k)(X)−

ν∑
α=0

f(µ,α)(X)

)
= tνcµ+1f(µ+1,ν)(X)

= tνf(µ+1,ν)(t).

This completes the proof.

Note that in the k = n− 1 case, we have ϕn,n−1(t) = tn−1(t− 1) (see [2]).

5 Convergence of the BMk(n) model

We have already known how to construct the stationary distribution of the BMk(n) model. The
main result in [2, Theorem 1] states that a prenormalized eigenvector x = (xi) of A associated to
eigenvalue 1 is given by xi = pn−iγi−1 where γi−1 ∈ R, 1 ≤ i ≤ n, satisfy the following equations

γ0 = 1,

γj = q, for 1 ≤ j ≤ k,
γj = γj−1 − cγj−k−1, for k + 1 ≤ j ≤ n− 1.

(6)
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By normalizing x we obtain the stationary distribution x̂ ∈ Dn of the BMk(n) model. Attention
should be drawn to the similarity between Eq. (5) in Lemma 1 and Eq. (6) above.

By virtue of Theorem 2, we can apply Theorem 1 to A. In addition, the spectrum of A
is completely known from Theorem 3. Let us denote the total variation distance between two
distributions y, z ∈ Dn by d(y, z) = (1/2)‖y − z‖1 with the L1-vector norm. Then, by taking
ε = C in Theorem 1 and using other results established in this paper, for n ≥ 3 and 1 ≤ k ≤ n−2,
the convergence of the BMk(n) model is described as follows.

Starting from any initial distribution ξ ∈ Dn, the series {Aνξ}∞ν=0 converges to the above
stationary distribution x̂ > 0 with respect to this metric. In more detail, there exist a positive
constant C > 0 and an integer N > 0 such that

d(Aνξ, x̂) ≤ Cρν for all ν ≥ N.

Here, the order of convergence ρ = (αpkq)1/(k+1) where α is the maximal positive root of
fn−1,k(X) defined by Eq. (4) in Theorem 3. This is because ψn−1,k(t) = trfn−1,k(t) and
that fn−1,k(t) = cmfn−1,k(X) where X = tk+1/c and c = pkq. This affirms the conjectural
statements on the convergence of the BMk(n) model in [2, Section 3.4]. Moreover, an upper
bound of coefficient C is calculated by applying formula (2) in Theorem 1 to the characteristic
polynomial ϕn,k(t) that was determined in Theorem 3.

In practical applications, our results will be instrumental for the insurers adopting the bonus-
malus insurance premium system to gain knowledge on the stationary distribution of insurance
premiums and quantitative estimates of the speed of convergence to the stationarity based on
the predetermined number of risk classes n, the predetermined adjustment parameter k, and
the experience value of the probability of nonoccurrence of insurance claims p.
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