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Abstract. In this study, we consider a family of uni-parametric linear optimization problems
that the objective function, the right, and the left hand side of constraints are linearly perturbed
with an identical parameter. We are interested in studying the effect of this variation on a given
optimal solution and the behavior of the optimal value function on its domain. This problem has
several applications, such as in linear time dynamical systems. A prototype example is provided
in dynamical systems as a justification for the practicality of the study results. Based on the
concept of induced optimal partition, we identify the intervals for the parameter value where
optimal induced partitions are invariant. We show that the optimal value function is piecewise
fractional continuous in the interior of its domain, while it is not necessarily to be continuous
at the endpoints. Some concrete examples depict the results of the analysis.
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1 Introduction

Optimization-based techniques have demonstrated their undeniable capability in the design,
control, and operating of many engineering systems [20]. Financial markets are in a sense,
dynamical systems; and evolving market variables would affect the optimal decision-making
process. Identifying an optimal tax-free bond portfolio by exploiting the price differential stream
of cash flows would be an instance. We will discuss a prototype example later in detail.

The existence of inaccuracy and variability in the parameters of an optimization problem
may imply a deviation from a predetermined optimal situation and lead either the system fails
at being an entirely beneficial one, or additional burden of problem-solving for other values of
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parameters is required. Investigation of these possibilities and their consequences has attracted
the primary concern of many researchers.

Parametric programming has denoted competence when uncertainty appears on the problem
data, or the process states corresponding to the parameters. This approach economically iden-
tifies the exact mapping of the optimal solution in the space of system parameters. Moreover,
unnecessary several problems solving is avoided, and the optimal solution can be immediately
adjusted to the system dynamics.

Linear programming, with its parametric version, is a mature field of optimization and has
proved its efficiency in simplifying many dynamical systems. For instance, when the input data
of a linear program only depends on a single parameter, the parameter would be considered as
“time” in a “time-developing system”, and analyzing the system behavior over a period could
be the aim.

To be specific, let c ∈ Rn, b ∈ Rm and A ∈ Rm×n be fixed data, and x, s ∈ Rn and
y ∈ Rm as unknown vectors. Here, vectors b and c are usually referred to as rim data and
A as technological data. Moreover, let t ∈ R be a parameter, and 4c ∈ Rn, 4b ∈ Rm and
4A ∈ Rm×n be components of a perturbing direction denoted by 4 = (4A,4b,4c) for the
sake of brevity in notation. In this way, a uni-parametric linear optimization problem could be
defined as

Pt(4) min
{

(c+ t4c)Tx : (A+ t4A)x = b+ t4b, x ≥ 0
}
,

with its dual as

Dt(4) max
{

(b+ t4b)T y : (A+ t4A)T y ≤ c+ t4c
}
.

Special cases may occur when4c = 0 or4b = 0, which are denoted by Pt(4A,4b), Pt(4A,4c)
and Pt(4A) (when both are zero), along with their dual problems, respectively.

As a practical example, consider the problem of identifying an optimal tax-free bond port-
folio using the price differential stream of cash flows. This objective could be accomplished by
purchasing at the ask price “underpriced” bonds, while simultaneously selling at the bid price
“overpriced” bonds. The following model was proposed in [21] as a tax-specific version at which
the objective is achieved by analogous exercising for a given tax bracket and the price differential
of an after-tax stream of cash flows (See also [23]).

max
n∑
j=1

pbjx
b
j −

n∑
j=1

pajx
a
j

s.t. c1 =
n∑
j=1

a1
jx
a
j −

n∑
j=1

a1
jx
b
j ,

ct = (1 + ρ)ct−1 +
n∑
j=1

atjx
a
j −

n∑
j=1

atjx
b
j , t = 2, . . . , T,

ct ≥ 0, t = 1, . . . , T,

xaj , x
b
j ≥ 0, j = 1, . . . , n,

xaj , x
b
j ≤ 1, j = 1, . . . , n,

(1)
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where {1, 2, . . . , n} is the set of riskless bonds, paj is the ask price, pbj is the bid price, and atj is the

coupon and/or principal payment on bond j at time t. The natural assumption is paj > pbj . The

variables xaj and xbj are respectively the amount of bond j bought and sold short. Here, ct’s are
future cash flows of the portfolio, and ρ is the exogenous riskless reinvestment rate, while ct ≥ 0
guaranties that the portfolio is riskless. The final restriction on variables guaranties of having a
finite solution. The objective function makes sense since the long side of an arbitrage position
must be established at ask prices while the short side of the position must be established at bid
prices.

In the sequel, to have a concrete description, we set T = 1, which means that there is no
opportunity for reinvestment. One may consider that inputs paj , p

b
j , and a1

j are are changing

continuously over the developing time. For instance, pbj(θ1) = pbj(0)(1 + tθ1), paj (θ2) = paj (0)(1 +

tθ2), and a1
j (θ3) = a0

j (1+tθ3), where a0
j , p

b
j(0) and paj (0) are corresponding prices at the beginning

of the period, and θ1, θ2, and θ3 are potential respective different change rates over time.
Moreover, this positive cash flow must be enough to repay a commitment amount that is b at
the first of period and will change over this time period as b + tθ4. This means that not only
ask and bid prices are varying but also coupon payment on bond j and commitment value are
evolving over time. Moreover, suppose that you are free to exercise all acts at any time of the
period, but simultaneously. In this way, we have the following parametric program.

max

n∑
j=1

pbj(0)(1 + tθ1)xbj −
n∑
j=1

paj (0)(1 + tθ2)xaj

s.t.

n∑
j=1

a0
j (1 + tθ3)xaj −

n∑
j=1

a0
j (1 + tθ3)xbj ≥ (b+ tθ4),

0 ≤ xaj , xbj ≤ 1, j = 1, . . . , n,

(2)

at which the inequality pbj(0)(1+tθ1) < paj (0)(1+tθ2) must be satisfied for all t ≥ 0. Observe that
the standard form of this prototype instance is a dynamical system presented as a parametric
problem of type Pt(4c,4A,4b). We will provide a simple numerical instance for this problem
in Section 8.

Now, suppose that the Problems Pt(4) and Dt(4) are feasible at t = 0. We denote the
feasible solution sets of these problems by Pt and Dt, and their optimal solution sets by P∗t and
D∗t , respectively. A primal-dual feasible solution (x∗(t), y∗(t), s∗(t)) is optimal if it satisfies the
well-known complementary condition x∗T (t)s∗(t) = 0. Let us denote the index set {1, 2, . . . , n}
by I. For a nonsingular submatrix AB of the columns of A, where B is a set of m indices in I
and N = I \B, xT (t) = (xTB(t), xTN (t)) is a primal basic feasible solution when xB(t) = A−1

B b ≥ 0,
and xN (t) = 0. Further, (yT (t), sT (t)) is a dual basic feasible solution, when y(t) = A−TB cB and
s(t) = c − ATA−TB cB ≥ 0. Note that a basic optimal solution characterizes a partition of the
index set, known as basic optimal partition.

The primal-dual optimal solution (x∗(t), y∗(t), s∗(t)) is strictly complementary when x∗j (t) +
s∗j (t) > 0 for all j ∈ I. By the Goldman-Tucker’s theorem [10], the existence of a strictly
complementary solution is guaranteed when for a given t both problems Pt(4) and Dt(4) are
feasible. An interior point method starts from a solution and leads to a strictly complemen-
tary optimal solution [22]. Recall that an interior point method’s success to provide a strictly
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complementary optimal solution strongly depends on having a full row rank coefficient matrix
in a linear optimization problem. There are efficient methods to remove redundant rows and
columns of a matrix. Here, without loss of generality, we assume that the matrix A has full
row rank. As a result, a primal-dual strictly complementary optimal solution (x∗(t), y∗(t), s∗(t))
partitions the index set I as πt = (Bt, Nt), where

Bt := {j|x∗j (t) > 0, for some x∗(t) ∈ P∗t },
Nt := {j|s∗j (t) > 0, for some (y∗(t), s∗(t)) ∈ D∗t }.

This partition is referred to as optimal partition, hereafter.
Parametric analysis studies the effect of data perturbation along a direction (or some direc-

tions) according to some parameters. The aim of a study could be to identify the region for the
parameters where specific properties of the current optimal solution are invariant. More clearly,
when the current optimal solution is strictly complementary (basic), one might be interested in
identifying the region for the parameter(s) at which the known optimal partition (optimal basis)
is invariant for every parameter(s) values in this region.

Sometimes, we only have an optimal solution without knowing that it is weather basic
or strictly complementary. In this case, one may be interested in determining the region for
parameter values where the support set of the in-hand optimal solution is invariant [9]. From
the support set of a nonnegative vector v, we mean σ(v) = {j ∈ I, vj > 0}. In this way,
expansion and restriction of a support set can be studied, too [19]. These points of view have
been studied extensively during the last decade. Especially in an interesting recent application
in game theory [15], the author considered interval bimatrix games and focused on three kinds
of support set invariancy. In such games, support of a mixed strategy consists of pure strategies
having positive probabilities. Given an interval-valued bimatrix game and supports for both
players, the paper aims to answer some questions. Questions like “Does every bimatrix game
instance have an equilibrium with the prescribed support?” and “Has every bimatrix game
instance an equilibrium being a subset/superset of the prescribed support?”. It was shown that
answering these questions is computationally challenging.

Practically, the degeneracy of a primal or dual basic solution leads to having multiple dual
or primal optimal solutions. This fact shows that the basic optimal partition may not be unique
in general, while the convexity of optimal solution sets implies the uniqueness of the optimal
partition. The optimal partition and the basic optimal partition are identical when the primal
problem has a unique nondegenerate optimal solution.

Due to this important property of the optimal partition, we consider Problem Pt(4) and its
special version Pt(4A,4c), and aim to identify the region where the known optimal partition
is invariant. Our approach is to generalize the methodology introduced in [18] for identifying
the optimal partition invariancy region of Pt(4A,4b). We first convert these problems into
equivalent forms in which only their left-hand sides are perturbed. In this way, some free
variables are introduced, which lead to defining the induced optimal partition and the notion of
induced optimal partition invariancy analysis. As a result, in addition to the transition point,
the change point concept is introduced. Furthermore, the representation of the optimal value
function of such problems is presented in this study.

The rest of the paper is organized as follows. Section 2 is devoted to reviewing some re-
lated findings in parametric linear programming. In Section 3, first, we state some necessary
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presumptions for guaranteeing the convexity of the optimal partition invariancy region on Prob-
lem Pt(4). Then, some preliminary concepts on Moore-Penrose inverse and Realization theory
are reviewed. We formalize the methodology of induced optimal partition invariancy analysis
on Problems Pt(4) and Pt(4A,4c), in Section 4. Moreover, the concept of change point is
clarified, and distinguished from the transition point. This section ends with a description of
the concept of free variables on this parametric analysis. The process of finding all transition
points, change points, and invariancy intervals is expressed in Section 5. An explicit formula of
the optimal value function on each invariancy interval is presented in Section 6. In Section 7,
we briefly explain the adaptation of the presented algorithm in [18] with the notations of this
paper. Some concrete examples illustrate the results in Section 8. The final section contains
some concluding remarks.

2 Literature review

Let us first review some findings related to the parametric linear program. It is proved that in
a parametric linear optimization problem when either 4b or 4c is a nonzero vector, optimal
partition invariancy intervals are open if they are not singletons. The optimal value function is a
continuous piecewise linear function over these intervals [6,22]. Singleton regions are referred to
as breakpoints since they separate the invariancy intervals, and the optimal value function fails
to be differentiable at these points. Moreover, this function has constant slopes an invariancy in-
tervals, which suggests one to refer to these intervals as linearity intervals [22]. In [13], the results
of sensitivity and parametric analysis of single-parametric linear programming were extended to
the case when there are multiple parameters in the objective function and the right-hand side of
constraints. The author described the set of admissible parameters under the support set and
optimal partition invariancies and compared them with the classical optimal basis invariancy.

Similarly, when both the right-hand side of the constraints and the objective function are
perturbed with identical parameters, each invariancy region is again an open interval if it is not
a singleton. However, the optimal value function is a continuous piecewise quadratic function
on these invariancy intervals [6, 8], while optimal partitions are different on them and their
separating points. Therefore, these points would be referred to as transition points instead
of breakpoints. In this case, the representation of the optimal value function is different at
each invariancy interval; it is continuous at transition points and fails to have the first or the
second derivative at them. In general, and as a result, optimal partition invariancy analysis in
these cases aims to identify those subintervals where the optimal value function has different
representations [8, 22]. This latter case has also been studied when the problem is in canonical
form [12]. Though the concept of the invariancy region in this study is somehow dissimilar, and
the interpretation of the notion differs, the results are almost identical.

In another point of view in [14], the aim was to compute tolerances (intervals) for the
objective function coefficients and the right-hand side values. The tolerance means that having
an optimal solution, they can independently and simultaneously vary inside their tolerances while
preserving some optimality criterion such as optimal basis, support set, and optimal partition
invariancy. In this paper, the tolerance analysis was put in a unified framework convenient for
algorithmic processing, which is applicable not only in linear programming but also in other
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linear systems. Moreover, the known results were surveyed, and an improvement was proposed
while taking into account the proportionality. This improvement refers to optimality in some
sense; that is the resulted tolerances are maximal. It is worth mentioning that this approach is
useful not only for the simplex method solvers but also for the interior points methods. Time
complexity has also been discussed, and it is showed that determining the maximal tolerances
in an NP-hard problem.

Investigation of the case when only the coefficient matrix A is perturbed alongside a direction
4A has a long story. Here, we only mention the findings from the perspective of optimal partition
invariancy. The problem in the canonical form with a perturbing direction of rank one, when a
primal-dual strictly complementary optimal solution is in hand, has been studied in [11]. For a
linear program with inequality constraints, at which a single parameter perturbs only their left-
hand side, a solution algorithm has been presented in [17]. The main obstacle in this algorithm
is that the inversion techniques of perturbed matrices cause several computational complexities.

Another algorithm has been introduced for finding the exact solution of multi-parametric
linear programming problems with inequality constraints when simultaneously, the coefficients of
the objective function, the right-hand-side, and the left-hand-side of the constraints are param-
eterized [5]. This algorithm is based on symbolic manipulation and semi-algebraic geometry. By
semi-algebraic geometry, one can identify the critical regions at which the optimal value function
is fractional, and active constraint sets are invariant. Note that these regions are neither neces-
sarily convex nor connected. Without having to determine the inverse of parametric matrices,
the entire parametric space can be explored implicitly within this algorithm. As the authors ac-
knowledged, the implementation of this algorithm is highly dependent on mathematical software.
Thus, it is not adequate for large-scale problems due to the complexity of computing.

The optimal partition invariancy analysis of Problem Pt(4A), with4A of arbitrary rank and
a known optimal partition, has been investigated in [7]. The authors presented a computational
procedure that identifies all invariancy intervals. Besides, the optimal value function on its
domain has been characterized, and some of its properties have been investigated. More recently,
this argument is continued by adapting the methodology in [7] to the case when the perturbed
problem is in the form Pt(4A,4b). The existence of change point in induced optimal partition
invariancy analysis is one of the most important feature that distinguishes it from the optimal
partition invariancy analysis.

3 Preliminaries

Let t run throughout a nonempty set Λ ⊆ R for which Problems Pt(4) and Dt(4) have optimal
solutions. This set is nonempty since it is assumed that these problems are feasible at t = 0.
Since optimal solutions set P∗t is a subset of feasible solution set of Pt, thus connectivity of Λ
refers back to the continuity of the solution sets of (A + t4A)x = b + t4b with respect to t.
If A + t4A is invertible over a dense open subset U ⊆ R or rank A + t4A is constant for all
t ∈ R, the continuity is a straightforward result in standard linear algebra. When this system is
underdetermined and rank A+ t4A varies for different values of t, to guarantee the continuity,
one must impose some regularity conditions on the problem. Thus, the region for the parameter
value is not necessarily connected in general. Here, we are only interested in finding the largest
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connected set that includes the origin t = 0.

First, we refer to the perturbing direction 4 as change direction. For a t ∈ R, t4 is said an
admissible change if problem Pt(4) has an optimal solution, or equivalently

∃(x, y), x ≥ 0 : (A+ t4A)x = b+ t4b, (A+ t4A)T y ≤ c+ t4c.

It is not hard to see that t4 is not generally an admissible change for all t ∈ (0, t∗), just because
t∗4 is an admissible change. A change direction 4 is an admissible direction if there exists
t∗ > 0, such that t4 is an admissible change for all t ∈ [0, t∗) [11]. Let us denote the set of
all admissible changes by A. Unlike the variation at rim data, this set is not convex when the
left-hand-side of constraints is additionally perturbed [11]. For an admissible direction 4, let
t∗(4) := sup{t∗ : t4 ∈ A, ∀t ∈ [0, t∗)}, and Λ(4) := {t : t4 ∈ A}.

Analogous to [11], it can be proved that when A =
⋃K
k=1{Pk}, and each Pk is a polyhedron

containing the origin, then Λ(4) is simply an interval. In this paper, we assume that these
assumptions are fulfilled.

Now, we adapt the concept of optimal partition in [7] on Problem Pt(4), the relationship of
this concept with the optimal partition defined in Page 148 is stated. Consider 1 ≤ l ≤ n, and
let

τ : {1, . . . , l} → {1, . . . , n}, τ ′ : {1, . . . , n− l} → {1, . . . , n}, (3)

be injective and increasing functions, so that

Range(τ) ∪ Range(τ ′) = {1, . . . , n}. (4)

Let Aτ and cτ denote the columns of A and c corresponding to the indices identified by the map
τ . Analogous notation will be used later. Furthermore, let πt0 = (Bt0 , Nt0) be the known optimal
partition corresponding to Problems Pt0(4) and Dt0(4), and Λ0 ⊆ R be a set of parameters
such that for each t ∈ Λ0, the Problem Pt(4) has an optimal solution (x∗(t), y∗(t), s∗(t)) with
the optimal partition πt0 . Recall that corresponding to any parameter t ∈ Λ0, every strictly
complementary optimal solution implies Bt = {τ(1), . . . , τ(l)} and Nt = {τ ′(1), . . . , τ ′(n − l)}
[7]. Moreover, according to (4), (Bt, Nt) is a partitioning of I. Therefore, for t ∈ Λ0,

Property 1. Aτ (t) = Aτ+t4A has a pseudo-inverse, (See the next paragraph for the definition
of pseudo-inverse),

Property 2. xτ (t) = Aτ (t)†(b+ t4b) > 0,

Property 3. sτ ′(t) > 0 (equivalently (c+ t4c)Tτ ′ − (c+ t4c)Tτ Aτ (t)†Aτ ′(t) > 0),

hold if and only if (x(t), y(t), s(t)) is a strictly complementary optimal solution of problems
Pt(4) and Dt(4) with optimal partition πt0 . It is of importance to mention that Property
1 holds without any restriction on t and it will be used in other two properties. Recall that
the aim of optimal partition invariancy analysis is to find the region Λ0 ⊆ Λ, where for every
t ∈ Λ0, optimal partition of the associated problem is πt0 . This is equivalent to establishment
of Properties 1-3 for such a parameter t.



152 N. Mehanfar, A. Ghaffari-Hadigheh

Observe that the matrix Aτ is not an invertible matrix in general, and therefore we need
another tool known as the Moore-Penrose inverse. The Moore-Penrose inverse (or simply the
pseudo-inverse) of a real matrix A ∈ Rm×n is a unique matrix A† ∈ Rn×m, where

A†AA† = A†,

AA†A = A,

(A†A)T = A†A,

(AA†)T = AA†.

In general, AA† is not necessarily an identity matrix, while it maps all column vectors of A to
themselves, and (A†)† = A.

It is worth mentioning that the pseudo-inverse of a matrix always exists and unique, and
can be efficiently calculated using Singular Value Decomposition (SVD) method. Let A be an
m× n real matrix. Then A = UΣV is the SVD of A where Σ is an m× n diagonal matrix with
Σii i = 1, . . . , r as square roots of eigenvalues of ATA, and r = rank(A). Further, U and V are
orthogonal matrices of dimension m and n, respectively. In this case, A† = V TΣ†UT , where Σ†

is an n×m matrix with Σ†ii = 1
Σii

for i = 1, . . . , r and zero otherwise. In special cases, when A

has full-row rank, A† = (AAT )−1AT and when it has full-column rank, A† = AT (AAT )−1. We
refer to [2] for more details.

Let ai,j denote the elements of the matrix A ∈ Rm×n. For an integer 0 < r ≤ n, the set of
increasing sequences of r elements from {1, . . . , n}, is denoted by Qr,n = {(i1, i2, · · · , ir) : 1 ≤
i1 < i2 < · · · < ir ≤ n}. In this way, for I ∈ Qr,m and J ∈ Qr,n, the submatrix

AIJ : the r × r submatrix of A with elements ai,j where i ∈ I, j ∈ J,

and the associated indices set

H(A) = {(I, J) : I ∈ Qr,m, J ∈ Qr,n, AIJ is nonsingular},

are defined. It was shown [1] that the pseudo-inverse A† is a convex combination of ordinary
inverses {A−1

IJ : (I, J) ∈ H(A)}. Moreover, for the Ax = b, x = A†b is a solution [3]. In
other words, the Euclidean norm least squares solution of the linear system Ax = b is a convex
combination of basic solutions A−1

IJ bI , where bI stands for the subvector of b ∈ Rm with indices
in I.

Finally, let b, c ∈ Rl and C be an l× l matrix. Based on the realization theory [26], a rational
function f(t) = 1 + tcT (Il + tC)−1b can be described completely in terms of eigenvalues of two
matrices C and C× = C + bcT as

f(t) = det f(t) = det(1 + tcT (Il + tC)−1b) = det(Il + tbcT (Il + tC)−1)

=
det(Il + t(C + bcT ))

det(Il + tC)
=

det(Il + tC×)

det(Il + tC)
,

where Il is an l×l identity matrix. More clearly,

f(t) =
l∏

j=1

1 + tα×j
1 + tαj

, (5)
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where α1, . . . , αl and α×1 , . . . , α
×
l are eigenvalues of C and C×, counted according to their mul-

tiplicities. The number l of factors in numerator and denominator on the right-hand-side of (5)
is minimal when C and C× do not have common eigenvalues.

4 Induced optimal partition invariancy analysis

In this section, we generalize the methodology of induced optimal partition invariancy analysis
in [18] for the Problem Pt(4). To do this, we first convert Pt(4) to an equivalent one with
only perturbation in the left-hand-side of its constraints. It is necessary to mention that the
equivalency of two problems with different numbers of variables and constraints implies the
similar features for them and enables one to identify a solution of one by the others. [4].

Consider the substitutions x0 = (c+ t4c)Tx and z = 4Ax−4b, which converts Pt(4) to

min
{
x0 : (c+ t4c)Tx− x0 = 0, Ax+ tz = b,4Ax− z = 4b, x ≥ 0

}
. (6)

By simplifying notations

c̃ =

0
0
1

 , Ã =

 cT 0 −1
A 0 0
4A −Im 0

 ,4Ã =

4cT 0 0
0 Im 0
0 0 0

 , b̃ =

 0
b
4b

 ,

x̃j := xj , j = 1, . . . , n, x̃n+j := zj , j = 1, . . . ,m, and x̃m+n+1 := x0, Problem (6) can be squeezed
as

Pt(4Ã) min
{
c̃T x̃ : (Ã+ t4Ã)x̃ = b̃, x̃T = (xT , zT , x0), x ≥ 0

}
,

where Im is the m×m identity matrix, and zeros are of appropriate sizes. Its dual is

Dt(4Ã) max
{
b̃T ỹ : (Ã+ t4Ã)T ỹ + s̃ = c̃, ỹT = (v, yT , ȳT ), s̃T = (sT ,0, 0), s ≥ 0

}
,

where v ∈ R, y, ȳ ∈ Rm, and in (sT ,0, 0), s ∈ Rn, 0 is an m-vector of zeros, and the latter is
simply the real number zero. Let P∗t (4Ã) and D∗t (4Ã), respectively denote optimal solution
sets of Pt(4Ã) and Dt(4Ã), and Ĩ = {1, . . . ,m+n+1} be the index set of variables in P∗t (4Ã).

We define the partition π̃t = (B̃t, Ñt), as B̃t := Bt ∪B−t ∪B
+
t with

Bt := {j|x∗j (t) > 0, 1 ≤ j ≤ n, for some x∗(t) ∈ P∗t (4Ã)},
B−t := {j|x∗j (t) < 0, n+ 1 ≤ j ≤ m+ n+ 1, for some x∗(t) ∈ P∗t (4Ã)},
B+
t := {j|x∗j (t) > 0, n+ 1 ≤ j ≤ m+ n+ 1, for some x∗(t) ∈ P∗t (4Ã)},

and Ñt = Nt ∪N◦t with

Nt := {j|s∗j (t) > 0, 1 ≤ j ≤ n, for some (y∗(t), s∗(t)) ∈ D∗t (4Ã)},
N◦t := {j|x∗j (t) = 0, n+ 1 ≤ j ≤ m+ n+ 1,∀x∗(t) ∈ P∗t (4Ã)}.

Observe that in this partition, Bt is the same as in the optimal partition extracted from a
strictly complementary optimal solution of Problems Pt(4) and Dt(4). Moreover, considering
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the equivalence of two Problems Pt(4) and Pt(4Ã), an optimal solution (x̃∗(t), ỹ∗(t), s̃∗(t)) can
be induced by an optimal solution x∗(t) of Problem Pt(4) and vice versa. Therefore, an optimal
solution x̃∗(t) of Pt(4Ã) can be considered as an induced optimal solution, and its corresponding
partition as an induced optimal partition.

It is worth mentioning that an induced optimal solution is an induced strictly complementary
optimal solution when for all j ∈ {1, . . . , n}, x̃∗j+ s̃∗j > 0, and for n+1 ≤ j ≤ m+n+1, x̃∗j (t) and
s̃∗j (t) are not simultaneously zero. More clearly from this property, s∗j (t) is positive for 1 ≤ j ≤ n
only when x∗j (t) is zero for these indices. This means that at a parameter value when optimal
partition changes, some positive s∗j (t) vanishes while corresponding x∗j (t)’s become positive or
vice versa. To imitate this property when s∗j (t) = 0 for all j ∈ {n + 1, . . . ,m + n + 1}, we also
considered corresponding x∗j (t)’s as zero in N◦t . Thus, a change in the induced optimal partition
at a parameter value may happen by moving some variables with indices in N◦t out of zero. In
this case, these indices move from N◦t to either B−t or B+

t and vice versa.
Let πt0 be the known optimal partition of Problems Pt0(4) and Dt0(4) and π̃t0 be the

induced optimal partition of Pt0(4Ã) and Dt0(4Ã). Let l = |Bt0 | ≤ n and l ≤ l̃ = |B̃t0 | ≤
m + n + 1. Let us adapt the notations and concepts in Section 3 to the Problem Pt(4Ã). We
first assume

τ̃ : {1, . . . , l, . . . , l̃} → {1, . . . ,m+ n+ 1},
τ̃ ′ : {1, . . . ,m+ n+ 1− l̃} → {1, . . . ,m+ n+ 1},

are injective and increasing functions, Range(τ̃)∪Range(τ̃ ′) = {1, . . . ,m+n+1}, and Range(τ̃)∩
Range(τ̃ ′) = ∅. Observe that an induced optimal solution with the corresponding induced
optimal partition π̃t0 implies

B̃t0 = {τ̃(1), . . . , τ̃(l̃)}, Ñt0 = {τ̃ ′(1), . . . , τ̃ ′(m+ n+ 1− l̃)}.

Moreover, {j|n+1 ≤ j ≤ m+n+1, vj 6= 0} is empty when l = l̃. That is, B̃t0 = {τ(1), . . . , τ(l)}.
For a fixed t0 ∈ Λ, when l = l̃, it holds

x̃∗j (t0)

{
> 0, if j ∈ {τ̃(1), . . . , τ̃(l)},

= 0, if j ∈ {τ̃ ′(1), . . . , τ̃
′
(m+ n+ 1− l)},

and when l < l̃,

x̃∗j (t0)


> 0, if j ∈ {τ̃(1), . . . , τ̃(l)},

6= 0, if j ∈ {τ̃(l + 1), . . . , τ̃(l̃)},

= 0, if j ∈ {τ̃ ′(1), . . . , τ̃
′
(m+ n+ 1− l̃)}.

Further, for the induced optimal solution (ỹ∗(t0), s̃∗(t0)) of Problem Dt0(4Ã), it holds

s̃∗j (t0)

{
> 0, if j ∈ Nt0 ,

= 0, otherwise.

The necessary and sufficient conditions for a primal-dual optimal solution of Pt(4Ã) andDt(4Ã)
being a strictly induced optimal solution are stated in the following theorem. We restate that
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the pseudo-inverse exists and is unique for a matrix of an arbitrary size, and in special case, it
is identical with the common inverse. This means that in our study, Ã†τ̃ (t) and A†τ (t) exist for
any possible parameter value t.

Theorem 1. For t ∈ Λ, let πt = (Bt, Nt) and π̃t = (B̃t, Ñt). Then, (x̃∗(t), ỹ∗(t), s̃∗(t)) is a
strictly induced complementary optimal solution of Pt(4Ã) and Dt(4Ã) if and only if

Cond. 1 For 1 ≤ q ≤ l̃, x̃∗τ̃(q)(t) = eTq Ã
†
τ̃(q)(t)b̃ is positive when τ̃(q) ∈ Bt ∪B+

t , negative when

τ̃(q) ∈ B−t , and zero otherwise,

Cond. 2 For p ∈ Range(τ ′), s̃∗p(t) = (c + t4c)p − (c + t4c)Tτ A
†
τ (t)Ap(t) is positive, and it is

zero otherwise.

Proof. Recall that in problem Pt(4Ã), for 1 ≤ q ≤ l̃ we have x̃τ̃(q)(t) = eTq Ã
†
τ̃(q)(t)b̃ as a strictly

feasible solution when it is positive for τ̃(q) ∈ Bt ∪ B+
t , negative for τ̃(q) ∈ B−t , and zero

otherwise. Further, the strictly feasibility of Dt(4Ã), i.e., s̃(t) > 0 is identical with the strictly
feasibility of Dt(4), i.e., s(t) > 0. To be clear, let us consider the constraints of Dt(4Ã) asc+ t4c AT 4AT

0 tIm −Im
−1 0 0

vy
ȳ

+

s0
0

 =

0
0
1

 . (7)

From the first row of (7), we have s = −(c+ t4c)T v−AT y−4AT ȳ, while from the second row
ȳ = ty and from the last row, v = −1. By replacing the values of v and ȳ in s, the inequality
s̃T = (sT , 0, 0) > 0 leads to s = (c + t4c) − (A + t4A)T y > 0. For being an induced primal
strictly complementary optimal solution of x̃∗(t), we must have x̃∗τ̃(q)(t) > 0 for τ̃(q) ∈ Bt ∪B+

t ,

and x̃∗τ̃(q)(t) < 0 for τ̃(q) ∈ B−t . Further, strictly induced complementarity imposes to have

x̃∗τ̃ ′(p)(t) = 0 for τ̃ ′(p) ∈ Nt as well as for τ̃ ′(p) ∈ N◦t , where p ∈ Range(τ̃ ′). On the other hand,

strictly complementarity of Pt(4) and Dt(4) implies for p ∈ Range(τ ′), sp(t) > 0 and sτ (t) = 0.

Equivalently for p ∈ Range(τ ′), (c+ t4c)Tp − (c+ t4c)Tτ A
†
τ (t)Ap(t) > 0. Validity of the inverse

of statement is immediate and omitted.

Now, let π̃t0 = (B̃t0 , Ñt0) be the induced optimal partition of Problem Pt0(4Ã). Respecting
the concept of induced optimal partition invariancy, the aim in this study is to identify the region
Λ̃0 ⊆ Λ, where for all t ∈ Λ̃0, the induced optimal partition of Problem Pt(4Ã) is identical with
π̃t0 . Note that this invariancy region contains all such t’s at which Conds 1 and 2 in Theorem
1 hold.

To clarify the differences between a change point and a transition point, we have to mention
some facts. Recall that, when4Ãτ̃ is an admissible direction (See page 150) the induced optimal
partition invariancy region is an interval. At the endpoints of this interval, the problem Pt(4Ã)
may fail to be bounded or feasible. In this case, there is no induced optimal partition. Otherwise,
induced optimal partitions are changed. Variation in an induced partition would be the result of
two possibilities. First, some indices interchange between B̃t and Ñt when the parameter reaches
to one of the endpoints of the interval. More clearly, this transition may happen between B and
N , or between B+

t , B−t , and N◦t . We refer to the point in the former as a transition point, and
in the latter as a change point.
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Let us mention some facts about the behavior of the optimal value function at change and
transition points. First we need to mention some properties of the feasible solution set Pt. By
the continuity of the objective function and constraints (in fact they are linear), the feasible
set mapping Pt of Pt(4) is always closed. We also remind the concept of local compactness as
follows. The set Pt̄ is locally compact at t̄ if there exists δ > 0 and a compact set C0 such that⋃

‖t−t̄‖≤δ

Pt ⊆ C0.

It is not hard to prove that a system of a parametric linear equations system satisfy this condition.
Thus, with these two conditions, the set-valued map t→ Pt is upper semi-continuous at t̄ ∈ Λ.
Moreover, with the constraint qualification property at t̄, that is the interior of the feasible set
for every t ∈ Λ is nonempty and it is fulfilled in a linear optimization problem when solving with
an interior point method, the lower semi-continuity of this map is also guaranteed. As a result,
Pt is continuous w.r.t. t ∈ Λ.

Lower semi-continuity of the optimal value function needs further condition than just conti-
nuity of the feasible solution sets Pt̄. , i.e., a weak upper semi-continuity, saying that for t near
t̄ at least one point x∗t ∈ P∗t can be approached by elements in a compact subset of Pt̄. Since of
closedness of the feasible set Pt̄, this condition is also fulfilled. To assure upper semi-continuity
of the optimal value function at t̄, we only need lower semi-continuity condition at one point
x∗ ∈ P∗t̄ , and this is fulfilled by the constraint qualification property at t̄ (See [24] for more
detail). Considering these facts, the optimal value function is continuous for all t ∈ Λ, including
the transition and change points.

Note that when a parameter value is a change point only, indices of free variables interchange
only between their index sets. Since they are absent in the objective function, then this variation
does not affect its representation. The representation of the optimal value function on the
neighborhoods of a change point does not alter when it is not a transition point, simultaneously.
On the other hand, the representation of the optimal value function changes at a transition
point, and it fails to have the first derivative.

Let us elaborate on the concept of a change point more clearly. Let the problem Pt(4Ã)
correspond to a production plan, and without loss of generality t0 = 0 be a change point of
this problem. Recall that the optimal value function in Problem Pt(4) is a free variable x0 in
Problem Pt(4Ã). Thus, a possibility of a situation in a change point is the change in the sign
of x0, which means that the sign of parametric optimal value function changes at this change
point. Here, the objective function stands as the production cost in a manufacturing plan, and
therefore, it may increase when the parameter value decreases. Alternatively, the production
cost decreases when x0 goes from negative to positive at this change point.

Other possibility is the change in a free variable in some constraints of Problem Pt(4Ã).
Again without loss of generality, let the free variable in one constraint is zero in an optimal
solution of the problem at this change point, and its sign changes passing through this point.
In this case we have an equation like

(ai1 +4ai1t)x1 + · · ·+ (ain +4aint)xn + xn+i = bi +4bit,

where bi is the amount of available amount of source i, and a unit of product j needs aij amount
of the source i. Here, xn+i stands for the amount of excess source in the production plan.
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Therefore, 4aij > 0 might translate as an increase in the production time of j when the quality
of this product increases. This promotion in the quality may necessitate a change on bi, the
available time source, while this may not be the only reason.
An equivalent form of this constraint is

ai1x1 + · · ·+ ainxn+ xn+i+ tz = bi
4ai1x1 + · · ·+ 4ainxn+ − z = 4bi,

where t could be considered as the degree of quality. Thus, z = 4ai1x1 +· · ·+4ainxn−4bi = 0
for t0 = 0 by the above-mentioned assumption, while we may have z > 0 for some t > 0, and
z < 0 for some t < 0. This means that increasing of the quality, (t > 0), implies in slack in
total considered extra time 4bi versus the necessary time 4ai1x1 + · · ·+4ainxn in an optimal
solution at t > 0 (i.e. z > 0), and vis versa. Observe that these two possibilities may occur
simultaneously as well.

As illustrated above, the optimal value function is differentiable at mere change points be-
cause its representation does not alter. However, it fails to be differentiable at transition points,
since the representation of the optimal value function is calculated based on eigenvalues of
different matrices (See Sections 6 and 8).

4.1 Special case

Let us consider the special case when 4b = 0. By substitution x0 = (c+ t4c)Tx, the Problem
Pt(4A,4c) is converted to

min
{
x0 : (c+ t4c)Tx− x0 = 0, (A+ t4A)x = b, x ≥ 0

}
,

where x ∈ Rn and x0 ∈ R. This problem can be summarized as

Pt(4Â) min
{
ĉT x̂ : (Â+ t4Â)x̂ = b̂, x̂T = (xT , x0), x ≥ 0

}
,

where

ĉ =

(
0
1

)
, Â =

(
cT −1
A 0

)
,4Â =

(
4cT 0
4A 0

)
, b̂ =

(
0
b

)
, x̂ =

(
x
x0

)
.

Here, zeros are of appropriate sizes and x̂j := xj , j = 1, . . . , n, x̂n+1 := x0. The dual of this
problem is

Dt(4Â) max
{
b̂T ŷ : (Â+ t4Â)T ŷ + ŝ = ĉ, ŷT = (vT1 , v

T
2 ), ŝT = (sT , 0), s ≥ 0

}
,

with v1 ∈ R, and v2 ∈ Rm where s ∈ Rn and zero is a number. Let P∗t (4Â) and D∗t (4Â)
denote optimal solution sets of Pt(4Â) and Dt(4Â), respectively. Let πt0 = (Bt0 , Nt0) be the
known optimal partition of Problems Pt0(4A,4c) and Dt0(4A,4c). We define the partition
π̂t0 = (B̂t0 , N̂t0), as B̂t0 := Bt0 ∪B−t0 ∪B

+
t0

where

B−t0 := {n+ 1 : x̂∗n+1(t0) < 0, for some x∗(t0) ∈ P∗t0(4Â)},
B+
t0

:= {n+ 1 : x̂∗n+1(t0) > 0, for some x∗(t0) ∈ P∗t0(4Â)},
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and N̂t0 = Nt0 ∪N◦t0 where

N◦t0 := {n+ 1 : x̂∗n+1(t0) = 0, for all x∗(t0) ∈ P∗t0(4Â)}.

Recall that for all i ∈ {1, . . . , n}, x̂∗j + ŝ∗j > 0, and for j = n+1, x̂∗j (t) and ŝ∗j (t) are not simul-
taneously zero. Thus, an induced optimal solution will be an induced strictly complementary
optimal solution.

Now, let πt0 = (Bt0 , Nt0) denote the optimal partition of Problems Pt0(4A,4c)
and Dt0(4A,4c), and π̂t0 = (B̂t0 , N̂t0) stands for the induced optimal partition of Problems
Pt0(4Â) and Dt0(4Â). Further, let l = |Bt0 | ≤ n and l ≤ l̂ = |B̂t0 | ≤ n + 1. We adapt the
notations and concepts in Section 3 to the Problem Pt(4Â). Let us consider

τ̂ : {1, . . . , l, . . . , l̂} → {1, . . . , n, n+ 1},
τ̂ ′ : {1, . . . , n+ 1− l̂} → {1, . . . , n, n+ 1},

are injective and increasing functions, Range(τ̂) ∪ Range(τ̂ ′) = {1, . . . , n + 1}, and Range(τ̂) ∩
Range(τ̂ ′) = ∅. For an induced optimal solution with induced optimal partition π̂t0 , one can
show that

B̂t0 = {τ̂(1), . . . , τ̂(l̂)}, N̂t0 = {τ̂ ′(1), . . . , τ̂ ′(n+ 1− l̂)}.

If n+ 1 ∈ N̂t0 , then l = l̂, and B̂t0 = {τ(1), . . . , τ(l)}. Note that, for a fixed t0 ∈ Λ, the induced
optimal primal-dual solution (x̂∗j (t0), ŷ∗j (t0), ŝ∗j (t0)) is defined as ones in general case with except
that here, m+ n+ 1 reduces to n+ 1, and some notations must be adapted.

Let us mention the necessary and sufficient conditions for an optimal solution of P0(4Â)
being a strictly induced optimal solution. The proof is similar to the proof of Theorem 1,
with the exception that functions τ and τ ′ are defined as (3) for Problem Pt(4A,4c), where
τ ′(i) ⊆ {i ∈ {1, . . . , n− l}} corresponds to the positive variables si in Problem Dt(4A,4c).

Theorem 2. Let for t ∈ Λ, πt = (Bt, Nt) be the optimal partition of Problems Pt(4A,4c)
and Dt(4A,4c). Further, let π̂t = (B̂t, N̂t) be the known induced optimal partition of problems
Pt(4Â) and Dt(4Â). Then, (x̂∗(t), ŷ∗(t), ŝ∗(t)) is a strictly induced complementary optimal
solution of these problems if and only if

Cond. 1 For 1 ≤ q ≤ l̂, x̂∗τ̂(q)(t) = eTq Â
†
τ̂ (t)b̂ is positive when τ̂(q) ∈ Bt ∪ B+

t , negative when

τ̂(q) ∈ B−t , and zero otherwise,

Cond. 2 For p ∈ Range(τ ′), ŝ∗p(t) = (c+ t4c)p − (c+ t4c)Tτ A
†
τ (t)Ap(t), is positive, and it is

zero otherwise.

5 Identifying an induced invariancy interval

Let π̃t0 = (B̃t0 , Ñt0) be the induced optimal partition of Problem P0(4Ã). First recall the fact
that for two arbitrary matrices U ∈ Rm×n and W ∈ Rn×n, where W is invertible, (UW )† =
W−1U †. Analogously, when U ∈ Rm×m, W ∈ Rm×n, and U is invertible, it holds (UW )† =
W †U−1 [25].
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Let us first mention a fact. Considering the original optimal partition π = (B,N), the
submatrix AB, corresponding with the columns in B, has full row or column rank. Recall that
Ãτ̃ (t) has some additional rows than AB. If AB has full column rank (|B| < m), then adding
some rows to this matrix does not result in losing this property for Ãτ̃ (t). On the other hand,
when AB has full row rank (|B| > m), adding some rows to this submatrix may lead it to
lose this property. In this case, one can remove redundant rows without affecting the in-hand
optimal partition.

Now, to determine the matrix Ã†τ̃ (t), three possibilities would be considered. When 2m+1 < l̃

and Ãτ̃ (t) has full-row rank, it holds Ãτ̃ (t0)Ã†τ̃ (t0) = I2m+1. Thus,

Ã†τ̃ (t) = (Ãτ̃ (t0) + (t− t0)4Ãτ̃ )† = (Ãτ̃ (t0)(Il̃ + (t− t0)Ã†τ̃ (t0)4Ãτ̃ ))†. (8)

Respecting the above-mentioned fact, when (Il̃ + (t − t0)Ã†τ̃ (t0)4Ãτ̃ ) is invertible, the right-
hand-side of (8) is equivalent to

(Il̃ + (t− t0)Ã†τ̃ (t0)4Ãτ̃ )−1Ã†τ̃ (t0). (9)

For 2m+ 1 > l̃, when Ãτ̃ (t) has full-column rank, it holds Ã†τ̃ (t0)Ãτ̃ (t0) = Il̃, and consequently

Ã†τ̃ (t) = (Ãτ̃ (t0) + (t− t0)4Ãτ̃ )† = ((I2m+1 + (t− t0)4Ãτ Ã†τ̃ (t0))Ãτ̃ (t0))†. (10)

When (I2m+1 + (t − t0)4Ãτ Ã†τ̃ (t0)) is invertible, then the right-hand-side of (10) is equivalent
to

Ã†τ̃ (t0)(I2m+1 + (t− t0)4Ãτ Ã†τ̃ (t0))−1. (11)

Finally for 2m+1 = l̃, when Ãτ̃ (t) has full-row rank and full-column rank, since Moore-Penrose

inverse of Ã†τ̃ (t) is identical with the standard inverse, i.e., Ã−1
τ̃ (t), thus

Ã†τ̃ (t) = Ã−1
τ̃ (t) = (I2m+1 + (t− t0)Ã−1

τ̃ (t0)4Ãτ̃ )−1Ã−1
τ̃ (t0). (12)

In all of these cases, the SVD of Ãτ̃ (t) is a general computational method to calculate the Ã†τ̃ (t)

(See Page 152). In this study, our methodology is based on nonzero eigenvalues of Ã†τ̃ (t0)4Ãτ̃ ,

4Ãτ Ã†τ̃ (t0), or Ã−1
τ̃ (t0)4Ãτ̃ , depending on the magnitude of l̃. Respecting the fact that for

two matrices Q and T with appropriate sizes, nonzero eigenvalues of TQ and QT are identical,
and the extra ones are zero [16, Theorem 1.3.20], and depending on the size of TQ and QT , it
is more-cost-effective to use the one with less dimension. Here, without loss of generality, we
assume that 2m+ 1 ≤ l̃ and construct our methodology based on (9).

Let for t0, we know H(Ãτ̃ (t0)). The following theorem presents a tool that is capable to
determine some intervals, where for t ∈ Λ the associated inverse in (9) exists. Note that at
these intervals, the corresponding index set H(Ãτ̃ (t)) of pseudo-inverse of Ãτ̃ (t) is identical to
H(Ãτ̃ (t0)). The proof is similar to the proof of Theorem 2 in [18], and omitted.

Theorem 3. For a given t0, let τ̃ correspond to the induced optimal partition π̃t0 of Problem

Pt0(4Ã). Then, for all t ∈ Λπ̃t0 with t 6= t0, the inverse of (Il̃+ (t− t0)Ã†τ̃ (t0)4Ãτ̃ ) in (9) exists
if and only if

1 + αj(t− t0) 6= 0, j = 1, . . . , l̃, (13)

where α1, . . . , αl̃ are nonzero eigenvalues of 4Ãτ̃ Ã
†
τ̃ (t0).
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Remark 1. Recall that for 2m + 1 < l̃, the size of Ã†τ̃ (t0)4Ãτ̃ is greater than the size of

4Ãτ̃ Ã
†
τ̃ (t0) . Thus, it is more cost-effective to consider α1, . . . , αl̃ as the non zero eigenvalues

of 4Ãτ̃ Ã
†
τ̃ (t0).

Corollary 1. Let Pt0(4Ã) have a unique basic optimal solution, i.e., l̃ = 2m+ 1. In this case,
Ãτ̃ (t) is invertible for all t ∈ Λπ̃t0 if and only if (13) holds, where α1, . . . , α2m+1 are eigenvalues

of Ã−1
τ̃ (t0)4Ãτ̃ .

The following theorem relates Cond. 1, the feasibility of Pt0(4Ã), to the eigenvalues of some
other matrices. The proof is similar to the proof of Theorem 3 in [18] and omitted.

Theorem 4. Let τ̃ correspond to the induced optimal partition π̃t0 of Problems Pt0(4Ã) and

Dt0(4Ã). Further, let βq,1, . . . , βq,l̃ be nonzero eigenvalues of (4Ãτ̃ + b̃eTq )Ã†τ̃ (t0), and α1, . . . , αl̃
be nonzero eigenvalues of 4Ãτ̃ Ã

†
τ̃ (t0). Then, for 1 ≤ q ≤ l̃, and τ̃(q) ∈ B ∪B+, x̃∗τ̃(q)(t) > 0 is

identical with
l̃∏

j=1

1 + (t− t0)βq,j
1 + (t− t0)αj

{
≥ 1, if (t− t0) ≥ 0,

≤ 1, if (t− t0) ≤ 0.

When τ̃(q) ∈ B−, x̃∗τ̃(q)(t) < 0 is identical with

l̃∏
j=1

1 + (t− t0)βq,j
1 + (t− t0)αj

{
≤ 1, if (t− t0) ≥ 0,

≥ 1, if (t− t0) ≤ 0.

Next theorem relates Cond. 2, the feasibility of Dt0(4Ã), to the eigenvalues of another
matrices.

Theorem 5. Let π̃t0 be the known induced optimal partition of Problems Pt0(4Ã) and Dt0(4Ã).
Moreover, let α1, . . . , αl; γp,1, . . . , γp,l; γ̄p,1, . . . , γ̄p,l; δp,1, . . . , δp,l; and δ̄p,1, . . . , δ̄p,l be nonzero

eigenvalues of 4AτA†τ (t0); (4Aτ + 4ApcTτ )A†τ (t0); (4Aτ + 4Ap4cTτ )A†τ (t0); (4Aτ + (Ap +

t04Ap)cTτ )A†τ (t0); and (4Aτ +(Ap+ t04Ap)4cTτ )A†τ (t0), respectively. Then, for p ∈ Range(τ ′),
inequality

(cτ + t4cτ )TA†τ (t)Ap(t)− (cp + t4cp) < 0, (14)

reduces to

1

t− t0

(
t

l∏
j=1

1 + (t− t0)δ̄p,j
1 + (t− t0)αp,j

+
l∏

j=1

1 + (t− t0)δp,j
1 + (t− t0)αp,j

)
+ t

l∏
j=1

1 + (t− t0)γ̄p,j
1 + (t− t0)αp,j

+
l∏

j=1

1 + (t− t0)γp,j
1 + (t− t0)αp,j

<
t2 + (2− t0)t+ (1− t0)

t− t0
+ cp + t4cp.

(15)

Proof. First, recall that the feasibility of Dt(4Ã), i.e. s̃ ≥ 0, is identical with the feasibility of
Dt(4) (See the proof of Theorem 1). Consider the sets of indices corresponding to positive and
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zero elements of x in x̃ are respectively denoted by τ and τ ′ (See Section 3). For p ∈ Range(τ ′),
by substituting of

Ap(t) = Ap + t4Ap = Ap + (t− t0)4Ap + t04Ap,

in (14), and adding 1 + 1
t−t0 + t(1 + 1

t−t0 ) to its both sides, it simply reduces to

1 +
1

t− t0
+ cTτ A

†
τ (t)(Ap + (t− t0)4Ap + t04Ap)

+t
(

1 +
1

t− t0
+4cTτ A†τ (t)(Ap + (t− t0)4Ap + t04Ap)

)
<
t2 + (2− t0)t+ (1− t0)

t− t0
+ cp + t4cp,

(16)

or equivalently to

1 + (t− t0)cTτ A
†
τ (t)4Ap +

1

t− t0

(
1 + (t− t0)cTτ A

†
τ (t)(Ap + t04Ap)

)
+t
(

1 + (t− t0)4cTτ A†τ (t)4Ap +
1

t− t0
(1 + (t− t0)4cTτ A†τ (t)(Ap + t04Ap))

)
<
t2 + (2− t0)t+ (1− t0)

t− t0
+ cp + t4cp.

(17)

By considering (9), (17) can be translated to (15). The proof is complete.

6 Closed form of the optimal value function

Let Z̃(t) and Ẑ(t) denote the optimal value functions of Problems Pt(4) and Pt(4A,4c),
respectively. Without loss of generality, we determine their representation when l > m. Other
cases go similarly.

Theorem 6. Let Conds 1 and 2 satisfy for a fixed parameter t ∈ Λ. Further, let α1, . . . , αl,
α×1 , . . . , α

×
l , ᾱ

×
1 , . . . , ᾱ

×
l , ᾰ

×
1 , . . . , ᾰ

×
l and α̌×1 , . . . , α̌

×
l be nonzero eigenvalues of 4AτA

†
τ (t0),

(4Aτ + 4b4cTτ )A†τ (t0), (4Aτ + 4bcTτ )A†τ (t0), (4Aτ +b4cTτ )A†τ (t0) and (4Aτ + bcTτ )A†τ (t0),
respectively. Then

Z̃(t) =
1

t− t0

(
t2

l∏
j=1

1 + (t− t0)α×j
1 + (t− t0)αj

+ t
( l∏
j=1

1 + (t− t0)ᾱ×j
1 + (t− t0)αj

+

l∏
j=1

1 + (t− t0)ᾰ×j
1 + (t− t0)αj

)
+

l∏
j=1

1 + (t− t0)α̌×j
1 + (t− t0)αj

− (t+ 1)2

)
.

Proof. Note that in this case

Z̃(t) = c̃Tτ̃ x̃τ̃ (t) = x0 = (c+ t4c)Tτ xτ
= (c+ t4c)Tτ A

†
τ (t)(b+ t4b)

= t24cTτ A
†
τ (t)4b+ t(cTτ A

†
τ (t)4b+4cTτ A

†
τ (t)b) + cTτ A

†
τ (t)b.
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By (9), we have

(t2 + 2t+ 1) + (t− t0)Z̃(t) = t2
(

1 + (t− t0)4cTτ A
†
τ (t)4b

)
+t
(

1 + (t− t0)cTτ A
†
τ (t)4b+ 1 + (t− t0)4cTτ A

†
τ (t)b

)
+1 + (t− t0)cTτ A

†
τ (t)b.

(18)

Using the tools from realization theory (See Page 152 and Eq. (5)) on each terms in the right-
hand-side of (18), we have

(t2 + 2t+ 1) + (t− t0)Z̃(t) = t2
l∏

j=1

1 + (t− t0)α×j
1 + (t− t0)αj

+t
( l∏
j=1

1 + (t− t0)ᾱ×j
1 + (t− t0)αj

+

l∏
j=1

1 + (t− t0)ᾰ×j
1 + (t− t0)αj

)
+

l∏
j=1

1 + (t− t0)α̌×j
1 + (t− t0)αj

.

The proof is complete.

Corollary 2. In the spacial case l = m, it holds

Z̃(t) =
1

t− t0

(
t2

m∏
j=1

1 + (t− t0)α×j
1 + (t− t0)αj

+ t
( m∏
j=1

1 + (t− t0)ᾱ×j
1 + (t− t0)αj

+
m∏
j=1

1 + (t− t0)ᾰ×j
1 + (t− t0)αj

)
+

m∏
j=1

1 + (t− t0)α̌×j
1 + (t− t0)αj

− t2 − 2t− 1

)
,

where α1, . . . , αm, α×1 , . . . , α
×
m, ᾱ×1 , . . . , ᾱ

×
m, ᾰ×1 , . . . , ᾰ

×
m and α̌×1 , . . . , α̌

×
m are the eigenvalues

of A−1
τ (t0)4Aτ , A−1

τ (t0)(4Aτ +4b4cTτ ), A−1
τ (t0)(4Aτ +4bcTτ ), A−1

τ (t0)(4Aτ + b4cTτ ) and
A−1
τ (t0)(4Aτ + bcTτ ), respectively.

Corollary 3. For 4b = 0, we have

Ẑ(t) =
1

t− t0
(t

l∏
j=1

1 + (t− t0)ᾰ×j
1 + (t− t0)αj

+

l∏
j=1

1 + (t− t0)α̌×j
1 + (t− t0)αj

− t− 1),

where the nonzero values of α1, . . . , αl, ᾰ
×
1 , . . . , ᾰ

×
l and α̌×1 , . . . , α̌

×
l are nonzero eigenvalues of

4AτA
†
τ (t0), (4Aτ +b4cTτ )A†τ (t0) and (4Aτ +bcTτ )A†τ (t0), respectively. When l = m, the closed

form of Ẑ(t) is as

Ẑ(t) =
1

t− t0
(t

m∏
j=1

1 + (t− t0)ᾰ×j
1 + (t− t0)αj

+

m∏
j=1

1 + (t− t0)α̌×j
1 + (t− t0)αj

− t− 1),

where α1, . . . , αm, ᾰ
×
1 , . . . , ᾰ

×
m and α̌×1 , . . . , α̌

×
m are as stated in Corollary 2.
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7 Finding all transition and change points

It should be noted that the algorithm presented in [18] can be generalized to determine the cor-
responding invariancy intervals, change points and transition points to the problem Pt(4Ã) and
its specific case Pt(4Â). In this algorithm, we first consider a sufficiently small precision value
ε > 0 and identify induced optimal partition of Problem Pt(4Ã) for t = t0 = 0 and t = t0 + ε (if
the latter exists). Recall that Pt0(4Ã) always has optimal solution. If Pt0+ε(4Ã) is unbounded
or infeasible, then t0 is a transition or change point, the algorithmic process terminates. Oth-
erwise, by using Theorems 3-5 for Problem Pt0+ε(4Ã), one can find the corresponding induced
optimal partition invariancy interval by an almost identical process in [18] with some differences
which are related to the converted form of Cond. 2. If the upper bound of this interval is infinite,
we stop. Otherwise, one could continue the process, after adding ε to this end value, until to
the point where problem Pt(4Ã) is unbounded or infeasible.

To find the induced optimal invariancy intervals, and transition or change points to the left
of t0 = 0, one replaces ε < 0 and adjust the process accordingly. We refer to [18] for more
details.

8 Illustrative examples

In this section, we first present two concrete examples to clarify the approach. We also present
a prototype instance for a financial application. In these examples, we set ε = 0.015. The
first example is an instance in general case which includes some points that are both transition
and change point or one of them. The second example is an instance in special case which
only include a transition point. The third example is a prototype instance of the application in
finance.

Example 1. Consider the following problem

min (−1 +
1

2
t)x1 + (−1 +

1

2
t)x2

s.t. tx1 + (1 + t)x2 + x3 = 1 + 2t,
(1− t)x1 + (1− 2t)x2 + x4 = 1− t,

x1, x2, x3, x4 ≥ 0,

where t ∈ R is the parameter. This problem can be rewritten as

min x0

s.t. (−1 +
1

2
t)x1 + (−1 +

1

2
t)x2 − x0 = 0,

x2 + x3 + t(x1 + x2 − 2) = 1,
x1 + x2 + x4 + t(−x1 − 2x2 + 1) = 1,

x1, x2, x3, x4 ≥ 0.

(19)

By substituting x5 = x1 +x2−2 and x6 = −x1−2x2 +1, Problem (19) converts to the following
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Table 1: Invariancy intervals, induced optimal partitions and the optimal value function in
Example 1.

Inv. Int. B B+ B− N N0 Z(t)

−1 {1} ∅ {5, 7} {2, 3, 4} {6} −1.5

(−1, 0) {1, 3} ∅ {5, 7} {2, 4} {6} t− 2

2
0 {1, 2, 3} ∅ {5, 6, 7} {4} ∅ −1

(0, 0.5) {1, 2} ∅ {5, 6, 7} {3, 4} ∅
t3 − 2t2 + 0.5t− 1

t2 − t+ 1
0.5 {1, 2} ∅ {6, 7} {3, 4} {5} −1.5

(0.5, 1) {1, 2} {5} {6, 7} {3, 4} ∅
t3 − 2t2 + 0.5t− 1

t2 − t+ 1
1 {1} {5} {6, 7} {2, 3, 4} ∅ −1.5

(1, 2) {1, 4} {5} {6, 7} {2, 3} ∅
t2 + 1.5t+ 1

t
2 {1, 2, 3, 4} ∅ {5, 6} ∅ {7} 0

(2,∞) {2, 3} {6, 7} {5} {1, 4} ∅
t2 − 3t+ 2

4t− 2

equivalent one with only perturbation in the coefficient matrix.

min x0

s.t. (−1 +
1

2
t)x1 + (−1 +

1

2
t)x2 − x0 = 0,

x2 + x3 + tx5 = 1,
x1 + x2 + x4 + tx6 = 1,

x1 + x2 − x5 = 2,
−x1 − 2x2 − x6 = −1,

x1, x2, x3, x4 ≥ 0.

To be clear

Ã =


−1 −1 0 0 0 0 −1
0 1 1 0 0 0 0
1 1 0 1 0 0 0
1 1 0 0 −1 0 0
−1 −2 0 0 0 −1 0

 , 4Ã =


1

2

1

2
0 0 0 0 0

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 ,

c̃T =
(
0 0 0 0 0 0 1

)
, b̃T =

(
0 1 1 2 −1

)
.

Table 1 has a summary of the results and Fig. 1 denotes the corresponding optimal value
function. The domain of the optimal value function is the closed unbounded interval [−1,∞) in
this example.

As it is seen from this table, t = 0 and t = 2 are simultaneously transition and change points,
while t = −1 and t = 1 are mere transition points. The optimal value function is continuous on
transition points but not differentiable. On the other hand, t = 0.5 is merely a change point, and
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−1 0 0.5 1 2

−1.5

−1

0

t

Z̃
(t
)

Figure 1: The optimal value function Z̃(t) in Example 1.

representations of the optimal value function before and after this point are identical. Clearly,
it is continuous and differentiable at this point. And as another observation, its slope does not
alter at this change point.

Example 2. Consider the family of linear programs as

min −(1− t)x1 −(2 + t)x2

s.t. (1 + t)x1 +(1− t)x2 +x3 = 1,
x1, x2, x3 ≥ 0,

where t ∈ R. This problem can be rewritten as

min x0

s.t. −(1− t)x1 −(2 + t)x2 −x0 = 0,
x1 +x2 + x3 +t(x1 − x2) = 1,
x1, x2, x3 ≥ 0,

(20)

Note that in problem (20) only the coefficient matrix is perturbed and

ĉ =


0
0
0
1

 , Â =

(
−1 −2 0 −1
1 1 1 0

)
, 4Â =

(
1 −1 0 0
1 −1 0 0

)
, b̂ =

(
0
1

)
.

The results are summarized in Table 2 and the corresponding optimal value function is denoted
in Fig. 2. As it is seen from Table 2, the point t = −0.2 is a transition point. The optimal
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Table 2: Invariancy intervals, induced optimal partitions and the optimal value function of
Example 2.

t B B+ B− N N0 Zb(t)

(−1,−0.2) {1} ∅ {4} {2, 3} ∅
t− 1

1 + t
−0.2 {1, 2} ∅ {4} {3} ∅ −1.5

(−0.2, 1) {2} ∅ {4} {1, 3} ∅
t+ 2

t− 1

−1 −0.2 1

−1.5

t

Ẑ
(t
)

Figure 2: The optimal value function Ẑ(t) in Example 2.

value function in this example is not differentiable at t = −0.2, as it is easily observed that
Z̃ ′− = 3.125 and Z̃ ′+ = −2.083. Moreover, its domain is the open interval (−1,+1) unlike the
previous example.

The following example is a simple description of the financial application proposed in Page
147.

Example 3. Consider the parametric problem (2). For a numerical experience, let b = 0.04,
n = 4 and time unit is set as a “week”. The ask prices, the bid prices and prespecified respective
variation rates θ1, θ2, θ3, θ4 are shown in Table 3. We replace the following constraints

xaj + zaj = 1, xbj + zbj = 1, j = 1, . . . , 4,

instead of the upper bounds of variables where zaj , z
b
j ≥ 0, j = 1, . . . , 4, are as slack variables.
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Table 3: The data for Example 3.

Bond 1 2 3 4

Bid Price 1.335 0.7487 455.18 304.48

Ask Price 1.3354 0.7489 455.2 304.5

Coupon 0.03 0.027 0.004 0.007

Variation Rate 0.2 0.3 0.04 0.5

Table 4: Optimal solution at t = 0 and its corresponding induced optimal partition in Example
3.

B {3, 4, 5, 6, 10, 11, 14, 16, 17}
x̃∗TB (0)

(
1, 1, 0.8, 1, 1, 1, 0.2, 1, 1

)
B− {18, 27}

x̃∗TB−(0)
(
−0.0184,−757.8428

)
N {1, 2, 7, 8, 9, 12, 13, 15}
ST1N

(
0.0004, 0.4532, 455.02, 304.19, 44.51, 455.0019, 304.17, 0.4530

)
S2

(
1
)

N0 {19, 20, 21, 22, 23, 24, 25, 26}
y

(
−1
)

vT1
(
44.51, 0, 0,−455.0019,−304.17, 0,−0.4530, 0, 0

)
As a result, the index set is I = {1, 2, . . . , 17}, and the standard form of this instance is

max 1.335(1 + 0.2t)xb1 +0.7487(1 + 0.2t)xb2 +455.18(1 + 0.2t)xb3
+304.48(1 + 0.2t)xb4 −1.3354(1 + 0.3t)xa1 −0.7489(1 + 0.3t)xa2
−455.2(1 + 0.3t)xa3 −304.5(1 + 0.3t)xa4

s.t. −0.03(1 + 0.4t)xb1 −0.027(1 + 0.4t)xb2 −0.004(1 + 0.4t)xb3
−0.007(1 + 0.4t)xb4 +0.03(1 + 0.4t)xa1 +0.027(1 + 0.4t)xa2
+0.004(1 + 0.4t)xa3 +0.007(1 + 0.4t)xa4 −x5 = 0.04 + 0.5t,

xaj + zaj = 1, xbj + zbj = 1, j = 1, . . . , 4,

xa1, x
a
2, x

a
3, x

a
4, x

b
1, xb2, x

b
3, x

b
4, x5 ≥ 0.

Observe that the assumption paj > pbj holds for t ≥ 0. By some manipulations as described in

Page 153, this problem can be transformed to a uni-parametric problem as Pt(4Ã). For t = 0,
the optimal solution and its corresponding induced optimal partition are reflected in Table 4.
Table 5 includes all induced optimal partition invariancy intervals and corresponding induced
optimal partitions, as well as the representation of the optimal value function. Fig. 3 depicts
the optimal value function for t ≥ 0.

As Table 5 shows, at transition points where some indices interchange between B and N ,
the optimal value function is continuous but not differentiable. While it is continuous from left
at the end point t = 175

108 , the problem is infeasible for t > 175
108 . Moreover, the point t = 1.1986 is

a change point where displacement of the index 27 occurs between B+, B− and N0 before and
after this point. Moreover, the representation of the optimal value function in the neighborhood
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)

Figure 3: Optimal value function Z̃(t) in Example 3.

of this point does not change.
As Fig. 3 depicts, for 0 ≤ t < 75

227 , simultaneously selling some amount of bonds 3 and 4 and
buying some amount of bonds 1 and 2 increase the total profit, while for 75

227 < t < 325
447 and

325
227 < t < 25

22 the optimal value function decreases. Note that for 25
22 < t < 1.1986 the profit goes

down while for 1.1986 < t < 150
109 the loss goes up. Analogous descriptions can be provided for

the results in other intervals.

8.1 Computational results

To observe the result of the model in large scale problems, the computational results are reported
on some Netlib test problems. The characteristics of these problems are reflected in Table 6.

Name Rows Columns

Afiro 27 51

Blend 74 114

Stocfor1 117 165

Scagr7 129 185

Table 6: Characteristics of test problems.

The hardware consisted of an Intel Corei7 @ 1.80 GHz Processor, 12 GB of RAM running
Windows 10 Enterprise. The algorithm has been implemented in MATLAB R2019b using
the linprog solver. In implementing the proposed algorithm, it is necessary to determine the
intersection of some intervals where Conds 1 and 2 satisfy. INTLAB is a toolbox for Matlab,
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supporting real and complex intervals operations. Here, we used some standard commands of
the interval arithmetic toolbox INTLAB Ver. 11 for interval computations.

In each parametric Problem Pt(4), for 4A, bn
2
c of elements are randomly selected and

their values are produced by the pseduorandom normal codes of the Matlab. The elements of
4b and 4c are produced by uniform distributions from intervals [0, 3] and [−1, 2], respectively.
Computational results corresponding to ε = 0.015 are depicted in Table 7.

Table 7: Computational results for ε = 0.015.

No. of detected Ind.
Convex section Inv. Trans. Chang. Total CPU

Problem of Λ; 0 ∈ Λ Int. Points Points Both time (Sec.)

Afiro (-3.136,22.8] 66 32 18 15 6831.8

Blend [-0.024,2.089] 48 44 3 0 37273

Scagr7 [-0.4659,0.6677] 36 31 0 4 76934

In Table 7, the first column denotes the name of problems; the second column is the cor-
responding convex section of the domain of the optimal value function containing t0 = 0. The
next four consequent columns are the number of detected invariancy intervals, transition points,
change points and those that are both transition and change points, respectively. The last
column shows the total time (in CPU time) for determining all invariancy intervals.

As Tables 6 and 7 show, the computation time seems to increase as the size of the problem
increases. This impression cannot be regarded as a general rule. For example, the problem
Stocfor1 only revealed one invariancy interval (−0.011, 0.012) for several random selections
of 4A, 4b and 4c; and the total CPU time was almost less than 850 Sec. Our experiments
revealed that the time required to determine an interval satisfying Cond. 1, is as least as the
two-thirds of the total time.

9 Conclusion

In this paper, we considered a uni-parametric linear program when left and right-hand-side of
constraints, in addition to the objective coefficients, were linearly perturbed by an identical
parameter. Based on the induced optimal partition concept, a methodology for identifying the
corresponding invariancy interval was provided. The concept of change point was introduced.
It was observed that the optimal value function is fractional on each interval. Using a compu-
tational algorithm, one could found all invariancy intervals. Provided examples indicated the
validity of the findings. This study could be continued for more than one parameter and the
case when the perturbation is not linear with respect to the parameter.
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