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Abstract.This paper deals with the existence and optimal harvesting of two competing species
in a polluted environment under the influence of pollution reduction effort. We propose and
analyze a nonlinear system wherein harvesting and pollution reduction activities, respectively,
are incorporated into the resource and pollution dynamic equations. We investigate the coexis-
tence, competitive exclusion, and extinction of both species in the system. Further, considering
pollution-dependent revenues, we study an optimal harvest problem on an infinite horizon. The
results indicate that the extinction of both species is inevitable when pollutant inflow is suffi-
ciently large. Otherwise, the proper effort allocation towards pollution reduction guarantees not
only species coexistence but also improves the revenue. The significant outcomes of the study
are verified by considering practical examples.
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1 Introduction

The ever-increasing effect of environmental pollution and exploitation is a major threat to the
existence of ecologically-interdependent populations. Interspecific competition, on the other
hand, is well known to affect the growth rate of the species as it reduces the amount of the
available resources to each species when that resource is in short supply. Hence, studying the
simultaneous effect of competition, pollution, and exploitation on the dynamics of the system is
necessary for sustainable resource utilization.

∗Corresponding author.
Received: 5 December 2020 / Revised: 1 February 2020 / Accepted: 3 February 2021
DOI: 10.22124/jmm.2021.18266.1573

c© 2021 University of Guilan http://jmm.guilan.ac.ir

http://jmm.guilan.ac.ir


518 S.D. Zawka, P.D.N. Srinivasu

The effect of pollutants on the survival of a single-species population has been studied inten-
sively in the literature [2, 10, 11, 13–15, 19, 29]. Considerable investigations were made to study
the effect of pollution on the dynamics of the interacting populations [6, 9, 20–22, 25–28, 31]. In
particular, Misra and Saxena [21] presented a mathematical model of the two species’ competi-
tive system by considering the growth rates of the species and the carrying capacity are directly
affected by pollution. Dubey and Hussain [12] proposed and analyzed a mathematical model
for studying the survival of two interacting species in a polluted environment by considering
both constant and instantaneous introduction of pollutants into the environment. Shukla et
al. [28] studied the existence and survival of two competing species in a polluted environment,
and underlined that the amount of emission of toxicants into the environment plays a major
role in the species coexistence.

To the best of our knowledge, studies with the emphasis on the dynamics of competing
species (in a polluted environment) in the presence of exploitation and pollution reduction
seen rarely in the literature. The works presented in [16, 17, 23, 30, 33, 34] mainly focus on the
dynamics of exploited single-species populations in the presence of pollution. In this study, we
consider the dynamics of harvested two-species competitive system in a polluted environment
under the influence of pollution reduction. We investigate the stable coexistence, competitive
exclusion, and extinction of both species in the system. Further, by considering pollution-
dependent revenue function, we study an optimal harvest problem.

We organize the work as follows. In Section 2, we formulate the model, and analysis of
steady-state equilibria is given in Section 3, wherein we investigate the existence and stability
of the steady-state equilibria and the effect of effort allocation on the stock as well as the yield.
In Section 4, we present the optimal harvest problem. We give numerical simulations in Section
5, which is followed by discussion and conclusions in Section 6.

2 Model formulation

Consider the ecosystem consisting of two competing species (subjected to harvesting) and pol-
lutants. The presence of pollution affects both the growth rate and carrying capacity of the
species, resulting in a decline in the yield. Consequently, it becomes necessary to allocate a
part of the total effort capacity towards pollution reduction through environmental treatment
(instead of utilizing the entire effort for harvesting) so that the yield gets improved. Since a
higher resource level gives more catch per unit effort, and the resource stock gets increased by
reducing pollution, it is a reasonable action to allocate a part of the available effort capacity
towards pollution reduction.

Suppose the harvester has a total effort capacity of Etotal (measured in terms of money)
per unit time to put in harvesting, and this effort must be allocated between harvesting and
pollution reduction. Let E1 and E2 be the efforts allocated towards harvesting species1 and
species2, respectively, and the remaining effort Etotal −E1 −E2 is used for pollution reduction.
Further, let the maximum allowable effort for harvesting species i is Emaxi (i.e., 0 ≤ Ei ≤ Emaxi

for i = 1, 2) and that

Emax1 + Emax2 = Etotal. (1)

Now, following [17,21,33,34], the dynamics of two competing species in a polluted environment
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in the presence of harvesting and pollution reduction is given by

dx1
dt

= r1x1(1−
x1
K1

)− c12x1x2 − d1x1z − α1q1E1x1, (2a)

dx2
dt

= r2x2(1−
x2
K2

)− c21x2x1 − d2x2z − α2q2E2x2, (2b)

dz

dt
= v −

[
γ1x1 + γ2x2 + β(Etotal − E1 − E2) + η

]
z, (2c)

x1(0) > 0, x2(0) > 0, z(0) > 0. (2d)

Description of the parameters and constants involved in the model is presented in Table 1. The

Table 1: Description of the associated parameters and constants in the model.

Parameters Symbol

Intrinsic growth rate for species i ri
Carrying capacity of species i Ki

The action of species j upon the growth rate of species i cij
The action of pollution upon the growth rate of species i di
Uptake of pollutant by species i γi
Pollutants inflow rate v
Total effort capacity Etotal

Harvest effort associated with species i Ei
Conversion factor associated with effort Ei αi
Conversion factor associated with de-pollution effort β
Natural degradation of pollutants η
Catchability coefficient for species i qi

quantity xi(t) represents the population size of species i (for i = 1, 2) and z(t) stands for the
stock of pollutants at time t. The expression αiqiEixi represents the harvest rate associated
with species i, where αiEi denotes the harvest effort in physical terms (such as the standard
fishing vessels). The expression β(Etotal−E1−E2)z in (2c) stands for the removal of pollutants
in the environment by the de-pollution effort Etotal − E1 − E2. In the model, the regeneration
function for species i (in the absence of competition and harvesting) is given by

Fi(xi, z) = Ri(z)xi
(
1− xi

ki(z)

)
, (3)

where Ri(z) = ri − diz and ki(z) = Ki(ri−diz)
ri

are the pollution dependent intrinsic growth rate
and the environmental carrying capacity of Species i, respectively. Clearly, ri and Ki are the
intrinsic growth rate and environmental carrying capacity of species i in the absence of pollution,
respectively. In the model (2a)-(2c), the stock of pollutants (in the environment) directly affects
the growth rate and carrying capacity of the species. Furthermore, the environment is assumed
to be so large that the change of toxicant (in the environment) that comes from uptake and
egestion by the species is neglected.
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Before proceeding to study the analysis of steady-state equilibria, it is important to state
the following lemmas which can easily established.

Proposition 1. Consider system (2a)-(2c) with the initial condition in (2d). Then

(I) The system admits a unique solution (x1(t), x2(t), z(t)) for all t ≥ 0.

(II) The solutions x1(t), x2(t) and z(t) of the differential equations (2a), (2b) and (2c), respec-
tively, are nonnegative and bounded for all t ≥ 0. In particular, if Dc ⊂ R3

+ is a set given
by

Dc =
{

(x1, x2, z) : 0 < x1 ≤ K1, 0 < x2 ≤ K2, 0 < z ≤ v

η

}
,

then any solution that starts in Dc stays in Dc for all t ≥ 0.

3 Analysis of the steady-state equilibria

Since the resource and pollution stocks are non negative in nature, we focus on the equilibria
of system (2a)-(2c) that belong to the first octant of the x1x2z-space. With the help of the
following transformations

bi =
ri
Ki
, aij =

cij
bi
, βi =

di
bi
, ωi =

ri − αiqiEi
bi

, d = η + β(Etotal − E1 − E2),

for i, j = 1, 2, the system under consideration can be rewritten as

dx1
dt

= b1x1
(
ω1 − x1 − a12x2 − β1z

)
, (4a)

dx2
dt

= b2x2
(
ω2 − x2 − a21x1 − β2z

)
, (4b)

dz

dt
= v − z(γ1x1 + γ2x2 + d). (4c)

And, the possible nonnegative equilibria are

Q0 = (x01, x
0
2, z

0) =
(
0, 0,

v

d

)
, (5a)

Q1 = (x̃1, x̃2, z̃) =

(
x̃1, 0,

v

d+ γ1x̃1

)
, (5b)

Q2 = (x1, x2, z) =

(
0, x2,

v

d+ γ2x2

)
, (5c)

Q∗ = (x̂1, x̂2, ẑ). (5d)

Throughout the paper, the equilibria Q0, Qi and Q∗ are referred to as the axial, boundary, and
interior equilibria of system (2a)-(2c), respectively.

The axial equilibrium (Q0) stands for the state where no species exists in the environment
except pollution, and it always exist in the system. The boundary equilibrium (Qi for i = 1, 2)
represents the state where only species i exists in the environment. It can be easily verified from
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(5b) & (5c) that for the given pair of harvest efforts (E1, E2), the existence of Qi depends on
the coefficients of the following quadratic equation

γixi
2 − (γiωi − d)xi + βiv − ωid = 0. (6)

Clearly, (6) admits only one positive real root whenever

βiv − ωid < 0,

and it has two positive real roots for

γiωi − d > 0, βiv − ωid > 0, (γiωi − d)2 − 4γi(βiv − ωid) > 0.

In the former case, the system under consideration admits two additional boundary equilibria:

Q1
+ = (x̃+1 , 0, z̃) & Q2

+ = (0, x+2 , z),

whereas in the latter case, it admits four additional boundary equilibria:

Q1
+ = (x̃+1 , 0, z̃), Q

1
− = (x̃−1 , 0, z̃), Q

2
+ = (0, x+2 , z) &Q2

− = (0, x−2 , z),

where

xi
± =

γiωi − d±
√

(γiωi − d)2 − 4γi(βiv − ωid)

2γi
. (7)

The interior equilibrium (Q∗) corresponds to the coexistence of the species. Here, for each
pair of the harvest efforts (E1, E2), the components of the interior equilibrium (if it exists) are

x̂1 =
(ω1 − ω2a12)− (β1 − a12β2)ẑ

1− a12a21
,

x̂2 =
(ω2 − ω1a21)− (β2 − a21β1)ẑ

1− a12a21
,

(8)

and ẑ is the positive solution of a quadratic equation

Az2 −Bz + C = 0, (9)

where A, B and C are given by

A = γ1(β1 − a12β2) + γ2(β2 − a21β1),
B = γ1(ω1 − ω2a12) + γ2(ω2 − ω1a21) + (1− a12a21)d,
C = (1− a12a21)v.

(10)

Note that the existence of the interior equilibrium depends on the sign of coefficients of the
quadratic equation in (9). Clearly, (9) has two positive real roots whenever

A > 0, B > 0, C > 0, B2 − 4AC > 0 (11)
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and it has only one positive real root whenever

A > 0, C < 0.

In the former case, the system has two interior equilibria:

Q∗+ = (x̂1, x̂2, ẑ+) & Q∗− = (x̂1, x̂2, ẑ−),

whereas in the latter case it has only one interior equilibrium (Q∗+ = (x̂1, x̂2, ẑ+)), where

ẑ± =
B ±

√
B2 − 4AC

2A
. (12)

Let’s see the biological implications of the signs of the coefficients A,B and C. Note that
C > 0 whenever

1− a12a21 > 0. (13)

This situation represents the case where the interspecific competition is weak in the system,
which allows the coexistence [18]. On the other hand, condition 1− a12a21 < 0 depicts the case
where competition is strong (at least for one of the species) in the system, and hence it leads to
the competitive exclusion.

We know that the intrinsic growth rate ri has a direct relationship with the stock x̂i and it
has an inverse relationship with that of x̂j for i 6= j, i, j = 1, 2. Thus, expressions ω1 − ω2a12
and ω2−ω2a21 > 0 in (8) are positive provided that C > 0. Consequently, we have the following
important restrictions on the harvest efforts E1 and E2 associated with species1 and species2,
respectively:

E1 <
1

α1q1

[
r1 − ω2c12

]
,

E2 <
1

α2q2

[
r2 − ω1c21

]
.

(14)

This implies B > 0. Naturally the resource stock has an inverse relationship with that of
pollution. Hence, it follows (together with C > 0) that coefficients β1− a12β2 and β2− a21β1 in
(8) are positive i.e.,

a12 <
β1
β2

and a21 <
β2
β1
. (15)

As a result A > 0. Finally, since the resource stock is a positive quantity, the numerators in (8)
are positive (provided that C > 0). This gives the following important restriction on the stock
of pollution:

ẑ± < min

{
ω1 − ω2a12
β1 − β2a12

,
ω2 − ω1a21
β2 − β1a21

}
. (16)

Clearly, the system admits at most one interior equilibrium provided that

ẑ− < min

{
ω1 − ω2a12
β1 − β2a12

,
ω2 − ω1a21
β2 − β1a21

}
< ẑ+. (17)

We observe that the system under consideration has at most seven equilibria: an axial equilib-
rium (Q0), four boundary equilibria (Q1

±, Q
2
±), and two interior equilibria (Q∗±). However, we
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give more attention to the equilibria: Q0, Q1
+, Q

2
+ and Q∗−, and also we assume that these are

the only equilibria of the system under consideration, i.e., Q1
+, Q2

+ and Q∗− are unique in the
interior of the x1z-space, x2z-space and x1x2z-space, respectively. Note that these equilibria
give the higher resource stocks and lower stocks of pollution. In the rest of the paper, we denote
Q1

+, Q
2
+ and Q∗− by Q1, Q2, and Q∗, respectively, unless mentioned otherwise. The local and

global stabilities of these equilibria are given below.

Theorem 1 (Local stability). Suppose Q0, Q1, Q2, and Q∗ are the only nonnegative equilibria
of system (2a)-(2c). Then

(a) Q0 is locally asymptotically stable whenever

z0 > max

{
r1 − α1q1E1

d1
,
r2 − α2q2E2

d2

}
, (18)

and unstable otherwise.

(b) Q1 is locally asymptotically stable whenever

ω2 − a21x̃1 − β2z̃ < 0, z̃ <

√
b1v

γ1d1
, (19)

and unstable otherwise.

(c) Q2 is locally asymptotically stable whenever

ω1 − a12x2 − β1z < 0, z <

√
b2v

γ2d2
, (20)

and unstable otherwise.

(d) Q∗ is locally asymptotically stable whenever

a2 > 0, a3 > 0, a1a2 − a3 > 0. (21)

and unstable otherwise, where

a1 = b1x̂1 + b2x̂2 +
v

ẑ
,

a2 = (b1x̂1(
v

ẑ
)− d1γ1x̂1ẑ) + (b2x̂2(

v

ẑ
)− d2γ2x̂2ẑ) + (b1b2 − c12c21)x̂1x̂2,

a3 = (b1b2 − c12c21)x̂1x̂2(
v

ẑ
) + (c12γ1d2 + c21γ2d1 − b1γ2d2 − b2γ1d1)x̂1x̂2ẑ.

Theorem 2 (Global stability). Suppose Q0, Q1, Q2, and Q∗ are the only nonnegative equi-
libria of system (2a)-(2c). Then
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(a) Q0 is globally asymptotically stable whenever the following conditions are satisfied:

r1 − α1q1E1 − d1z0 < 0, r2 − α2q2E2 − d2z0 < 0,

8(r1 − α1q1E1 − d1z0)(r2 − α2q2E2 − d2z0)
v

(z0)2
+ γ21(r2 − α2q2E2 − d2z0)

+ γ22(r1 − α1q1E1 − d1z0) > 0.

(22)

(b) Q1 is globally asymptotically stable whenever the following conditions are satisfied:

4b1b2 − (c12)2 > 0, (4b1b2 − (c12)2)(
v

z̃2
) + c12γ2(γ1 + d1)− b1(γ2)2 − b2(γ1 + d1)2 > 0. (23)

(c) Q2 is globally asymptotically stable whenever the following conditions are satisfied:

4b1b2 − (c21)2 > 0, (4b1b2 − (c21)2)(
v

z2
) + c21γ1(γ2 + d2)− b2(γ1)2 − b1(γ2 + d2)2 > 0. (24)

(d) Q∗ is globally asymptotically stable whenever the following conditions are satisfied:

4b1b2 − (c12 + c21)2 > 0,

(4b1b2 − (c12 + c21)2)( v
ẑ2 ) + (c12 + c21)(γ2 + d2)(γ1 + d1)− b1(γ2 + d2)2 − b2(γ1 + d1)2 > 0.

(25)

3.1 Influence of the effort allocation

Here, we wish to see the influence of efforts E1, E2 on the stocks x̂1, x̂2, ẑ and yield. For each
pair of efforts (E1, E2), the resource and pollution stocks (x̂1, x̂2 and ẑ) can be computed using
(8) and (12). Clearly, these components can be considered as functions of only two variables E1

and E2. Now, by applying partial differentiation on ẑ with respect to E1,E2 and using (10), we
obtain

∂ẑ

∂E1
=

1

2A

[
1− B√

B2 − 4AC

][α1q1
b1

(a21γ2 − γ1)− β(1− a12a21)
]
, (26a)

∂ẑ

∂E2
=

1

2A

[
1− B√

B2 − 4AC

][α2q2
b2

(a12γ1 − γ2)− β(1− a12a21)
]
. (26b)

From (26a) and (26b), it can be observed that the stock of pollution increases with efforts E1

and E2 if

a21 <
γ1
γ2

and a12 <
γ2
γ1
, (27)

respectively. The partial derivatives of x̂1 with respect to E1 and E2 are

∂x̂1
∂E1

= − 1

1− a12a21
[α1q1
b1

+ (β1 − a12β2)
∂ẑ

∂E1

]
, (28a)

∂x̂1
∂E2

=
1

1− a12a21
[α2q2
b2

a12 − (β1 − a12β2)
∂ẑ

∂E2

]
, (28b)

respectively. From (28a) we observe that the stock x1 decreases as E1 increases. On the other
hand, an increase in E2 has two different effects on x1: a positive effect (due to a reduction in
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the interspecific competition) and a negative effect (due to a rise in the stock of pollution). If
the right side of (28b) is negative i.e.,

α2q2
b2

a12 − (
β1 − a12β2

2A
)(1− B√

B2 − 4AC
)[
α2q2
b2

(a12γ1 − γ2)− β(1− a12a21)] < 0, (29)

then the negative impact is dominant and hence x1 decreases. If the right side of (28b) is positive
i.e.,

α2q2
b2

a12 − (
β1 − a12β2

2A
)(1− B√

B2 − 4AC
)[
α2q2
b2

(a12γ1 − γ2)− β(1− a12a21)] > 0, (30)

then the positive effect is dominant and hence x1 increases. Similarly, applying partial differen-
tiation on x̂2 we obtain

∂x̂2
∂E2

= − 1

1− a12a21
[α2q2
b2

+ (β2 − a21β1)
∂ẑ

∂E2

]
, (31a)

∂x̂2
∂E1

=
1

1− a12a21
[α1q1
b1

a21 − (β2 − a21β1)
∂ẑ

∂E1

]
. (31b)

From (31a) we observe that the stock x2 decreases as E2 increases (provided that (27) holds).
On the other hand, an increase in effort E1 has two different effects on x2: positive and negative
effects. If the right side of (31b) is negative i.e.,

α1q1
b1

a21 − (
β2 − a21β1

2A
)(1− B√

B2 − 4AC
)[
α1q1
b1

(a21γ2 − γ1)− β(1− a21a12)] < 0, (32)

then the negative effect is dominant and hence x2 decreases. If the positive effect is dominant
(the right side of (31b) is positive), i.e.,

α1q1
b1

a21 − (
β2 − a21β1

2A
)(1− B√

B2 − 4AC
)[
α2q1
b1

(a21γ2 − γ1)− β(1− a21a12)] > 0, (33)

then x2 increases. We have the following proposition.

Proposition 2. Let x̂1, x̂2, ẑ be the components of the unique interior equilibrium Q∗ of system
(2a)-(2c), and let (27) holds. Then the following statements are true:

(a) The stock ẑ has a direct relationship with effort Ei for i = 1, 2.

(b) The stock x̂i has an inverse relationship with effort Ei for i = 1, 2.

(c) The stock x̂1 has a direct relationship with with E2 if (30) holds and it has an inverse
relationship with E2 if (29) holds. Similarly, the stock x̂2 has a direct relationship with E1

if (33) holds and it has an inverse relationship with E1 if (32) holds.
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3.2 Maximum sustainable yield

In the discussion above, we have seen the influence of effort allocation on the stock levels. Here,
we are interested to evaluate the maximum sustainable yield. We observed that an increase in
the harvest effort results in a rise in the stock of pollution (under the condition in (27)). This
will affect the resource stock and hence the yield. Thus, increasing the harvest effort may not
guarantee an improvement of the yield. Therefore, it is important to identify the proper effort
allocation (between harvesting and pollution reduction) to maximize the yield. For each pair of
efforts (E1, E2), the yield (which we denote by h) is given by

h(t) = α1q1E1x1 + α2q2E2x2. (34)

Clearly, h is a function of two variables E1&E2, and it is continuously differentiable. Hence, the
maximum sustainable yield (which we denote by hMSY ) occurs either at the boundary or in the
interior of rectangular region D, which is given by

D = {(E1, E2) : 0 ≤ E1 ≤ Emax1 , 0 ≤ E2 ≤ Emax2 , Emax1 + Emax2 = Etotal}. (35)

Applying partial differentiation on the yield function, we obtain

∂h

∂E1
= α1q1x1 + α1q1E1

∂x1
∂E1

+ α2q2E2
∂x2
∂E1

, (36a)

∂h

∂E2
= α2q2x̂2 + α2q2E2

∂x2
∂E2

+ α1q1E1
∂x1
∂E2

. (36b)

We observe that the yield increases with E1 and E2 as long as the expressions on the right of
(36) are positive and attains it’s maximum (local) at (EMSY

1 , EMSY
2 ) where the equations are

equal to zero. Beyond this level, the yield starts to decline due to the higher level of pollution.
We have the following observations. Unlike the basic Lotka-Volterra competition system

(ref. [18]), the extinction of both species is possible in the system under consideration if the
inflow rate of pollutants is too large. Moreover, the inflow of pollutants, the harvest efforts,
and the strength of interspecific competition play a crucial role in the existence of the interior
equilibrium. If the inflow of pollutants is moderate and competition is too strong for both
species, then the boundary equilibria are locally asymptotically stable (provided that (19) and
(20) are satisfied). In such a case the survival of the species depends on the initial position. If
the effect of competition on species2 (by species1) is relatively high and the effect on species1
(by species2) is relatively low, then species2 will go extinct leaving species1 alone. In such case,
an increase in E1 affects the dominance of species1 which may result in the coexistence. Similar
statement can be given when species2 dominates species1. Finally, in the absence of harvesting
and pollution reduction activities, condition (14) is replaced by

a12 <
K1

K2
, a21 <

K2

K1
, (37)

and (17) is replaced by

ẑ− < min

{
K1 −K2a12
β1 − β2a12

,
K2 −K1a21
β2 − β1a21

}
< ẑ+,
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for the existence of the unique interior equilibrium. In this case, A and C are unchanged and
the expression for B is replaced by

B′ = γ1(K1 − a12K2) + γ2(K2 − a21K1) + η(1− a12a21).

Here, the existence of the interior equilibrium depends only on the stock of pollution and the
interspecific competition. Furthermore, if the environment is pollution free, then condition (37)
alone is sufficient for the existence of interior equilibrium.

4 Optimal harvest problem

Consider the exploitation of two competing species in a polluted environment under the sole
ownership. A decline in the revenue (due to the presence of pollution) drives the owner to
invest a part of the available effort capacity on pollution reduction. The aim is to determine the
optimal effort allocation that maximizes the revenue.

Let B(h, z) be a pollution dependent gross benefit from resource harvesting. This benefit
is assumed to increase with increasing yield, and it decreases as pollution increases. Moreover,
the marginal (negative) impact of pollution increases with pollution. Thus, the function B may
behave as follows (ref. [34]):

Bh > 0, Bz < 0, Bzz < 0. (38)

Therefore, we consider the following explicit form for the function B:

B(h, z) = (1− θ1z2)p1α1q1E1x1 + (1− θ2z2)p2α2q2E2x2.

Here, p1(1 − θ1z2) and p2(1 − θ2z2) represent the pollution dependent prices per unit harvest
associated with species1 and species2, respectively, where θi is positive constant such that 0 ≤
θiz

2 ≤ 1 for i = 1, 2. Clearly, pi is the price per unit catch associated with species i in the
absence of pollution. Note that the function B can also be expressed as

B(E1, E2, x1, x2, z) = (1− θ1z2)p1α1q1E1x1 + (1− θ2z2)p2α2q2E2x2. (39)

Hence, the instantaneous net revenue (which we denote by R) is defined by

R(E1, E2, x1, x2, z) = B(E1, E2, x1, x2, z)− Etotal, (40)

and the present value of the total net revenues is

PV =

∫ ∞
0

e−δtR(E1, E2, x1, x2, z)dt. (41)

The objective is to maximize the integral in (41) by the proper allocation of the available
effort capacity (Etotal) between harvesting (E1, E2) and pollution reduction (Etotal −E1 −E2).
Formally expressed, the problem is as follows:

max
{E1,E2}

PV

Subject to: (2a)− (2d)

0 ≤ E1 ≤ Emax1 , 0 ≤ E2 ≤ Emax2 .

(42)
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The problem given in (42) is an optimal control problem where x1, x2, z are the state variables
and E1, E2 are the control variables. The effort Etotal − E1 − E2 is determined once E1, E2 are
identified. Solving problem (42) is to find out the optimal allocation of the total effort capacity
(Etotal) between harvesting (Ê1, Ê2) and pollution reduction (Etotal− Ê1− Ê2) so that the total
discounted revenue is as large as possible.

Let us consider the following notations:

f0(x1, x2, z, E1, E2, t) = e−δtR(x1, x2, z, E1, E2),

f1(x1, x2, z, E1, E2, t) = b1x1(ω1 − x1 − a12x2 − β1z),
f2(x1, x2, z, E1, E2, t) = b2x2(ω2 − x2 − a21x1 − β2z),
f3(x1, x2, z, E1, E2, t) = v − (γ1x1 + γ2x2 + d)z.

(43)

As per the maximum principle (ref. [4,8,24]), the Hamiltonian (H) associated with problem (42)
is given by

H(x1, x2, z, E1, E2, µ1, µ2, µ3, t) = f0 + µ1f1 + µ2f2 + µ3f3.

The associated adjoint differential equations are given as follows:

dµ1
dt

= −e−δt(1− θ1z2)(p1q1α1E1)− µ1b1
[
ω1 − 2x1 − a12x2 − β1z

]
+ µ2x2c21 + µ3γ1z,

dµ2
dt

= −e−δt(1− θ2z2)(p2q2α2E2)− µ2b2
[
ω2 − 2x2 − a21x1 − β2z

]
+ µ1x1c12 + µ3γ2z,

dµ3
dt

= e−δt[(2θ1z)p1q1α1E1x1 + (2θ2z)p2q2α2E2x2] + µ1x1d1 + µ2x2d2 + µ3(γ1x1 + γ2x2 + d),

Here, µi is known as the adjoint variable for i = 1, 2, 3. Because of the presence of the term
e−δt no steady state is possible for the above system, and hence the following transformation is
needed;

λi(t) = µi(t)e
δt, for i = 1, 2, 3 and H = Heδt, (44)

where H is known as the current value Hamiltonian, which is given by

H
(
x1, x2, z, E1, E2, λ1, λ2, λ3

)
= R+ λ1f1 + λ2f2 + λ3f3, (45)

and λ1, λ2, λ3 are known as the current adjoint variables satisfying the differential equations:

dλ1
dt

= δλ1 − (1− θ1z2)(α1p1q1E1)− b1[ω1 − 2x1 − a12x2 − β1z]λ1 + x2c21λ2 + γ1zλ3, (46a)

dλ2
dt

= δλ2 − (1− θ2z2)(p2α2q2E2)− b2[ω2 − 2x2 − a21x1 − β2z]λ2 + x1c12λ1 + γ2zλ3, (46b)

dλ3
dt

= [(2θ1z)p1α1q1E1x1 + (2θ2z)p2α2q2E2x2] + x1d1λ1 + x2d2λ2 + [δ + γ1x1 + γ2x2 + d]λ3.

(46c)

Clearly the problem under consideration is a linear control problem, and hence the optimal
control shall be a combination of bang-bang and singular controls (ref. [7]). First we investigate
the optimal singular control and the associated optimal singular solution.
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Differentiating the current value Hamiltonian (in (45)) with respect to E1 and E2 gives

HE1 = (1− θ1z2)(p1α1q1x1)− λ1α1q1x1 + λ3βz,

HE2 = (1− θ2z2)(p2α2q2x2)− λ2α2q2x2 + λ3βz,

and the switching functions are

s1(t) = (1− θ1z2)(p1α1q1x1)− λ1α1q1x1 + λ3βz,

s2(t) = (1− θ2z2)(p2α2q2x2)− λ2α2q2x2 + λ3βz.
(47)

It is known that in the case of singular solution we have s1(t) = 0, s2(t) = 0, i.e.,

(1− θ1z2)(p1α1q1x1)− λ1α1q1x1 + λ3βz = 0,

(1− θ2z2)(p2α2q2x2)− λ2α2q2x2 + λ3βz = 0.
(48)

Now, the unique interior steady state of the six dimensional system ((2a)-(2c), (46a)-(46c)) is
given by (x̂1, x̂2, ẑ, λ̂1, λ̂2, λ̂3), where

x̂1 =
(ω1 − ω2a12)− (β1 − a12β2)ẑ

1− a12a21
,

x̂2 =
(ω2 − ω1a21)− (β2 − a21β1)ẑ

1− a12a21
,

ẑ =
B −

√
B2 − 4AC

2A
,

λ̂1 =
(1− θ1ẑ2)(p1α1q1E1)− c21x̂2λ̂2 − γ1ẑλ̂3

δ + b1x1
,

λ̂2 =
ζ0

c12c21x̂1x̂2 − (δ + b1x̂1)(δ + b2x̂2)
,

λ̂3 =
ζ1 − ζ2
ζ3 − ζ4

,

(49)

with A,B and C are given in (10), and

ζ0 = [c12x̂1(1− θ1ẑ2)(p1α1q1E1)− (δ + b1x̂1)(1− θ2ẑ2)(p2α2q2E2)]

−[(c12γ1x̂1ẑ)− (δ + b1x̂1)γ2ẑ]λ̂3,

ζ1 = [d1x̂1(δ + b2x̂2)− c12d2x̂1x̂2]
[c12x̂1(1− θ1ẑ2)p1α1q1E1 − (δ + b1x̂1)(1− θ2ẑ2)p2α2q2E2],

ζ2 = [c12c21x̂1x̂2 − (δ + b1x̂1)(δ + b2x̂2)]

[d1x̂1(1− θ2ẑ2)p2α2q2E2 + c12x̂1(2θ1ẑp1α1q1E1x̂1 + 2θ2ẑp2α2q2E2x̂2)],

ζ3 = [(c12γ1x̂1ẑ)− (δ + b1x̂1)γ2ẑ][d1x̂1(δ + b2x̂2)− c12d2x̂1x̂2],
ζ4 = [d1γ2x̂1ẑ − c12x̂1(δ + d+ γ1x1 + γ2x2)][c12c21x̂1x̂2 − (δ + b1x̂1)(δ + b2x̂2)].

Substituting the solution
(
x̂1, x̂2, ẑ, λ̂1, λ̂2, λ̂3

)
into (48) gives us the following system of equations

involving only E1, E2:

(1− θ1ẑ2)(p1α1q1x̂1)− λ̂1α1q1x̂1 + λ̂3βẑ = 0,

(1− θ2ẑ2)(p2α2q2x̂2)− λ̂2α̂2q2x̂2 + λ̂3βẑ = 0.
(50)
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If the pair (Ê1, Ê2) uniquely solves the system of equations (in (50)) and satisfies conditions
0 < Ê1 < Emax1 and 0 < Ê2 < Emax2 , then it becomes the optimal singular control (otherwise
the maximum among the appropriate solutions becomes optimal), and the associated optimal
solution becomes

(
x̂1(Ê1, Ê2), x̂2(Ê1, Ê2), ẑ(Ê1, Ê2)

)
(ref. [3, 5]).

Having identified the steady state solution, now it remains to reach this solution optimally
starting from the given initial state (x1(0), x2(0), z(0)). Since the problem under consideration
is linear in the control variables, the optimal steady solution shall be reached by a bang-bang
control (ref. [24]). If we denote it by a control vector

(
E1, E2

)
, then we have

E1(t) =

{
0, if s1(t) < 0,
Emax1 , if s1(t) > 0,

(51)

E2(t) =

{
0, if s2(t) < 0,
Emax2 , if s2(t) > 0.

(52)

If T ∗ represents the time taken to reach the optimal steady state optimally from the given initial
state, then the optimal control

(
E∗1 , E

∗
2

)
to the given problem is

(
E∗1(t), E∗2(t)

)
=

{ (
E1(t), E2(t)

)
, for 0 ≤ t < T ∗(

Ê1, Ê2

)
, for t ≥ T ∗. (53)

Suppose (x̆1(t), x̆2(t), z̆(t)) represents the trajectory from some initial state to the optimal steady
state solution. Then the optimal stock path (denoted by (x∗1(t), x

∗
2(t), z

∗(t))) is traced out by

(
x∗1(t), x

∗
2(t), z

∗(t)
)

=

{ (
x̆1(t), x̆2(t), z̆(t)

)
, for 0 ≤ t ≤ T ∗(

x̂1, x̂2, ẑ
)
, for t ≥ T ∗. (54)

Note that if the singular control is employed right from the initial state, then the corresponding
stock path approaches the optimal singular solution asymptotically (by the global asymptotic
stability of the singular solution). The resulting stock path is known as suboptimal path.

5 Applications

This section presents numerical simulations to demonstrate the significant outcomes of the study.
The examples represent the dynamics of two competing species in a polluted lake environment,
where the biological and economic parameters are related to the actual values one might have
in a fishery (ref. [1]). Table 2 presents the values assigned to the associated parameters and
constants.

Consider the set of values given in Table 2. For each pair of efforts (E1, E2) conditions (13),
(14), (15), (17) are satisfied, and hence system (2a)-(2c) admits a unique interior equilibrium
Q∗. Moreover, (25) is also satisfied and hence the unique interior equilibrium is globally asymp-
totically stable. The relationships between efforts E1, E2 and the stocks x1, x2, z as well as the
yield h are shown in Figure 1. For the given values of the parameters, conditions (27), (30)
and (33) are satisfied. Consequently, the stock x1 decreases with E1 and it increases with E2

(see Frame (a)). Similarly, x2 decreases with E2 and it increases with E1 (see Frame (b)). The
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Table 2: The values assigned to the associated parameters and constants in the model.

Symbols Values Units

r1 (r2) 0.42 (0.36) 1/year
K1 (K2) 4.2× 104 (3.6× 104) tonnes
c12 (c21) 1× 10−6 (1.2× 10−6) 1/tonne/year
d1 (d2) 1× 10−5 (1× 10−5) 1/tonne/year
γ1 (γ2) 0.8× 10−4 (0.6× 10−4) 1/tonne/year
v 600 tonne/year
Etotal 2.0× 106 US$/year
Emax1 (Emax2 ) 8× 105 (1.2× 106) US$/year
α1 (α2) 1.0× 10−3 (0.8× 10−3) vessel/US$/year
β 1× 10−6 1/US$
η 5× 10−3 1/year
q1 (q2) 0.0004 (0.0003) 1/vessel/year
δ 0.05 1/year
p1 (p2) 3000 (4000) US$/tonne
θ1 (θ2) 1× 10−5 (1× 10−5) 1/tonne2

stock of pollution z increases with both E1 and E2 (see Frame (c)). Here, the highest level
of pollution occurs at the steady-state where the entire effort is utilized for harvesting, and
the lowest level of pollution occurs where the entire effort goes for pollution reduction. The
figure further highlights the maximum sustainable yield hMSY = 7.238 × 103 (in tonnes) and
the corresponding critical effort level (EMSY

1 , EMSY
2 ) = (5.24 × 105, 7.34 × 105) (in US$) (see

Frame (d)). Note that this yield is larger than the one we would obtain by utilizing the entire
effort for harvesting alone. The associated globally asymptotically stable interior equilibrium is
(2.05× 104, 1.66× 104, 177) (in tonnes).

Now let us consider the set of parameter values as presented in Table 2 except for the
inflow of pollutants which is replaced by v = 3 × 103 (tonnes per year). In this case, the
maximum sustainable yield hMSY is 6.98×103 (in tonnes) and the corresponding effort allocation
is (5.06 × 105, 7.04 × 105) (in US$). The associated globally asymptotically stable interior
equilibrium is (2.06×104, 1.67×104, 871) (in tonnes). The coexistence of the species (in this case)
is shown in Frame (a) of Figure 2. Now, if the effort allocation is taken as (Emax1 , Emax2 ), i.e.,
the entire effort is utilized for harvesting alone, then no species will survive in the environment
(see Frame (b) of Figure 2)). This underlines the crucial role played by the effort allocation
towards pollution reduction on the coexistence.

Next, let’s consider the set of parameter values as presented in Table 2 except for the inflow of
pollutants (v) and the interspecific coefficient c21 which are replaced by 3× 103 and 2.2× 10−5,
respectively. Here, the effect of species1 on the growth rate of species2 is high, and that of
species2 on the growth rate of species1 is relatively low. Consequently, species1 excludes species2
(see Frame (a) of Figure 3). Now, if we put some pressure on species1 by applying additional
fishing effort (e.g., E1 = Emax1 ), then its dominance will be limited, resulting in the coexistence



532 S.D. Zawka, P.D.N. Srinivasu

0

8x 10
5

0

12

x 10
5

4.5
x 10

4

Effort (E
2
)

Effort (E
1
)

S
to

c
k
 (

x
1
)

(a) Species1

0

8 x 10
5

0

12x 10
5

0

x 10
4

Effort (E
1
)Effort (E

2
)

S
to

c
k
 (

x
2
)

(b) Species2

0

8

x 10
5

0

12

x 10
5

0

550

Effort (E
!
)Effort (E

2
)

P
o
llu

ti
o
n
 (

z
)

(c) Pollution

0

5.2434
8

x 10
5

0

7.3367

12

x 10
5

0

7238

Effort (E
1
)Effort (E

2
)

P
o
llu

ti
o
 (

z
)

(d) Yield

Figure 1: This figure presents the relationship between efforts (E1, E2) and the stocks x1, x2, z,
and the yield (h).

in the system (see Frame (b) of Figure 3). Similar is true when species2 is dominant.

Finally, consider the optimal harvest problem (42). With the set of parameter values given
in Table 2, the unique interior steady state of the six dimensional dynamical systems ((2a),
(2b), (2c), (46a), (46b), (46c)) is (2.18×104, 1.74×104, 166.5, 2.34×103, 2.99×103,−1.15×104)
where the unique solution (Ê1, Ê2) of (50) is (4.93 × 105, 6.98 × 105) (in US$). Clearly, 0 <
Ê1 < Emax1 , 0 < Ê2 < Emax2 and hence (Ê1, Ê2) is optimal. The associated optimal singular
solution is (2.18 × 104, 1.74 × 104, 166.5) (in tonnes). The yield corresponding to the optimal
steady state is h(Ê1, Ê2) = 7.22 × 103 (in tones). Observe that this yield doesn’t exceed the
maximum sustainable yield hMSY = 7.238× 103 (in tonnes) as it was expected.

6 Concluding remarks

In this paper, we have presented the dynamics of two competing species within a polluted
environment in the presence of harvesting and pollution reduction. Fall in the revenue (due to
pollutants) is the driving force for investing a part of the effort capacity on pollution reduction.
Environmental pollution is assumed to affect both the growth rate and the quality of biomass.
We have captured the effect of pollution on resource growth through the intrinsic growth rate
and the saturation level (in the regeneration function), and the effect on the quality of biomass
through the revenue function.

We have considered environmental treatment (by the depollution effort) as a feasible alter-
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Figure 2: This figure highlights the influence of effort allocation towards pollution reduction on
the survival of the species.
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Figure 3: This figure highlights the crucial role played by harvesting the dominant species on
the coexistence.

native to reduce the stock of pollutants in the environment. We have investigated the stable
coexistence, competitive exclusion and the extinction of both species. We observed that the
competition, pollutants and exploitation play a crucial role on the coexistence. In particular, if
the inflow of pollutants is too large, then the extinction of both species is inevitable. Otherwise,
it is possible to ensure the permanence of species through the depollution effort. Further, we
have provided some criteria for the extinction of both species, competitive exclusion, and stable
coexistence in the system. In the case where one species dominates the other, it is possible to
ensure the stable coexistence in the system by increasing the harvesting effort associated with
the dominant species.

By considering the revenue function that is pollution dependent, we have studied the optimal
harvest problem. We observed that when the inflow of pollutants increases, then the optimal
harvest strategy recommends increasing the efforts towards pollution reduction. Moreover, the
proper allocation of the available effort capacity between harvesting and pollution reduction,
not only improves the revenues but also the survival rate of the species.

Finally, in the current work, we have considered a system consisting of two competing species
that are surviving in a polluted environment. One can establish similar results for the sys-
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tem consisting of more than two species. Moreover, we have considered a competition type of
ecological-interdependence between two species. Similar results can be established for the other
types of ecological-interdependence such as predation, mutualism, etc.
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