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Abstract.The global least squares minimal residual (Gl-LSMR) method is an efficient solver
for linear systems with multiple right-hand sides. To accelerate the convergence of the Gl-LSMR
method, we propose a block preconditioner for the global LSMR method which can be used for
solving linear systems with a block partitioned coefficient matrix and multiple right-hand sides.
Numerical examples and comparing the preconditioned Gl-LSMR method with the Gl-LSMR
method validate the effectiveness of the preconditioner. Numerical results confirm that the
Block Preconditioned Gl-LSMR (BPGLSMR) method has a better performance in reducing the
number of iterations and CPU time.
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1 Introduction

One of the main topics in matrix theory is matrix equations and play essential roles in many
applications. Matrix equations appear in many problems, such as systems in control theory,
image processing, and electromagnetic structure computation [3, 7, 31,32,39].

Consider the matrix equation of the form

AX = B, (1)

where A ∈ Rms1×ns2 is a full column rank matrix with ms1 ≥ ns2, m,n, s1, s2 ∈ N, X ∈ Rns2×l,
and B ∈ Rms1×l are unknown and right-hand side matrices, respectively with usually l � ms1.
When the coefficient matrix A is large and sparse, we use iterative methods for solving the
matrix equations. Especially those methods that are based on the generalization of the classical
Krylov subspace.

The first class of iterative methods is the global methods. These methods are based on
the use of a global projection onto a matrix Krylov subspace and they are appropriate for the
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sparse multiple linear systems. Jbilou et al. introduced the global Lanczos-based method, the
global full orthogonalization (Gl-FOM) and global generalized minimal residual (Gl-GMRES)
methods [16,18]. The global Hessenberg (Gl-Hess) method and global changing minimal residual
method based on the Hessenberg process (Gl-CMRH) were presented by Heyouni [14]. The
global biconjugate gradient (Gl-BiCG) and global biconjugate gradient stabilized (Gl-BiCGStab)
methods were obtained by Jbilou et al. for nonsymmetric coefficient matrix [17]. Also, the
weighted technique was applied to speed-up the convergence of global methods [15]. The global
least squares with QR factorization (GL-LSQR) was proposed by Toutunian and Karimi [34].
See [4, 13,30,40] for more global methods.

The second class is the seed methods in which first a single system will be selected as the
seed system and developed the corresponding Krylov subspace. Then all the residuals of the
other systems will be projected on to the same Krylov subspace for finding new approximations.
Seed conjugate gradient method and seed GMRES method are introduced in [20,31,37]. Other
references on these methods are included in [8, 28].

The third class is the block methods. Similar to the last two classes, the block methods are
proposed to solve the linear systems with multiple right-hand sides. They are more appropriate
when the coefficient matrix is relatively dense or a preconditioner is used. The first block
iterative solver is the block conjugate gradient (Bl-CG) algorithm which is offered by ÓLeary for
symmetric problems [27]. The algorithms of this method for parallel computers were presented
in [26], and a breakdown-free block conjugate gradient method was presented in [19]. For
nonsymmetric problems, the block generalized minimal residuals (Bl-GMRES) method [24, 29,
31, 33, 38], the block quasi minimal residual (Bl-QMR) method [10], the block BiCGStab (Bl-
BiCGStab) algorithm [11], the block Lanczos method [12], the block LSQR (Bl-LSQR) method
[21], and the block LSMR (Bl-LSMR) methods [35,36] have been introduced.

The LSMR method was presented for solving the linear system Ax = b and least squares
problem min‖Ax − b‖2, such that A is sparse or a fast linear operator [9]. In this method two
sets of vectors v1, v2, . . . , vk and u1, u2, . . . , uk which are made by Golub-Kahan bidiagonaliza-
tion process, can build an orthogonal basis for Krylov subspace Kk(ATA, v1) and Kk(AAT , u1),
respectively in which:

Kk(ATA, v1) = span{v1, ATAv1, . . . , (A
TA)k−1v1},

Kk(AAT , u1) = span{u1, AATu1, . . . , (AA
T )k−1u1}.

In Gl-LSMR [25], two sets of matrices V1, V2, . . . , Vk and U1, U2, . . . , Uk can make an F-
orthonormal basis for block Krylov subspace Kk(ATA, v1) and Kk(AAT , u1), respectively as
follows:

Kk(ATA, V1) = span{V1, ATAV1, . . . , (A
TA)k−1V1},

Kk(AAT , U1) = span{U1, AA
TU1, . . . , (AA

T )k−1U1}.

The performance of Krylov subspace methods can be improved by using a suitable precon-
ditioner or with efficient matrix splitting techniques [1, 2, 19]. Karimi [22] introduced a block
preconditioner for the block partitioned matrices wherein the incomplete inverse factor R̂ of ATA
is used as a right preconditioner for the GL-LSQR algorithm to solve the partitioned systems.
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A block partitioned matrix is a matrix that is interpreted as having been broken into sections
called blocks or submatrices. Any matrix may be interpreted as a block matrix in one or more
ways, with each interpretation defined by how its rows and columns are partitioned. The matrix
Ams1×ns2 can be written as a block matrix as

A =


A11 A12 · · · A1s2

A21 A22 · · · A2s2
...

...
. . .

...
As11 As12 · · · As1s2

 .

where Aij ∈ Rm×n.

To expedite the convergence of the Gl-LSMR method, we propose a block preconditioner
for block partitioned matrices using the technique of [22]. This preconditioner is based on
block C-orthogonalization where C is a symmetric positive definite matrix. First, the block
preconditioned Gl-LSMR (BPGLSMR) algorithm is presented. Also, BPGLSMR and Gl-LSMR
are applied to solve the block partitioned linear systems and the results are compared together.

Throughout the paper the following notations are used. The inner product (X,Y )F =
trace(XTY ) is used for two matrices X and Y ∈ Rn×s and the associated norm is the Ferobenius
norm defined by ‖X‖F =

√
(X,X)F . The notation (X,Y ) indicates Euclidean inner product in

Rn and the associated norm is denoted by ‖.‖. In demonstrates the identity matrix of order n.
Also, ei denotes the ith column of the identity matrix of a suitable size. The notation ∗ is used
for the following products:

Vk ∗ γ =
k∑

j=1

Vjγj ,

Vk ∗ T = (Vk ∗ T.,1,Vk ∗ T.,2, . . . ,Vk ∗ T.,k),

where Vk = (V1, V2, . . . , Vk) with Vi ∈ Rn×s, i = 1, 2, . . . , k and γ = (γ1, γ2, . . . , γk)T ∈ Rk is a
vector. T.,j is jth column of the matrix T ∈ Rk×k.

The structure of the paper is as follows. There is a brief description of the LSMR and Gl-
LSMR methods in Section 2. In Section 3, a block preconditioner for block partitioned matrices
is introduced and the BPGLSMR algorithm is presented. In Section 4, some numerical examples
are presented to show the efficiency of the BPGLSMR method. Conclusions are drawn in Section
5.

2 A useful summary of the Gl-LSMR algorithm

This section explains some propertices of Gl-LSMR [25]. In this method, A in (1) can be reduced
to the lower bidiagonal form by using global Bidiag 1 [34]. The global Bidiag 1 procedure makes
two sets of matrices V1, V2, . . . in Rns2×l and U1, U2, . . . are in Rms1×l such that

〈Vi, Vj〉F = 0, 〈Ui, Uj〉F = 0, for i 6= j,
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and the scalers αi > 0 and βi > 0 are chosen so that ‖ Vi ‖F= 1, ‖ Ui ‖F= 1. This process can
be described as follows

β1U1 = B, α1V1 = ATU1, (2)

βi+1Ui+1 = AVi − αiUi,
αi+1Vi+1 = ATUi+1 − βiVi,

i = 1, 2, . . . .

Now, consider

Uk = (U1, U2, . . . , Uk),

Vk = (V1, V2, . . . , Vk),

Tk =


α1

β2 α2

. . .
. . .

βk αk

βk+1

 .

The recurrence relations (2) can be rewritten using the product ∗ as follows

Uk+1 ∗ (β1e1) = B,

AVk = Uk+1 ∗ Tk,
ATUk+1 = Vk ∗ T T

k + αk+1Vk+1 ∗ eTk+1.

Suppose that Xk is an approximate solution of the form

Xk = Vk ∗ yk,

at iteration k, where yk ∈ Rk. If Rk = B −AXk, we can write

ATRk = ATB −ATAXk

= α1β1V1 −ATAVk ∗ yk

= β̄1V1 − Vk+1 ∗
(
T T
k Tk

β̄k+1e
T
k

)
yk

= Vk+1 ∗ (β̄1e1 −
(
T T
k Tk

β̄k+1e
T
k

)
yk), (3)

where β̄k = αkβk. Therefore, from (3) we have

min
y∈Rk

‖ATRk‖F = min
y∈Rk

‖β̄1e1 −
(
T T
k Tk

β̄k+1e
T
k

)
yk‖.

The main steps of the Gl-LSMR algorithm can be summarized as follows.
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Algorithm 1. Gl-LSMR algorithm
1. Set X0 = 0ns2×l
2. β1 = ‖B‖F , U1 = B/β1, α1 = ‖ATU1‖F , V1 = ATU1/α1, β̄1 = α1β1
3. Set ζ̄1 = β̄1, ˆ̂ρ1 = α1

4. Set ρ̄0 = 1, c̄0 = 1, s̄0 = 0, θ̄0 = θ1 = 0, P−1 = P0 = 0ns2×l
5. For i = 1, 2, . . . until convergence, Do
6. Wi = AVi − αiUi

7. βi+1 =‖Wi ‖F
8. Ui+1 = Wi/βi+1

9. wi = ATUi+1 − βi+1Vi
10. αi+1 =‖ wi ‖F
11. Vi+1 = wi/αi+1

12. ρi+1 = ( ˆ̂ρ2i + β2i+1)
1/2

13. ci = ˆ̂ρi/ρi
14. si = βi+1/ρi
15. θi+1 = siαi+1

16. ˆ̂ρi+1 = ciαi+1

17. ˜̄ρi = c̄i−1ρi
18. ρ̄i = (˜̄ρ2i + θ2i+1)

1/2

19. c̄i = ˜̄ρi/ρ̄i
20. s̄i = θi+1/ρ̄i
21. θ̄i = −s̄i−1ρi
22. ζi = c̄iζ̄i
23. ζ̄i+1 = −s̄iζ̄i
24. Pi = (Vi − θ̄i−1θiPi−2 − (ρ̄i−1θi − θ̄iρi)Pi−1)/ρiρ̄i
25. Xi = Xi−1 − ζiPi

26. If | ζ̄i+1 | is small enough then stop
27. End Do

3 Construction of block preconditioner of Gl-LSMR

Iterative methods that are using for solving a large and sparse linear systems of equations have
sufficient accuracy in many cases, but not always. The LSMR and Gl-LSMR methods are in this
group and sometimes may fail or have a low convergence rate. In this situation, an acceleration
technique should be demanded to remedy this drawback or to speed-up the convergence rate.
A way is using preconditioners to help the iterative method.

In this section, we try to present an efficient block preconditioner by using the ideas [5,6,23].
We assume that the coefficient matrix is block partitioned of size ms1×ns2 which each block is
an m× n matrix.

We present a block upper triangular matrix R as a right preconditioner for the Gl-LSMR
method which is based on the C-matrix product that is defined as follows:

(X,Y )C = Y TCX,
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where C is a symmetric positive definite matrix and X ∈ Rns2×k1 , and Y ∈ Rns2×k2 .
Unit basis matrices E1, E2, . . . , Es2 ∈ Rns2×n can construct a block set of matrices Z1, Z2, . . . ,

Zs2 ∈ Rns2×n by using block conjugate Gram-Schmidt using the to C-matrix product, where
Ej = ej ⊗ In and ej is jth column of Is2 .

The algorithm of block C-orthogonalization starts from Zj = Ej for j = 1, 2, . . . , s2. Then
the following nested loop will be performed.

Zi ← Zi − Zj [(Zj , Zj)C ]−1(Zi, Zj)C . (4)

Since A is a full rank matrix, ATA is a symmetric positive definite matrix. We set C = ATA.

Remark 1. [22] Assume that X and C are full rank and symmetric positive definite matrices
respectively. Then (X,X)C is nonsingular.

By using Z = (Z1, Z2, . . . , Zs2) and D = ZTCZ the inverse upper-lower triangular factor-
ization (ATA)−1 = ZD−1ZT is obtained. The matrix R can be defined by using SPD block
diagonal matrix D as R = ZD−1/2. Hence, we obtain the inverse upper-lower triangular fac-
torization (ATA)−1 = RRT . A dropping tolerance 0 < τ < 1 can be used for entries of Zi in
(4) such that they are scanned in each update and will be discarded if they are smaller than τ .
After this discarding the new sparsified Ẑi will be defined as follows:

Ẑ = (Ẑ1, Ẑ2, . . . , Ẑs2), D̂ = (Ẑ, Ẑ)C ,

and according to this definition, R̂ = ẐD̂−1/2 will be the incomplete inverse factor of ATA.
The LSMR and Gl-LSMR methods search for the approximation of solution in Krylov sub-

spaces Kk(ATA, v1) and Kk(ATA, V1), respectively. Thus the incomplete inverse factor R̂ can
be the right preconditioner for these methods.

Remark 2. Assume that R̂ ∈ Rns2×ns2 is the approximate inverse factor of ATA. Then
(AR̂)T (AR̂) ≈ Ins2.

Proof. According to (ATA)−1 ≈ R̂R̂T , we have ATA ≈ (R̂R̂T )−1. So

(AR̂)T (AR̂) = R̂TATAR̂

≈ R̂T R̂−T R̂−1R̂

= Ins2 ,

which completes the proof.

Accordingly, the block C-orthogonalization algorithm may be briefed as follows.

Algorithm 2. Block C-orthogonalization
1. Let Zj = Ej , j = 1, 2, . . . , s2
2. For j = 1, 2, . . . , s2 − 1
3. For i = j + 1, j + 2, . . . , s2 Do
4. Zi = Zi − Zj [(Zj , Zj)C ]−1(Zi, Zj)C
5. Use a dropping strategy for the elements of matrix Zi

6. EndDo
7. EndDo
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Besides, we can summarize the block preconditioned Gl-LSMR algorithm as follows.

Algorithm 3. BPGLSMR algorithm
1. Set Y0 = 0ns2×l
2. β1 = ‖B‖F , U1 = B/β1, Q1 = ATU1, α1 = ‖R̂TQ1‖F , V1 = R̂TQ1/α1, β̄1 = α1β1
3. Set ζ̄1 = β̄1, ˆ̂ρ1 = α1

4. Set ρ̄0 = 1, c̄0 = 1, s̄0 = 0, θ̄0 = θ1 = 0, P−1 = P0 = 0ns2×l
5. For i = 1, 2, . . . until convergence, Do
6. Di = R̂Vi
7. Wi = ADi − αiUi

8. βi+1 =‖Wi ‖F
9. Ui+1 = Wi/βi+1

10. Qi+1 = ATUi+1

11. S̄i = R̂TQi+1 − βi+1Vi
12. αi+1 =‖ S̄i ‖F
13. Vi+1 = S̄i/αi+1

14. ρi+1 = ( ˆ̂ρ2i + β2i+1)
1/2

15. ci = ˆ̂ρi/ρi
16. si = βi+1/ρi
17. θi+1 = siαi+1

18. ˆ̂ρi+1 = ciαi+1

19. ˜̄ρi = c̄i−1ρi
20. ρ̄i = (˜̄ρ2i + θ2i+1)

1/2

21. c̄i = ˜̄ρi/ρ̄i
22. s̄i = θi+1/ρ̄i
23. θ̄i = −s̄i−1ρi
24. ζi = c̄iζ̄i
25. ζ̄i+1 = −s̄iζ̄i
26. Pi = (Vi − θ̄i−1θiPi−2 − (ρ̄i−1θi − θ̄iρi)Pi−1)/ρiρ̄i
27. Yi = Yi−1 − ζiPi

28. If | ζ̄i+1 | is small enough then Xi = R̂Yi
29. End Do

4 Numerical examples

In this section, we present some numerical experiments to show the effectiveness of the block
preconditioned Gl-LSMR method. In all the examples the starting guess is considered as X0 = 0
with suitable size. The right-hand side matrix B ∈ Rms1×l is chosen such that the exact solution
of (1) will be a matrix of size ns2 × l that all its entries are equal to 1, except Example 2.
We consider l = 10 in all the examples except Example 4. We compare the performance of
BPGLSMR with Gl-LSMR. We set τ = 10−2. The stopping criterion ‖ Rk ‖F ≤ 10−8‖ R0 ‖F is
used and a maximum of 10000 iterations is allowed and if the methods need more than 10000
iterations it is shown by †. Since the block C-orthogonalization process is independent of the
selected value for s1(the number of partitions in the rows of a matrix) thus in all implementations,
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we set s1 = 1. Also, “bl−size” demonstrates the number of partitions in the columns of a matrix
which will actually be the same amount of s2. All the examples were executed in double precision
in Matlab R2014a. Also, the CPU time was reported in seconds.

Example 1. The coefficient matrices in this example are given from the Suite Sparse Matrix
Collection (https://sparse.tamu.edu/). Table 1 contains the properties of matrices that we
use in this example. “Matrix”, “row”, and “column” denote the matrix name, the number
of rows, and the number of columns, respectively. The column “nnz” shows the number of
nonzero elements of the matrix. “cond” demonstrates the condition number of the matrix,
cond(A) = ‖A‖.‖A−1‖. The matrix extraction field has also been shown by “Matrix Discipline”.
In this example, the CPU time for both methods is computed. Table 2 denotes the number
of iteration (Iter), CPU time (time), and relative residual norm (Rrn) of the BPGLSMR and
Gl-LSMR methods. The results in Table 2 show that BPGLSMR outperforms Gl-LSMR in
reducing the number of iterations and CPU time.

Table 1: Test problems information for Example 1.

Matrix row column nnz cond Matrix Discipline

add32 4960 4960 23884 2.14e+02 Electronic circuit design
abtaha2 37932 331 137228 Not available Combinatorial Problem
bfw782a 782 782 7514 4.6e+03 Electrical engineering
cdde6 961 961 4681 5e+02 Computational fluid dynamics
pde2961 2961 2961 14585 9.49e+02 Partial differential equations
sherman1 1000 1000 3750 2.3e+04 Oil reservoir modeling
sherman3 5005 5005 20033 6.9e+16 Oil reservoir modeling
sherman4 1104 1104 3786 7.2e+03 Oil reservoir modeling
sherman5 3312 3312 20793 3.9e+05 Oil reservoir modeling
well1033 1033 320 4732 Not available Surveying
illc1850 1850 712 4732 Not available Surveying

Example 2. [29] In this example, the coefficient matrix A of the linear system (1) is obtained
from discretization of the Laplace operator

Lu = uxx + uyy,

on the unit square (0, 1)×(0, 1) with u = 0 on the boundary. The discritization can be performed
through the centered difference scheme at the grid points (xi, yj) where xi = ih and yj = jh
for i, j = 1, 2, . . . , N + 1 with the mesh size h = 1/(N + 1) that yields a block tridiagonal
matrix of size n = N2. We consider the right-hand sides matrix B as B = rand(n, l) with
elements uniformly distributed in [0, 1]. Figure 1 indicates the performance of the Gl-LSMR,
BPGLSMR, GL-LSQR, and the preconditioned Gl-LSQR (BPGLSQR) methods in reducing
the relative residual norm of AX = B. As we observe BPGLSQR and BPGLSMR decrease the
relative residual norm in a fewer number of iterations compared to unpreconditioned versions.
Figure 1 confirms the effectiveness of the preconditioned methods.

https://sparse.tamu.edu/
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Table 2: Iteration number, CPU time, and relative residual norm of BPGLSMR and Gl-LSMR
for Example 1.

BPGLSMR Gl-LSMR

Matrix bl-size Iter Rrn time Iter Rrn time

add32 496 488 9.05e-09 21.43 633 9.58e-09 27.11
abtaha2 331 30 6.41e-09 0.92 46 7.09e-09 1.23
bfw782a 34 1912 9.81e-09 2.12 2705 9.26e-09 4.01
cdde6 31 30 8.10e-09 0.06 360 9.88e-09 0.74
pde2961 423 752 9.97e-09 11.28 2138 9.70e-09 32.05
sherman1 200 1002 9.94e-09 9.86 3145 9.84e-09 15.04
sherman3 1001 4567 9.71e-09 18.04 9271 9.01e-09 40.01
sherman4 138 394 9.52e-09 0.85 961 9.19e-09 2.17
sherman5 828 897 9.63e-09 11.71 4817 9.14e-09 22.51
well1033 5 130 7.94e-09 0.07 175 6.12e-09 0.21
illc1850 89 2157 9.95e-09 6.16 2175 9.52e-09 9.16

Figure 1: Performance of Gl-LSMR, Gl-LSQR, BPGLSMR, and BPGLSQR in reducing residual
norm for Example 2.

Example 3. [1] Consider the three-dimensional operator

T u = −(uxx + uyy + uzz) + q(ux + uy + uz) (5)

on the unit cube Ω = [0, 1] × [0, 1] × [0, 1]. The coefficient matrix of linear system (1) obtains
from the discretization of (5) that subjects to Dirichlet-type boundary conditions. The size of
this matrix is n = N3 where the mesh size is h = 1/(N + 1). Here q is a constant coefficient and
in this example, we consider q = 0.1. This operator can be discretized by applying the seven-
point finite difference discretizations. The centered difference is applied to the first three terms
and the first order upwind approximation is applied to the second three terms. See [1] for more
details. Figure 2 shows the behavior of BPGLSMR and Gl-LSMR in reducing ‖ Rk ‖F /‖ R0 ‖F
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and ‖ ATRk ‖F /‖ ATR0 ‖F . As we observe that both factors in BPGLSMR are reduced faster
than Gl-LSMR.

Figure 2: Performance of BPGLSMR and Gl-LSMR in reducing relative residual norm for
Example 3 (the left figures show log10(‖ Rk ‖F /‖ R0 ‖F ) versus the number of iterations and
the right figures show log10(‖ ATRk ‖F /‖ ATR0 ‖F ) versus the number of iterations)

Example 4. In this example the coefficient matrix of (1) is a block partitioned matrix A ∈
Rns×ns which is defined by

A =


A2 −A1 0 0
−A1 A2 −A1 0

0 −A1 A2 −A1

0 0 −A1 A2

 , (6)

where A1 = tridiagonal (−1, 2,−1) ∈ Rn×n and A2 = tridiagonal (−2, 3,−2) ∈ Rn×n and s = 4.
In this example B ∈ Rns×l, where l = 20. Table 3 denotes the number of iteration (Iter) and
CPU time (time) in seconds for the BPGLSMR and Gl-LSMR methods. The results in Table
3 cinfirm the excellence of BPGLSMR in reducing the number of iterations and CPU time
compared to Gl-LSMR.

5 Conclusion

In this study, we proposed a right block preconditioner for the global version of LSMR for
solving general linear systems with multiple right-hand sides. This preconditioner is based on
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Table 3: The number of iterations and CPU time of BPGLSMR and Gl-LSMR for Example 4.

BPGLSMR Gl-LSMR

order bl-size Iter time Iter time

4000 1000 2729 78.39 8315 224.25
8000 2000 4225 547.25 † -
12000 3000 6252 1706.81 † -

block C-orthogonalization process such that C is a SPD matrix. For comparison, some numerical
examples were implemented by the BPGLSMR, BPGLSQR, Gl-LSMR, and GL-LSQR methods.
We have seen that the preconditioned versions were more effective than the standard methods
in reducing the number of iterations and CPU time.
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