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Abstract.The minimum residual HSS (MRHSS) method is proposed in [BIT Numerical Math-
ematics, 59 (2019) 299–319] and its convergence analysis is proved under a certain condition.
More recently in [Appl. Math. Lett. 94 (2019) 210–216], an alternative version of MRHSS is
presented which converges unconditionally. In general, as the second approach works with a
weighted inner product, it consumes more CPU time than MRHSS to converge. In the current
work, we revisit the convergence analysis of the MRHSS method using a different strategy and
state the convergence result for general two-step iterative schemes. It turns out that a special
choice of parameters in the MRHSS results in an unconditionally convergent method without us-
ing a weighted inner product. Numerical experiments confirm the validity of established results.
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1 Introduction

We first summarize some notations exploited in the paper. For a given square matrix W with
real eigenvalues, the minimum and maximum eigenvalues of W are denoted by λmin(W ) and
λmax(W ), respectively. The symmetric and skew-symmetric parts of W are respectively defined
by

H(W ) =
1

2
(W +W T ) and S(W ) =

1

2
(W −W T ).

The notation 〈x, y〉 refers to the Euclidean inner product of x and y, i.e., 〈x, y〉 = xT y and the
induced norm is denoted by ‖.‖. The filed of values of the given matrix W is given by

F(W ) := {〈Wy, y〉/〈y, y〉 | y 6= 0} .
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Consider the following linear system of equations,

Ax = b, (1)

where A ∈ Rn×n is a given non-symmetric positive definite matrix, the right-hand side b ∈ Rn
is given and x ∈ Rn is the unknown vector to be determined.

More recently, Yang et al. [4] proposed using the minimum residual technique in conjunction
with the well-known Hermitian and skew-Hermitian splitting (HSS) iterative scheme [1]. The
corresponding method is called MRHSS and it produces the sequence of approximate solutions
{x(k)}∞k=0 by the following two-step iterative scheme

x(k+
1
2
) = x(k) + βk(αI +H(A))−1r(k),

x(k+1) = x(k+
1
2
) + γk(αI + S(A))−1r(k+

1
2
), (2)

where

βk =

〈
r(k), Aδ(k)

〉∥∥Aδ(k)∥∥2 and γk =

〈
r(k+

1
2 ),Aδ(k+

1
2 )
〉

∥∥∥Aδ(k+1
2 )
∥∥∥2 , (3)

in which r(k) = b − Ax(k), r(k+
1
2
) = b − Ax(k+

1
2
), δ(k) = (αI + H(A))−1r(k) and δ(k+

1
2
) =

(αI + S(A))−1r(k+
1
2
). The parameters βk and γk are determined by minimizing the residual

norms ‖r(k+
1
2
)‖ and ‖r(k+1)‖, respectively. The reported results in [4] illustrate the effectiveness

of MHRSS method. However, it is proved that the method is convergent for any initial guess
x(0) iff

0 /∈ F(A(αI +H(A))−1) ∩ F(A(αI + S(A))−1).

Obviously, it is not easy to check the above condition in the general case. Therefore, in another
work, Yang [5] shows that if the second parameter is determined by minimizing a weighted norm
of residual then the resulting iterative scheme is unconditionally convergent. More precisely, in
the second step of (2), the parameter γk is replaced by

γk =

〈
Mr(k+

1
2
),MAδ(k+

1
2
)
〉

∥∥∥MAδ(k+
1
2
)
∥∥∥2 , (4)

which is the minimizer of

min
γ

∥∥∥r(k+ 1
2
) − γAδ(k+

1
2
)
∥∥∥
M
.

Here M = (αI+H(A))−1 and ‖x‖M := ‖Mx‖. The corresponding method works as good as (2)
in terms of the required number of iterations for the convergence. However, it consumes more
CPU-time than MRHSS due to using the weighted inner product. In this paper, we establish the
convergence of two-step iterative schemes in conjunction with minimum residual technique giving
a simple proof. Basically, we use the fact that every single step of MHRSS is a one-dimensional
oblique projection technique [3, Chapter 5]. This point of view sheds light on constructing
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convergent two-step iterative schemes such as the following one which is particularly mentioned
in the current work,

x(k+
1
2
) = x(k) + βk(αI +H(A))−1r(k),

x(k+1) = x(k+
1
2
) + γk(ηI + S(A))−1r(k+

1
2
), (5)

where βk and γk are given by (3).

The remainder of the paper is organized as follows: in the second section, we discuss the
convergence of two-step iterative schemes in conjunction with minimum residual technique. In
section 3, we disclose numerical comparison results between the proposed approach and the ones
given in [4, 5] and brief conclusive remarks are given in section 4.

2 Main results

In this section, we study the convergence of two-step iterative schemes obtained after applying
minimum residual technique. To this end, we assume that two splittings A = M̃ − Ñ and
A = M̂ − N̂ are given. Consider the following two-step iteration method as follows:

x(k+
1
2
) = x(k) + βkM̃

−1r(k),

x(k+1) = x(k+
1
2
) + γkM̂

−1r(k+
1
2
), (6)

where βk and γk are given by (3). Evidently, the above method reduces to (5) for M̃ = αI+H(A)
and M̂ = ηI + S(A). Setting,

δ(k) = M̃−1r(k) and δ(k+
1
2
) = M̂−1r(k+

1
2
),

we may rewrite (6) in the following form

x(k+
1
2
) = x(k) + βkδ

(k) and x(k+1) = x(k+
1
2
) + γkδ

(k+ 1
2
) .

Considering formulas (3) for the parameters, it can be verified that

r(k+
1
2
)⊥Aδ(k) and r(k+1) ⊥Aδ(k+

1
2
). (7)

Note that

r(k+
1
2
) = r(k) − βkAδ(k) and r(k+1) = r(k+

1
2
) − γkAδ(k+

1
2
), (8)

The decomposition A =M −N is called splitting, if M is nonsingular [3, Chapter 4].
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therefore, orthogonality conditions (7) imply that〈
r(k+

1
2
), r(k+

1
2
)
〉

=
〈
r(k), r(k+

1
2
)
〉

=
〈
r(k), r(k) − βkAδ(k)

〉
=

〈
r(k), r(k)

〉
− βk

〈
r(k), Aδ(k)

〉
=

〈
r(k), r(k)

〉(
1− βk

〈
r(k), Aδ(k)

〉〈
r(k), r(k)

〉 )

=
〈
r(k), r(k)

〉(
1−

〈
r(k), Aδ(k)

〉2〈
r(k), r(k)

〉 〈
Aδ(k), Aδ(k)

〉)
=

〈
r(k), r(k)

〉
(1− cos2∠k)

=
〈
r(k), r(k)

〉
sin2∠k.

Consequently, we have ∥∥∥r(k+ 1
2
)
∥∥∥2 = sin2∠k

∥∥∥r(k)∥∥∥2,
where ∠k is the angle between r(k) and Aδ(k). With the same strategy, we see that∥∥∥r(k+1)

∥∥∥2 = sin2∠k+ 1
2

∥∥∥r(k+ 1
2
)
∥∥∥2,

where ∠k+ 1
2

is the angle between r(k+
1
2
) and Aδ(k+

1
2
). Hence, we have∥∥∥r(k+1)

∥∥∥2 = sin2∠k × sin2∠k+ 1
2

∥∥∥r(k)∥∥∥2,
which is equivalent to say that∥∥∥r(k+1)

∥∥∥ = |sin∠k|
∣∣∣sin∠k+ 1

2

∣∣∣ ∥∥∥r(k)∥∥∥ .
Notice that the iterative scheme (6) is convergent, if |sin∠k| and |sin∠k+ 1

2
| are not both equal

to “one” at the same time while r(k+1) 6= 0. Otherwise, we have〈
r(k), Aδ(k)

〉
= 0, (9)

and 〈
r(k+

1
2
), Aδ(k+

1
2
)
〉

= 0. (10)

Note that AM̃−1 = (M̃ − Ñ)M̃−1 = I − ÑM̃−1 and AM̂−1 = (M̂ − N̂)M̂−1 = I − N̂M̂−1.
Consequently, we have 〈

r(k), ÑM̃−1r(k)
〉

〈
r(k), r(k)

〉 = 1,
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and 〈
r(k+

1
2
), N̂M̂−1r(k+

1
2
)
〉

〈
r(k+

1
2
), r(k+

1
2
)
〉 = 1,

in the case that (9) and (10) hold simultaneously.

We comment that for the above computations, the positive definiteness of A is not used. We
summarize the above discussions in the following theorem which covers the result established
in [4, Theorem 2].

Theorem 1. Assume that A ∈ Rn×n is nonsingular. The iterative scheme (6) converges to the
exact solution of Ax = b for any initial guess, if

0 /∈ F(AM̃−1) ∩ F(AM̂−1),

or equivalently,

1 /∈ F(ÑM̃−1) ∩ F(N̂M̂−1). (11)

We end this part with a remark which shows that the iterative method (3) is convergent
under certain condition. To do so, we first need to recall the following proposition which can be
immediately concluded from [2, Proposition 2.1].

Proposition 1. Assume that A ∈ Rn×n is nonsingular. If

λmax(H(A))λmin(H(A)) > −λmax((S(A))TS(A)), (12)

then there exists an η such that ‖S̃−1‖‖H̃‖ < 1 where H̃ = H−ηI and S̃ = ηI+S. In particular,
the parameter η can be chosen by

η∗ =
λmax(H(A)) + λmin(H(A))

2
, (13)

for which the value of ‖S̃−1‖‖H̃‖ is minimized.

Remark 1. Assume that r(k+
1
2
) 6= 0. The Cauchy–Schwarz inequality ensures that〈

r(k+
1
2
), N̂M̂−1r(k+

1
2
)
〉

〈
r(k+

1
2
), r(k+

1
2
)
〉 ≤ ‖N̂M̂

−1r(k+
1
2
)‖

‖r(k+
1
2
)‖

≤ ‖N̂M̂−1‖.

It is immediate to conclude that ‖N̂M̂−1‖ < 1 is a sufficient condition for the convergence of (6).
In particular, by Proposition 1, we can conclude that if (12) holds then the iterative method (5)
is convergent for any choice of α (such that α /∈ σ(H(A))) after replacing η by (13). We further
comment that if A is a positive definite matrix (i.e., H(A) is symmetric positive definite), then
condition (12) is satisfied.

The spectrum of a given square matrix W is denoted by σ(W )
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3 Numerical experiments

In this section, we examine the performance of the iterative scheme (5), MRHSS iterative method
[4] and its weighted version [5] for two cases of a test problem mentioned in [4,5]. The iterative
methods are respectively called by MRHSS(α, η∗), MRHSS(α) and WMRHSS(α) where η∗ is
computed by (13). All of the reported experiments were performed on a 64-bit 2.45 GHz core i7
processor and 8.00GB RAM using some Matlab codes on Matlab version 8.3.0532. Right-hand
sides associated with random solution vectors were used in all of the experiments, performing
ten runs and then averaging the CPU-times and rounding iteration numbers to the nearest
integer. We report CPU-times and iteration counts under “CPU” and “Iter” in the table below.
Furthermore, under “Err” we report the relative error ‖x(k) − x∗‖/‖x∗‖ averaged over the ten
runs where x(k) is the k-th approximate solution and x∗ is the exact solution. The initial guess
was taken to be the zero vector and the iterations were stopped once ‖b−Ax(k)‖ ≤ 10−7‖b‖.

We comment that linear system with the coefficient matrix αI +H(A) is solved by sparse
Cholesky factorization with the symmetric approximate minimum degree (SYMAMD) reorder-
ing. The LU factorization in combination with the column approximate minimum degree (CO-
LAMD) reordering is exploited for solving shifted linear systems associated with skew-symmetric
part of A.

The test problem arises from using five-point central difference discretization of the following
two-dimensional convection-diffusion equation,

−
(
∂2u

∂x2
+
∂2u

∂y2

)
+ a(x, y)

∂u

∂x
+ b(x, y)

∂u

∂y
= f(x, y), in Ω, (14)

u = g on ∂Ω,

where Ω = [0, 1]× [0, 1]. The coefficient functions a(x, y) and b(x, y) are chosen as

• Case I. a(x, y) = x sin(x+ y) and b(x, y) = y cos(xy);

• Case II. a(x, y) = 5y exp(xy) and b(x, y) = 5x exp(x+ y).

The mesh size h = 1/` and the matrix A ∈ R(`−1)2×(`−1)2 , in the resulting linear system Ax = b,
is symmetric positive definite. We comment that for deriving matrix A, we first multiply both
sides of (14) by −h2.

The obtained numerical results are reported in Table 1. The results demonstrate that the
iterative scheme (5) works as efficient as the MRHSS method. As anticipated, the weighted
version consumes more time due to extra computations of using a weighted inner product. The
value of αexp is the optimal parameter for MRHSS method which is obtained experimentally
in [4]. Our numerical observations suggest that αexp is a good approximation for the optimal
values of α in the iterative scheme (5) and the weighted version of the MRHSS method [5]. For
further details, we plot the required number of iterations with respect to α for each of three
iterative schemes in Figure 1.
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Case I Case II

Method ` = 80 (αexp =2e-4) ` = 160 (αexp =1e-4) ` = 80 (αexp =9e-3) ` = 160 (αexp =3e-3)

Iter (CPU) Err Iter (CPU) Err Iter (CPU) Err Iter (CPU) Err

MRHSS(α) 4(0.037) 2.02e-06 4(0.198) 1.86e-05 32(0.341) 5.01e-06 28(1.79) 5.19e-05
WMRHSS(α) 4(0.048) 1.89e-06 5(0.359) 1.57e-06 32(0.407) 6.29e-06 27(2.60) 4.59e-05
MRHSS(α, η∗) 4(0.039) 2.22e-06 4(0.216) 1.86e-05 31(0.338) 5.63e-06 28(1.86) 5.34e-05

Table 1: Average of experimental results over ten runs for Cases I and II.
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Figure 1: Thee value of α versus the required number of iterations for the convergence in Cases
I (left) and II (right) with ` = 40.

4 Conclusion

We established the convergence of two-step iterative schemes in conjunction with the minimum
residual technique. The presented results cover the convergence analysis of the recently proposed
MRHSS method. In particular, an approach was given based on using the Euclidean inner
product which converges for a special choice of parameters. Numerical results illustrated the
efficiency of the proposed iterative method. Further research can focus on developing the idea
of MRHSS for solving the Saddle point linear system of equations.
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