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Abstract.This paper is devoted to solve a set of non-linear optimal control problems which
are touched with time-delay Fredholm integro-differential equations. The serious objective of
this work is to contribute an appropriate direct scheme for solving these problems. The tech-
nique used in this paper is based upon the Dickson polynomials and collocation points. Getting
through the solutions, the states and controls variables can be approximated with Dickson poly-
nomials. Therefore, the optimal control problem with time-delay integro-differential equation
transforms into a system of algebraic equations that by solving it, we can obtain the unknown
coefficients of the main problem. The residual error estimation of this technique is also inves-
tigated. Accuracy amount of the absolute errors have been studied for the performance of this
method by solving several non-trivial examples.

Keywords: Optimal control problems, Dickson polynomials, time-delay equation, Fredholm integrao-
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1 Introduction

Differential equation with time delay is a kind of differential equations that the derivative of
the unknown function at present time depending on the values of the function at previous
times. This type of equations have been appeared in modeling various problems in electronic,
biological, transport systems and control theory. Any system that includes feedback control is
almost always accompanied by a time delay because it takes a limited amount of time to sense
the information and then react to it. Therefore, time-delay systems are an essential category of
systems whose optimal control has been considered by many scientists. Overwhelming research
has been done on developing applications of delay problems in engineering fields and physical
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models. In [9], the authors studied two cases in biomedicine with multiple time delays in state
and control variables. A hybrid method based on the block-pulse functions and orthonormal
Taylor series proposed to solve optimal control of time-delay systems by Dadkhah et al. in [4].
Multiple time delays in theory and applications of optimal control problems are investigated
in [10]. Liu et al. in [16], have presented a computational approach to solve time-delay optimal
control problems with free terminal time. Haar wavelet method is applied to solve optimal
control problems of the time-delayed systems in [19]. You can see more articles in this field in
references [5, 17,23,24].

More precisely, this topic extended to another type of delay optimal control problems where
the time-delay dynamic system is governed by integral equation namely delay integro-optimal
control problems (DIOCPs). Although, many computational methods have been proposed to
solve optimal control problems with time-delay, but only one paper is devoted to solve DIOCPs
[18]. So, our goal is to offer a method that can easily solve these problems based on Dickson
polynomials and collocation points. Dickson polynomials are well described by Lidl et al.,
in [15]. These polynomials are definable over a commutative ring R in which, if R = C be
the set of complex numbers, Dm(t, α) is associated with the known Chebyshev polynomials
of the first kind Tm(t). Exactly, Dm(2 cos θ, 1) = 2Tm(cos θ) for any real number θ and we
have Lucas polynomials when α = −1 [3]. Beside, there have been various articles on Dickson
polynomials [1, 7, 8, 22, 25]. See some practical articles in this area in [11, 12]. The proposed
method allows us to transform the DIOCPs to a system of algebraic equations with matrix
form of unknown coefficients for choosing the state and control parameters optimally. The error
estimation of this technique is also investigated. The significant merits of this approach are swift
calculations, efficiency, ease of implementation and robustness. Indeed, it provides satisfactory
results even a small number of the Dickson polynomials is used. Simple operations and ease of
implementation are further characteristics of the mentioned polynomials. To attain these aims,
the suitable choice of α, the parameter of Dickson polynomials, plays a crucial role to enhance
the accuracy of the results evaluated by the current approach.

The overall layout of this manuscript is according to the following pattern. Section 2 explains
the basic concepts of Dickson polynomials and their properties. We present a direct approach
based on collocation method and Dickson polynomials to solve DIOCPs in Section 3. Also, the
function approximation and the operational matrix of Dickson polynomials have been discussed
in this section. The error estimation and the convergence analysis of this approach are carried
out in Section 4. The numerical results and comparison have brought in Section 5 to substantiate
the efficiency of our approach and then, some conclusions are drawn in the last section.

2 Dickson polynomials

The Dickson polynomials of degree m, which was firstly derived in [6], for any integer m ≥ 1
and any element α over finite fields are defined as follows:

Dm(t, α) =

bm
2
c∑

i=0

m

m− i

(
m− i
i

)
(−α)it(m−2i), −∞ < t <∞
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where bm2 c is the greatest integer less than or equal to m
2 . In addition, D0(t, α) = 2, D1(t, α) = t

and for m > 1, we have the following recurrence relation [15]:

Dm(t, α) = tDm−1(t, α)− αDm−2(t, α), m ≥ 2.

Furthermore, Dm(t, α) satisfies the following ordinary differential equations [15]

(t2 − 4α)y′′ + ty′ −m2y = 0, m = 0, 1, 2, . . . .

3 Method of solution

In this section, we present a direct scheme based on collocation method and Dickson polynomials
to solve the following DIOCP:

min J(y, u) =
1

2

∫ 1

0
(a y2(t) + b u2(t) + c y2(t− η))dt, (1)

subject to

y′(t) =

d∑
i=1

αi(t)y
i(t) +

e∑
j=1

βj(t)y
j(t− η) +

f∑
k=1

∫ 1

0
Bk(t, τ)yk(τ − η)dτ + γ(t)u(t), (2)

with the initial conditions

y(0) = y0,

y(t) = φ(t), −η ≤ t < 0, (3)

where y(t), u(t) ∈ R and a, b, c are nonnegative real numbers. Also, αi(t), βi(t), Bk(t, τ) and
γ(t), i = 1, 2, . . . , d, j = 1, 2, . . . , e, k = 1, 2, . . . , f , are arbitrary functions and φ(t) is a known
function. Sufficient and necessary conditions for existence solutions of OCP with time delay was
studied in [2]. The target of this work is to find the admissible pair (y(t), u(t)) that minimizes
the cost functional (1), while the dynamic equality constraint (2)-(3) is satisfied. Nonetheless
it should be noted that through the difficulty of handling analytically solutions for DIOCPs,
finding a numerical method with low computing costs and enough accuracy and performance
has become an active research undertaking. For obtain an approximate solution based on the
truncated Dickson polynomials, we have:

y(t) ' yM (t) =

M∑
p=0

Dp(t, α)yp u(t) ' uM (t) =

M∑
p=0

Dp(t, α)up, (4)

where yp and up, p = 0, 1, 2, . . . ,M , are the unknown Dickson coefficients. Now, for solving
problem (1)-(2), we need to find the approximations presented in (4). For this purpose, we used
the following collocation points:

tq = t0 + (
tf − t0

2M
)q, q = 0, 1, 2, . . . , 2M. (5)
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in which t0 < t1 < t2 < . . . < t2M = tf . To simplify calculations, we rewrite the approximation
solution (4) with the following matrix form [11,12]:

y(t) ' yM (t) = D(t, α)Y = S(t)K(α)Y, (6)

u(t) ' uM (t) = D(t, α)U = S(t)K(α)U,

where Y = [y0, y1, . . . , yM ]T and U = [u0, u1, . . . , uM ]T are the unknown coefficients, S(t) =
[1, t, t2, . . . , tM ] and if M is even

KT (α) =



2 0 0 0 ... 0

0 1
1

(1
0

)
(−α)0 0 0 ... 0

2
1

(1
1

)
(−α)1 0 2

2

(2
0

)
(−α)0 0 ... 0

0 3
2

(2
1

)
(−α)1 0 3

3

(3
0

)
(−α)0 ... 0

...
...

...
...

. . .
...

M
M/2

(M/2
M/2

)
(−α)M/2 0 M

(M/2)+1

((M/2)+1
(M/2)−1

)
(−α)(M/2)−1 0 · · · M

M

(M
0

)
(−α)0


,

and if M is odd

KT (α) =



2 0 0 0 ... 0

0 1
1

(1
0

)
(−α)0 0 0 ... 0

2
1

(1
1

)
(−α)1 0 2

2

(2
0

)
(−α)0 0 ... 0

0 3
2

(2
1

)
(−α)1 0 3

3

(3
0

)
(−α)0 ... 0

...
...

...
...

. . .
...

0 M
dM/2e

(dM/2e
bM/2c

)
(−α)bM/2c 0 M

dM/2e+1

(dM/2e+1
bM/2c−1

)
(−α)bM/2c−1 · · · M

M

(M
0

)
(−α)0


.

Now, for the matrix form of derivative we have [11,12]:

y′(t) ' y′M (t) = D′(t, α)Y = S(t)BK(α)Y, (7)

u′(t) ' u′M (t) = D′(t, α)U = S(t)BK(α)U,

in which

D(t, α) = [D0(t, α), D1(t, α), . . . , DM (t, α)],

D′(t, α) = [D′0(t, α), D′1(t, α), . . . , D′M (t, α)],

and

B =



0 1 0 0 . . . 0
0 0 2 0 . . . 0
0 0 0 3 . . . 0
...

...
...

...
. . .

...
0 0 0 0 0 M
0 0 0 0 0 0


.

So, by putting t→ t− η in Eq. (6), we will have:

y(t− η) ' yM (t− η) = S(t− η)K(α)Y = S(t)C(−η)K(α)Y, (8)
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in which

C(η) =



(
0
0

)
(−η)0

(
1
0

)
(−η)1

(
2
0

)
(−η)2 ...

(
M
0

)
(−η)M

0
(
1
1

)
(−η)0

(
2
0

)
(−η)1 ...

(
M
1

)
(−η)M−1

0 0
(
2
2

)
(−η)0 ...

(
M
2

)
(−η)M−2

...
...

...
. . .

...

0 0 0 · · ·
(
M
M

)
(−η)0


.

Also, we obtain the fundamental matrix relations for nonlinear parts of problem (1)-(2). There-
fore, for the nonlinear part y2(t) we have [12,13]:

y2(t) ' D(t, α)D̄(t, α)Ȳ = S(t)K(α)S̄(t)K̄(α)Ȳ , (9)

where

S̄(t) = diag[S(t)](M+1)×(M+1)2 =


S(t0) 0 . . . 0

0 S(t1) . . . 0
...

...
. . .

...
0 0 0 S(tM )


(M+1)×(M+1)2

,

and

K̄(α) = diag[K(α)](M+1)2×(M+1)2 , Ȳ =


y0Y
y1Y

...
yMY


(M+1)2×1

.

Similarly, for nonlinear part y3(t) we have [11,12]:

y3(t) ' D(t, α)D̄(t, α) ¯̄D(t, α) ¯̄Y = S(t)K(α)S̄(t)K̄(α) ¯̄S(t) ¯̄K(α) ¯̄Y, (10)

where

¯̄S(t) = diag[S̄(ti)](M+1)2×(M+1)3 ,

¯̄K(α) = diag[K̄(α)](M+1)3×(M+1)3 ,

¯̄Y = [y0Ȳ y1Ȳ · · · yM Ȳ ]T(M+1)3×1.

Based on the above approximations, we have:∫ 1

0
y2(t)dt '

∫ 1

0
S(t)K(α)S̄(t)K̄(α)Ȳ dt = K(α)K̄(α)SȲ , (11)

in which

S =

∫ 1

0
S(t)S̄(t)dt = [smn]; smn =

1

m+ n+ 1
, m, n = 0, 1, . . . ,M.
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Similarly, ∫ 1

0
u2(t)dt '

∫ 1

0
S(t)K(α)S̄(t)K̄(α)Ūdt = K(α)K̄(α)SŪ . (12)

∫ 1

0
y2(t− η)dt ' =

∫ 1

0
S(t)C(−η)K(α)S̄(t)C̄(−η)K̄(α)Ȳ dt (13)

= C(−η)K(α)C̄(−η)K̄(α)SȲ .

With the use of approximations (11)-(13), the performance index (1) is transformed to the
following form:

min J(Y,U) =
1

2
(aK(α)K̄(α)SȲ + bK(α)K̄(α)SŪ + cC(−η)K(α)C̄(−η)K̄(α)SȲ ) (14)

∼= G(Ȳ , Ū).

Now, by assuming d, e, f = 3 and substituting the approximations (4)-(13) in equation (2), will
have:

Λ(t, Y, U) = S(t)BK(α)Y − V1(t)− V2(t)− V3(t)− γ(t)S(t)K(α)U, (15)

where

V1(t) = α1(t)S(t)K(α)Y + α2(t)S(t)K(α)S̄(t)K̄(α)Ȳ + α3(t)S(t)K(α)S̄(t)K̄(α) ¯̄S(t) ¯̄K(α) ¯̄Y,

V2(t) = β1(t)S(t)C(−η)K(α)Y + β2(t)S(t)C(−η)K(α)S̄(t)C̄(−η)K̄(α)Ȳ

+ β3(t)S(t)C(−η)K(α)S̄(t)C̄(−η)K̄(α) ¯̄S(t) ¯̄C(−η) ¯̄K(α) ¯̄Y,

and

V3(t) =

∫ 1

0
B1(t, τ)S(τ)C(−η)K(α)Y dτ +

∫ 1

0
B2(t, τ)S(τ)C(−η)K(α)S̄(τ)C̄(−η)K̄(α)Ȳ dτ

+

∫ 1

0
B3(t, τ)S(τ)C(−η)K(α)S̄(τ)C̄(−η)K̄(α) ¯̄S(τ) ¯̄C(−η) ¯̄K(α) ¯̄Y dτ.

By substituting the collocation point (5) into (15), we obtain:

Λi ∼= Λ(ti, Y, U) ∼= 0, i = 1, . . . , 2M, (16)

with the initial condition
Λ0
∼= S(0)K(α)Y − y0 = 0. (17)

To get the approximate solutions of optimization problem (1)-(2), we can adopt the Lagrange
multipliers method for minimizing (14) subject to the conditions given in (16)-(17) as

J∗(Y,U, λ) = G(Ȳ , Ū) + Λλ, (18)

where λ = [λ0, λ1, . . . , λ2M ] is the vector of unknown lagrange multipliers and Λ = [Λ0,Λ1, . . . ,
Λ2M ]. For the optimality of functional (18) we obtain the following necessary conditions:

∂J∗

∂Y
= 0,

∂J∗

∂U
= 0,

∂J∗

∂λ
= 0. (19)

The equations (19) can be solved with any software. In this paper we used Mathematica package
for it.



Optimal control of delay integral equations 283

4 Residual error estimation

Let PN be the set of all Dickson polynomials of degree at most N . If f(t) be a function in
L2[0, 1], since PN is a finite space, f(t) has a best approximation out of PN like as f0(t) such
that:

∀g ∈ PN : ||f − f0||2 ≤ ||f − g||2.
Suppose that fn ∈ PN , then there exist coefficients ck, k = 0, 1, . . . , n, so that

fn(t) ≈
n∑
k=0

ckDk(t, α) = CTnDn,

where ck, k = 0, 1, . . . , n, are real valued unknown coefficients and Dn is the vector of Dickson
polynomials defined as:

CTn = [c0, c1, . . . , cn], DT
n = [D0(t, α), D1(t, α), . . . , Dn(t, α)].

Theorem 1. Let f ∈ L2[0, 1] be approximated by fn in terms of the Dickson polynomials
{Dk(t, α)}nk=0 that is, fn(t) =

∑n
k=0 ckDk(t, α). If en(t) = ||f(t)−fn(t)|| then limn→∞ en(t) = 0.

Proof. Using the Taylor expansion, we define the following approximation of f out of PN as
follows:

f̃(x) =
n∑
k=0

tk

Γ(k + 1)
f (k)(0+).

Then we have:

|f(x)− f̃(t)| ≤ tn+1

Γ(n+ 2)
sup

0≤t≤1
|f (n+1)(t)|.

Let L = sup0≤t≤1 |f (n+1)(t)|. Because f̃(t) is the best approximation of f , so

‖f − fn‖2 ≤ ‖f − f̃‖2 =

∫ 1

0

|f(t)− f̃(t)|dx ≤ L

Γ(n+ 2)

∫ 1

0

tn+1dx =
L

(n+ 2)!
.

When n increases, the error quickly tends to zero [20].

According to this theorem, the approximations of f(t) with Dickson polynomials are con-
verging. Now, an error analysis dependent on residual function is implemented to improve
the Dickson polynomials solutions. By using the proposed method we can obtain the residual
function on t ∈ [0, 1] as

RN (t) = G(yi, ui) + λΛ(yi, ui), (20)

such that

y(0) = y0,

m∑
i=0

yi(0)− y0 = 0. (21)

Let us now construct the residual error analysis for the Dickson polynomials. The error function
eN (t) is obtained by

eN1(t) = y(t)− yN (t),

eN2(t) = u(t)− uN (t).
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So the maximum absolute error can be evaluated as

eN (t) = max
0≤t≤1

|eN1(t) + eN2(t)|. (22)

Accordingly, by equation (20) and (22) the error equation is of the form

L(eN (t)) = max |L(y(t))− L(yN (t)) + L(u(t))− L(uN (t))| = −RN (t), (23)

subject to the initial conditions (21). Thus, we constitute the error problem by equations (21)
and (23) and obtain the estimated error function eN,M (t) as follows:

eN,M (t) =

M∑
n=0

c∗nDn(t, α), (M > N). (24)

The eN,M (t) is the Dickson polynomials solution of the error problem (23) with condition (21).
Therefore, by using (24), the solution based on Dickson polynomials will be obtained as follows:

yN,M = yN (t) + eN,M (t), uN,M = uN (t) + eN,M (t),

and the corrected error functions are obtained as

e1N,M (t) = y(t)− yN,M (t),

e2N,M (t) = u(t)− uN,M (t).

The corrected errors are obtained after using the residual error analysis. Authors in [14] have
been shown that by increasing the number of M , these residual error functions tend to zero wich
indicate a characteristic behavior of the residual function. According to the above discussion,
the approximations of a function with Dickson polynomials are converging. It is also easy to
conclude that by increasing the number of Dickson polynomials, the error of the derivative
defined by operational matrix in (7), tends to zero.

Theorem 2. Suppose yM (t) and uM (t) are approximations of functions y(t) and u(t), respec-
tively, using Dickson polynomials of degree M , defined in Eq. 4. Then (yM , uM ) converge to the
exact solutions of problem (1)-(3) as M , the degree of the Dickson polynomials, tends to infinity.

Proof. This theorem is easily proved by the given discussion in [21].

5 Application

We would test introducing method by several examples. We show the efficiency of this method
by solving four non-trivial examples. Since the exact solution is often unknown, we need to
estimate the error function and investigate the reliability of the method numerically. So, the
accuracy of the approximate solutions is studied by substituting the solutions into Eq. (2) as
follows:

EM (t) = |y′M (t)−
d∑
i=1

αi(t)y
i
M (t)−

e∑
j=1

βj(t)y
j
M (t− η) (25)

−
f∑
k=1

∫ 1

0
Bk(t, τ)ykM (τ − η)dτ − γ(t)uM (t)|.
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Table 1: Numerical results of J∗M for Example 1.

Itr α = −1 α = 0 α = 0.1 α = 1 Marzban et al. [18]

M = 4 2.1843 2.18504 2.18469 2.1843 -
M = 6 1.45606 1.45609 1.45609 1.68073 1.264683014665444244
M = 8 9.89804 0.935525 0.938045 2.33095 1.26468301466544423585106710

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

1.0

1.2

1.4

1.6

State

0.0 0.2 0.4 0.6 0.8 1.0

-3

-2

-1

0

1

2

3

Control

Figure 1: The black dash-line and blue curves denote the approximate solutions with M = 8
and M = 10, respectively, for Example 1.

We expect that EM (t) = 0 on the collocation points. Indeed, the more accurate of the proposed
method will be obtained for the approximation solutions when EM (t) much be close to zero.
To evaluate the benefits and validity of this method, consider the following examples. Also, we
refer the interested readers to [14] to view the determination of the optimal value of α.

Example 1. For the first example, we consider

min J(y, u) =
1

2

∫ 1

0
(y2(t) + u(t)2)dt,

subject to

y′(t) = y(t− 1

3
) +

∫ 1

0
y(τ − 1

3
)dτ +

∫ 1

0
(t+ τ)y2(τ − 1

3
)dτ + u(t),

with the boundary conditions y(t) = 1, for −1
3 ≤ t ≤ 0.

Numerical results by applying the offered method for J∗m have been reported in Table 1 and
compared with the results of [18]. From the perspective of cost values, our suggested approach
is somewhat more effective by increasing the number of M (especially for α = 0 and α = 0.1).
The graphs of y(t) and u(t) for α = 0.1 and M = 8, 10 has been shown in Figure 1. The
accuracy of the approximate solutions can be easily investigated by increasing the number of M
and considering α = 0 in Table 2.
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Table 2: Accuracy errors for various iteration with α = 0 for Example 1.

t 0 0.2 0.4 0.6 0.8 1

E4 3.53569× 10−4 4.02488× 10−5 6.11943× 10−7 3.37581× 10−5 3.66674× 10−5 2.77752× 10−5

E6 5.31621× 10−8 1.93004× 10−7 3.32832× 10−7 4.72663× 10−7 6.12491× 10−7 7.52321× 10−7

E8 1.06273× 10−7 2.059994× 10−7 3.06483× 10−7 4.07034× 10−7 5.07531× 10−7 6.08054× 10−7

Table 3: Numerical results of J∗M for Example 2.

Itr α = −1 α = 0.2 α = 1

M = 4 3.5502 3.4954 3.49469
M = 8 2.6645 2.72597 2.92514

Example 2. As a second example let us consider the following non-linear DIOCP:

min J(y, u) =
1

2

∫ 1

0
(y2(t) + y2(t− 1

3
) + u2(t))dt,

subject to

y′(t) = y2(t− 1

3
) +

∫ 1

0
y(τ − 1

3
)dτ +

∫ 1

0
(t τ)y(τ − 1

3
)dτ + u(t),

with boundary conditions y(t) = 0, for −1
3 ≤ t < 0, and y(0) = 1.

Numerical results of E∗M by applying the proposed method for this problem leads to Table 3.
The accuracy of these solutions for different choices of M and considering α = 0.2 are reported
in Table 4. These results show that the accuracy errors have been improved by increasing the
number of M . The graphs of y(t) and u(t) for M = 6 and α = 0, 0.1 has been shown in Figure
2.

Example 3. In this example we solved the following problem:

min J(y, u) =
1

2

∫ 1

0
(y2(t) + u2(t))dt,

subject to

y′(t) = y3(t− 1

2
) +

∫ 1

0
y2(τ − 1

2
)dτ + u(t),

with boundary condition y(t) = 1, for −1
2 ≤ t ≤ 0.

Table 4: Accuracy errors with α = 0.2 for Example 2.
t 0 0.2 0.4 0.6 0.8 1

E4 5.081× 10−1 8.20517× 10−3 3.89347× 10−5 1.23039× 10−3 2.21951× 10−3 5.6062× 10−5

E6 8.61139× 10−10 1.90308× 10−10 9.76343× 10−11 6.14881× 10−10 8.13797× 10−10 7.29182× 10−10
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Figure 2: The black dash-line and blue curves denote the approximate solutions with α = 0
and α = 0.1, respectively, for Example 2.

Table 5: Numerical results of J∗M for Example 3.

Itr α = −1 α = 0 α = 0.1 α = 0.2 Marzban et al. [18]

M = 2 2.16591 2.16595 2.16596 2.16594 -
M = 4 2.07812 1.4788 1.37714 1.38865 -
M = 6 2.2367 1.44071 1.75525 1.32294 1.201779606134
M = 8 2.70686 14.363 1.86363 1.30674 1.201779606106786

Numerical results by applying the offered method for J∗M have been reported in Table 5
and compared with the method of [18]. The effect of parameter M on these approximations
with α = 0.2 has been demonstrated in Table 6. The results show that the accuracy of the
approximate solutions improved by increasing the number of M . Also, Table 7 shows the values
of y(t) and u(t) at different time t with M = 8.

Example 4. In the last example we consider the nonlinear DIOCP presented by

min J(y, u) =
1

2

∫ 1

0
u2(t)dt,

subject to

y′(t) = y2(t− 1

2
) +

∫ 1

0
y2(τ − 1

2
)dτ + u(t),

Table 6: Accuracy errors with α = 0.2 for Example 3.

t 0 0.2 0.4 0.6 0.8 1

E4 1.14611× 10−2 2.48427× 10−4 1.69239× 10−5 3.60955× 10−5 1.00276× 10−4 2.68722× 10−6

E6 1.78809× 10−3 4.3076× 10−5 1.63087× 10−5 4.10421× 10−5 1.0721× 10−4 1.91353× 10−5

E8 1.09349× 10−5 2.89252× 10−7 2.15438× 10−7 2.45622× 10−7 1.17473× 10−6 4.71367× 10−6
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Table 7: Numerical results of y(t) and u(t) with α = 0.2 and M = 8 for Example 3.

t y(t) u(t)

0.0 1.00000 −0.100302
0.2 1.09078 −0.819379
0.4 1.12108 −1.428560
0.6 1.19270 −1.355930
0.8 1.43005 0.393385
1.0 1.936450 0.915803

Table 8: Numerical results of J∗M for Example 4.

Itr α = −1 α = −0.9 α = −0.88 α = 1

M = 2 5.58721× 10−18 8.41906× 10−21 5.56755× 10−23 2.75666× 10−7

with boundary condition y(t) = t, for t ≤ 0.

The exact optimal control function is u(t) = 0 and optimal trajectory y(t) is

y(t) =

{
7
24 t−

1
2 t

2 + 1
3 t

3, 0 ≤ t < 1
2 ,

8083
161280 + 373

3780 t−
125
384 t

2 + 985
1128 t

3 − 55
96 t

4 + 61
180 t

5 − 1
9 t

6 + 1
63 t

7, 1
2 ≤ t ≤ 1.

Numerical results by applying the our approach for J∗M have been reported in Table 8. In
addition, the accuracy of the approximate solution for M = 2 and α = −0.88 have been
obtained in Table 9. High accuracy for the numerical results of this example occurs in the low
iteration. In Table 10 it is shown that our method provides very accurate numerical solution for
this problem.

6 Conclusion

We have presented Dickson polynomials with a collocation method to solve a class of DIOCPs.
Our design uses the control variables and the state via a linear combination of Dickson polyno-
mials as basic functions. The properties of these functions, allows us to reduce the time-delay
optimal control problem to a system of nonlinear algebraic equations for choosing the unknown
coefficients optimally. Using Dickson polynomials via a collocation method bears some advan-
tages such as simply evaluation of high order derivatives and integral terms of given differential

Table 9: Accuracy errors with α = −0.88 for Example 4.
t 0 0.2 0.4 0.6 0.8 1

E2 1.33924× 10−18 7.81568× 10−19 4.33901× 10−19 2.96197× 10−19 3.68421× 10−19 6.50551× 10−19
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Table 10: Numerical results of y(t) and u(t) with α = −0.88 and M = 2 for Example 4.

t y(t) u(t)

0.0 0.00000 2.07023× 10−11

0.2 3.44836× 10−12 1.37813× 10−11

0.4 5.51251× 10−12 6.86024× 10−12

0.6 6.19245× 10−12 −6.07916× 10−14

0.8 5.48819× 10−12 −6.98182× 10−12

1.0 3.39972× 10−12 −1.39028× 10−11

equation and less expensive of computational costs. Four examples are solved to illustrate the
efficiency, applicability and high performance of this approach. As can be seen in these exam-
ples, the parameter α plays an important role in the Dickson polynomials in a way that can
change the behavior of the solution. The accuracy of the Dickson collocation method can be
easily concluded from the improved results by our introduced method. Moreover, this approach
is applicable to both optimal control problems with time-delay governed by Volterra integro-
differential equations and Volterra- Fredholm integro-differential equations. All calculations
were carried out using Mathematica software.
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[2] R. Bonalli, B. Hérissé, E. Trélat, Solving optimal control problems for delayed control-
affine systems with quadratic cost by numerical continuation, In 2017 American Control
Conference (ACC), IEEE, (2017) 649–654.

[3] W.S. Chout, Factorization of Dickson polynomials over finite fields, Finite Fields Appl. 3
(1997) 84–96.

[4] M. Dadkhah, M.H. Farahi, Optimal control of time delay systems via hybrid of block-pulse
functions and orthonormal Taylor series, Int. J. Appl. Comput. Math. 2 (2016) 137–152.

[5] M. Dadkhah, M.H. Farahi, A. Heydari, Optimal control of a class of non-linear time-delay
systems via hybrid functions, IMA J. Math. Control Inform. 34 (2017) 255–270.



290 M. Alipour, S. Soradi-Zeid

[6] L.E. Dickson, The analytic representation of substitutions on a power of a prime number
of letters with a discussion of the linear group I-II, Ann. Math. 11 (1896) 65–120.

[7] A. Diene and M.A. Salim, Fixed points of the Dickson polynomials of the second kind, J.
Appl. Math 2013 (2013), Article ID 472350

[8] N. Fernando, A study of permutation polynomials over finite fields, (Graduate Theses and
Dissertations), University of South Florida, http://scholarcommons.usf.edu/etd/4484.

[9] L. Gollmann, H. Maurer, Optimal control problems with time delays: two case studies in
biomedicine, Math. Biosci. Eng. 15 (2018) 1137–1154.

[10] L. Gollmann, H. Maurer, Theory and applications of optimal control problems with multiple
time delays, J. Ind. Manag. Optim. 10 (2014) 413–441.
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