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Abstract. In this paper, we establish the existence of denumerably many positive solutions
for singular iterative system of fractional order boundary value problem involving Riemann—
Liouville integral boundary conditions with increasing homeomorphism and positive homomor-
phism operator by using Hoélder’s inequality and Krasnoselskii’s cone fixed point theorem in a
Banach space.
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1 Introduction

The study of turbulent flow through porous media is important for a wide range of scientific and
engineering applications such as fluidized bed combustion, compact heat exchangers, combustion
in an inert porous matrix, high temperature gas-cooled reactors, chemical catalytic reactors and
drying of different products such as iron ore [3,9,12,17,19]. To study this type of problems,
Leibenson [3] introduced the p-Laplacian equation,

(bp(2' (1)) = f(t,2(t), 2/ (1)),

where ¢,(7) = |7[P727, p > 1. The operator ¢, is invertible and its inverse operator is defined
by ¢4, where ¢ > 1 is a constant such that ¢ = p/(p — 1). The recent works on the existence,
uniqueness and existence of positive solutions for fractional order boundary value problems,

see [ ) ) ) ) ) ) ) ]'
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The fractional order p-Laplacian operator arises in many applied fields such as turbulant
filtration in porous media, blood flow problems, rheology, modelling of viscoplasticity, material
science, and it is worth developing the theory to fractional differential equations with p-Laplacian
operator. Moreover research on increasing homeomorphism and positive homomorphism opera-
tors has gained momentum recently.

In this paper we define a new operator called increasing homeomorphism and positive homo-
morphism operator, which improves and generalizes the p-Laplacian operator for some p > 1,
and ¢ is not necessarily odd. In [21], Zhao and Liu studied the following fractional order
boundary value problem,

where ¢ : R — R is an increasing and positive homomorphism, 2 <n —1 < v < n and C_@g+ is
the Caputo fractional derivative. In the sense of a monotone homomorphism, they established
some sufficient criteria for the existence of at least two monotone positive solutions by employing
the fixed point theorem on cone expansion and compression.

In [1], Ege and Topal discussed the existence and multiplicity of positive solutions to the
four point fractional order boundary value problem with increasing and positive homomorphism
operator by using Krasnoselskiis and Legget—Williams fixed point theorems in a cone,

2L (P Zgra(t)) + f(t,a(t)) =0, t € (0,1),
a1z(0) — f12(0) = —y1z(&1),
aox(1) + B’ (1) = —ypz(&2),
€9 (0) =0

where C.@g+ and C.@g . are the Caputo fractional derivatives of order r and ¢ respectively with
1l<r<2,0<qg< 1.

Inspired by the aforementioned work, in this article we establish countably infinitely many
positive solutions of fractional differential equations with Riemann-Liouville fractional integral
boundary conditions with an increasing homeomorphism and positive homomorphism operator,

b [cgg+wj(t)] + U(t)gj(wi+1(t)) =0, 0<t <1, j=1,2,... ,E,} )

Wg+1(t) = wl(t), 0<t<l,
satisfying integral boundary conditions

w;(0) — awg (0) = 8‘+wj(1),}

w;(1) + b} (1) = Ih, ;3 (1), (2)

where € o+ denote Caputo fractional derivatives with 1 < o < 2, 7§, Ig+ denote Riemann-
Liouville fractional integrals, a,b € R, o, p > 0, ¥(¢) =[]\, s, and each ; : [0,1] — [0, +-00)
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has a singularity in (0, %), ¢ : R — R is an increasing and positive homomorphism with ¢(0) = 0
and ¢~1(¥) € L,[0, 1] for some p > 1.

A projection ¢ : R — R is called an increasing and positive homomorphism, if the following
conditions are satisfied:

(a) if u < v, then ¢(u) < d(v) for all u,v € R.
(b) ¢ is a continuous bijection and its inverse is also continuous.
(c) d(uv) = d(u)d(v) for all u,v € R.

Remark 1. (i) ¢~ (uv) = ¢~ Hu)dp~(v),
(ii)Also $(0) = 0 that d(u) >0 if u >0 and d(u) <0 if u <O0.

Remark 2. It is not difficult to observe that the p-Laplacian operator &py(u) = |ulP~?u, p > 1,
s an increasing and positive homomorphism. The operator ¢ is regarded as the improvement and
generalization of the classical p-Laplacian operator ¢p(u) = [uP~2u, p > 1.

We will suppose that throughout the paper following conditions hold:
(H1) gj : [0,+00) — [0,400) is continuous,

9 ere exists a sequence {122, suc a
Hs) th ist 7 i} h that
1 . " . )
tppr < tk, t1 < =, im tp =t* >0, lim ¥;(t) = +oo, ke N;i=1,2,--- 'm,
2" k—oo t—ty

and ;(t) does not vanish identically on any subinterval of [0, 1].
Moreover,

1
0< / (1 — 1) "p;(1)dt < +o0 for 0 < r < 1.
0

(H3) o(14a)—a>2,0>1,0<¢g+w<land¢=1-—¢ — ¢+ <151 — 263 > 0 where

 x(1+b)+b al+ o) +1
T A ratol(a+2) 2T Aratbl(at2)
_ B(L+b)+D _a(l+p)+1
BT 0 tat (B2 T Uta+hl(B+2)

The rest of the paper is organized in the following fashion. In Section 2, we provide some
definitions and lemmas that provide us with some useful information concerning the behavior
of solution of the boundary value problem (1)-(2), then we construct the kernel for the homo-
geneous problem corresponding to (1)-(2), estimate bounds for the kernel, and some lemmas
which are needed in establishing our main results. In Section 3, we establish a criterion for the
existence of countable number of positive solutions for the boundary value problem (1)-(2) by
applying Holder’s inequality and Krasnoselskii’s cone fixed point index theorem in a Banach
space. Finally, as an application, an example to demonstrate our results is given.
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2 Kernel and its bounds

In this section, we list some definitions and lemmas which are useful for our later discussions,
and constructed kernel to the homogeneous BVP corresponding to (1)-(2), and establish certain
lemmas for the bounds of the kernel.

Definition 1. [2] The Riemann-Liouville fractional integral of order -y for a function f is
defined as

Toelt) = gy [ (=9 els)ds, 7 >0

In particular, when t =1,

1
Z3.e() = i [ (1= 57 gle)ds.

Hence, T, g(t) <Z.g(1) forg(t) >0 and0<t<1.

Definition 2. [2] For a function f given on the interval [0,00), the Caputo derivative of
fractional order  for the continuous function f on [0,00) is defined as

¢ g(t) = 1)A@WH“WWM&m=M+L

L(m —~
where [y] denotes the integer part of ~.

Lemma 1. [7,15] Let v > 0. Then the differential equation c.@&w(t) = 0 has solutions
w(t) =co+cit +eat? + -+ cpgt™ !
where ¢; € R, 1=0,1,2,....,m—1, m=[y] + L

Lemma 2. [7,15] Let v > 0. Then the differential equation c.@&w(f) = 0 has solutions
), (9] y)(t) = w(t) + co+ crt + eat® + -+ + cpp1t™ !

where ¢; € R, 1=0,1,2,...,m, m=[y] + 1.

To establish the existence of solution of the boundary value problem (1)-(2), we need the fol-
lowing Lemma 3, which is crucial in changing boundary value problem (1)-(2) into an equivalent
integral equation.

Lemma 3. Suppose (Hs) holds. Let 1 < 0 < 2 and £ € C[0,1]. Then boundary value problem
d(CIL ) +£(1t) =0, 0<t <1,
@1(0) — aw} (0) = I w1 (1), (1)
w1(1) + b (1) = ZF w1 (1),
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has a unique solution y and is given by

1 1
wl(t):/OlN(t,T)(I)_l(f(T))dT—I—/O g(m)/o R(T, 1)L (£(T1))dTad,

1{ (a+t)(1—T4+bo—-1)1 =121 +a+b)t—1)"t 1<t
N(t,'c):ﬁ

(a+t)(1—1+b(oc—1))(1—1)°2, t

IN

T,

n=1+a+bI(0), Y(t,7T) = % (1)t + %(7) in which

_ 1 (+a—-D1-1*1 (1-¢—g)(1-1)Pp!
#lm) = §(1+a—|—b)[ T(«) + (B }
and
= 1 (a3 +(1+D0)(1—))(1 =0 (a1l =)+ (1 +b)e)(1—1)P!
SR [ I'(e) i () ]

Proof. From Lemma 2, the general solution of the equation (1) can be written as
@(t) = ~TS & (£(1) + A+ Bt,

where A, B € R are arbitrary constants. By the boundary conditions, we find that

= ab ' o-2 41 1+b6
A= raroro- 1)/0 (=)0 (£(s))ds + 1~ Lo (1)
a 1 . o=1p-1(¢(s))d a_ p )
i (1+a+b)F(c)/0 (L =8)"" 07 (£(s))ds + T~ Lo+ (1),
and , X 1
= _ \o—14—1 -
b= (1+a+b)F(0)/0 (1—5)°" &7 (£(s))ds 1+a+b10+w1(1)
b ! 1 o-24-10¢()\d 1 7P )
+(1+a—|—b)I‘(G—1)/O( —8)" b (E(s))ds + 1~ T (D).
Therefore,
! 1+b—t t
@1 (t) —/0 N(t,T)q)—l(f(T))dT—i—ﬁ 3‘+W1(1)+#t“1€+w1(1).

By simple calculations, we get

1 _ oa—1
Igrmi(1) = i[(l - <4)/0 (1F(f2)

+ < /01 (1;(}2;_1/OlN(T’Tl)d)_l(f(Tl))dTldT |

/1 N(T, Tl)d)_l(f(’fl))d’tld”t
0

261
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and

()= 1o /0 kil /Olrz(m (¢(r)drade

Ly 1
/o 2) /0 R(r, 7)o" (£(r1))dridr].

Substituting above two identities into (2), we get

1 1
@i(t) = [ RE0e  (E(@)de+ / 9t [ Nrm)e ! (e(m)inds,
0 0 0
which completes the proof. O
Lemma 4. Suppose (Hs) holds. Then the kernel X(t,s) has the following properties,
(i) X(t,t) > 0 is continuous on [0, 1] x [0, 1],
(i1) R(t, ) < R(t,7T) for any t,T € [0,1],

(iii) there exists a positive number o such that oX(t,T) < R(¢,7) for t,t € [0,1], where o =
min{p,ap} in which
4bla(o — 1) + 0 — 2]
[1—a+blo—1)]2+4a[l+bloc—1)]

p:

The proof of the lemma is similar to that of Lemma 3.2 in [22], so we omit it here.

Lemma 5. Let 3 € (0, 3). Then min ¥(t,T) > 3 max ¥4(t,7).
t€f3,1—3] t€[0,1]
Proof. From Lemma 3, we have 4(t,T) = 4 (1)t + %(1). Then E%(t,’c) =% (7). f4(1) >0
i.e.,
(1—¢ —g)1 —1)81 - (1—-g—c)(1—1)%1!

I'(B) B () ’
then ¢(¢, T) increases and the minimum value is (0, T) = %(T). We have
1—1)%— 1—1)x—1
(1 —§4)( F&) + 6= o= ( ?)) B (1—71)%1!

D(T) > > 0.

s(1+a+b) S T(e)(1—q —)(1+a+b)

So,
minte[371_5] g(ta T) _ %(3,T) _ 5%1 (T) + gQ(T)
maxie(o,1] 4(t,T) 9(1,7) G (1) + % (7)

If 4 (1) <0, then ¢(t,T) decreases so that the minimum value is

g(l, T) =9 (T) -+ gg(’l'),

>3

and the maximum value is (0, T) = %(7). Since % (1) < 0, we have

1—a—-)1-1Ft (1-g-g)(l _T)oc—l.

0= T(p) < I(a)
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In this case

_r)x—1 —1)B-1
(a+ 13 +b(1 = ) 52 1 (a+ 1)1 — 1) + be) ST

gl (T) + gg (T) =

s(1+a+b)
e _q)B-1 _q)B-1
- Sy tet (1-mP! iy
s(1+a+b) TR - —s)(1+a+b)

Thus,

mine 9960 _ G031 (1=9h©+%® | Q-3940 |

max;c(,1] ¥ (¢, T) 9(0,7) % (T) T %(7) 7
which completes the proof. O

We note that an {—tuple (w1 (t), wa(t), ws(t), ..., we(t)) is a solution of the iterative bound-
ary value problem (1)—(2) if and only if

1
w;(t) :/ N(t, T)d)il[‘l’( )&(ij(TD}dT

/ g t, T / T Tl)d)fl [\I’(Tl)gj(w]‘+1(T1))]dTldT, 1<5<Y,

w€+1(t)—wl , 0<t <,
ie.,

vima ([ M)t e | Nt )

x ¢! |:\II(T3)g3</01 N(Tt3,7T4) - -

1
x gz_1< | res e [Frede m))]dn) - drg} de] dr,

+/01g(t7rc) /01 N(T,7)p ! \I’(Tl)g1</01 N(Tl,Tg)(b_l[\If(ﬁ)

X 82(/01 N(To,T3)p ! I:\I/(Tg)g;;(/ol N(T3,T4) - -

1
x ge—1< | R e [Fre m))]dw) - dm} d@] .

1
w1 () :/0 N(t, )

Define the Banach space & = C([0, 1], R) with norm

||l = sup |w(t)].
te(0,1]
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For a fixed 3 € (0, 1), define the cone P; C & by

P, = {w €& :w(t) 200 [0,1] and min w(t) > Aauwu},

where A; = min{o, 3}.
Define an operator €2 : P; — & by

@0 = [ Mo wngl( / N ot [‘1’(72)%2( / Nt )

x ¢! [111(7-3)&(/01 N(T3,7T4) - -

1
>< gz_l( | R e [Fred m))]dw) - dm} de] dr,

+/01g(t7rc) /01 N(T,T)p ! \I/(Tl)g1</01 N(Tl,Tg)dD_l[‘li(ﬁ)

X g2</01 R(To,13)p ! |:\I/(7'3)g3(/01 N(T3,7T4) - -

1
X gg_l(/o N(Tg_l,’fg)d)fl [‘I’(Tg)gg(mﬂTg))]dTg) ce dT3:| dto

dtidT.

Lemma 6. Assume that (Hy)-(H3z) hold. Then g(P;) C Py and Q2 : P; — P, is completely
continuous for each 3 € (0, %)

Proof. Fix 3 € (0,3). Since ¥(1)g;(wi(t)) > 0 for all T € [0,1], wy € Ps and R(¢,T) > 0 for
all ¢, € [0,1], it follows that (Qwwy)(t) > 0 for all ¢t € [0,1], w; € P;. On the other hand, by
Lemmas 4 and 5 we obtain

(Qw1)() S/OlN(Tth)CI)_l \I/(ﬁ)g1</01 R(t1,T2)p~" [‘11(72)&(/01?2(%%)

x ¢t [\Il(rg)g3</01 N(T3,7T4) - -
X ge—1</01 N(Te—lee)dfl[‘I’(Té)gé(W1(Tz))]dU> '--de] de] dm

1 1 1
+trél[3>1<]/0 %(t,T)/O R(T, 1) \p(ﬁ)g1</0 N(T17T2)¢_1[\I/(72)
1

X gz(/o R(To, T3)p " [W(Tg)g3</()1 N(T3,74) - -

1
< ([ Wm0 (Wrgm ()i ) i de] drrd
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and

min (Qw1)(t)

>0 [ e [wms [ smwo v [ New

x ¢! [\I’(Tg)g3</01 N(T3,7T4) - -
X go-1 </1 N(te—1,T)d " [\If(n)gg(wl(@))]ﬁo . 'dT3:| dTQ] dr,

0
1 1 1
rama [0 [ x| v ([ vmmet o

X gz(/ol R(To, T3)p ! |:\I/(T3)g3</01 N(T3,7T4) - -

1
< ([ Wm0 Wrgm i) - i de] drad

2 AZ (le)(t)v

for all t € [0,1]. Thus Q(P;) C P;. Next, by standard methods and the Arzela-Ascoli theorem,
one can easily prove that the operator 2 is completely continuous. The proof is complete. [
3 Denumerably many positive solutions
In this section, we establish the existence of denumerably many positive solutions for the bound-
ary value problem (1)—(2) by applying Hélder’s inequality and Krasnoselskii’s cone fixed point
theorem in a Banach space.
Theorem 1. [0] Let & be a Banach space and let P C & be a cone in &. Assume that Ay, Ao
are open with 0 € A1, Ay C A, and let Q : PN (A2\A1) — P be a completely continuous operator
such that either

(1) Q@] < ||w|, w € PNOA1, and ||Qw| > ||w|, w € P NIAa, or

(ii) ||Qw| > |||, w € PNOA1, and ||Qw|| < ||w], @ € PN IAs.
Then Q has a fived point in P N (A2\A1).

In order to establish some of the norm inequalities in Theorem 1 we need Hélder’s inequality.
We use standard notation of £P[0, 1] for the space of measurable functions such that

1
/ |£(7)|PdT < o0,
0
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where the integral is understood in the Lebesgue sense. The norm on £LP[0,1], || - ||p, is defined
by
L >
([ epar)”, peR
1£]lp = 0
inf{MER/]f\SMa.e.on[O,l]}, p = oc.

Theorem 2 (Holder’s Inequality). Let £ € £P[0, 1] withp; > 1, fori=1,2,...,nand > " pz
1. Then [T £; € £Y0,1] and |/ £6ll, < 10y €6l Further, if £ € L’l[O, 1] and g €
£2[0,1], then £g € £'0,1] and ||fg]1 < [I£]1]lg]l-

Consider the following three possible cases for ¢~ (¥) € £Pi[0,1] :

n n

n
1 1 1
NS =<1, @)Y = =1, i)Y = > 1.
();pi ();pi ( );pj

n

1
Firstly, we seek denumerably infinitely many positive solutions for the case Z — < 1
Pi

Theorem 3. Assume that (Hy) — (Hs) hold and let {3,132, be such that tpy1 < 3 < tg, k =
1,2,3,.... Let {Ry}72, and {ri}32, be such that

Rk+1 < Aéka < Orp < Ri, k€N,
where

0 = max

-1
1-51
Aél H?\ / N Tg,’tg)d’tg] s 1

Assume that g; satisfies

(A1) gj(@(t)) < G(AEE) for all t € [0,1], 0<w< Ry,

—max{/ %t'td’r}
telo,1

(A2) gj(w(t)) > d(Ory) for allt € 33,1 —3x), Ay < w <1y

Pi

where M1 < [HNHqH H(I)_l(ll’i)

=1

Then the iterative boundary value problem (1)-(2) has denumerably many positive solutions
{(wgr],w[;], wg}) o, such that w[r]( t)>0o0n(0,1),j=1,2,...,0 and r € N.

Proof. Consider the sequences {Aq 1 }72; and {Ag 1}, of open subsets of & defined by
Mp={we&:|w| <Ri}, Ap={wed:|w|<r}

Let {3x}32, be as in the hypothesis and note that t* < tj11 < 3 < tp < %, for all £ € N. For
each k € N, define the cone P;, by

P, = {w €6 ()20 and _min ow(t) > A5k||w(t)H}.
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Let w1 € Py, NOAy k. Then, wi (1) < Ry, = ||| for all T € (0,1). By (A1) and 0 < 1,1 < 1,
we have

1 1
/0 R(te_1, 1) [0 (r)ge (@1 ()] dey < /O Rt T0) b [¥ (o) ge(n (72))] des

1
< Mifs (g, o) [¥(70)] dy

There exists a 9 > 1 such that -+ Z = 1. So,
Pi

1
/0 R(Te-1, 7)™ [¥(0)ge(w1(me)) ] dre < ]1\441_R£HN q [[o

Pi

Mle- n —1
AT Tl

Ry,
< Ry.
1+8— "

Pi

<
It follows in a similar manner (for 0 < Ty_o < 1) that

1 1
/0N(T£27T61)¢_1[‘1’(T£1)ge1(/0 N(Tz1,Te)<|>_l[‘P(Tz)ge(ﬁl(w))]d’f@”de1
1
S/O N(To—a, Te—1)P " [W(Te—1)ge—1(Ry)] dTo—1

1
< / Rttt 1) b [W(re1)geo1 (Re)] dre—s
0
< M Ry,
— 14+ R

Mle ! 1 =
< 1+§/ R(Tp—1,Te—1)d™ Zl_[lll)z Te—1)|dTe—1

1
N(To—1, Te—1)d " [W(Tem1)]dTey
0

M, Ry, - T

< 1+R/ (Te—1,Te—1 gd? i(Te—1))dTe—1
Mle; —1

< N

<7 gl Hngcb

< ol < Ry.

1+ 8
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Continuing with this bootstrapping argument, we get

@0 = [ N o | e ( / N ) [wz)gz( / N, )

x ¢t |:\I/<T3)g3(/01 (T3, T4) - - -

1
< g1 ( | 80 v ()] dw) . 'dT3} d@] r,

+/01%(t,1) /OIN(T,Tl)d)l \11(71)g1</01N(11,Tg)d>1 [‘P(Tz)

X g2</01 N(T2,73) " [\II(Tg)g3</()l N(T3,T4) - - -

1
< g ( R [‘I’(Te)ge(wl(wmdw) . -dm} d@] e

< T
_1+ﬁ {/%t’td’t} R

< Ry.

Since Ry, = ||| for wy € Py, NOAy i, we get
192201 || < [loo | (1)
Let t € [3%,1 — 3x]. Then,

rp = |lwi|| > wi(t) > min  wi(t) > Ay, [l > Ay, 7k

t€3x,1—3x]

y (A2) and for ty_1 € [3x,1 — 3x], we have

/ R, 16 [ ()]

> Ay, o R(te, )~ [U () ge(w1 ()] de

3k

13k
> Aékerk/ N(Tz,Tg)d)fl(\I/(Tg))dTg

3k
n

1-3k
> 8,0m [ R [T Wit

Sk i=1

n 1-51
> Aake’l”kHAi/ N(Tg,’fg)d’tg

i=1 3
> .
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Continuing with bootstrapping argument, we get

(e ( / N ) [wz)gz( / “N(ra,1a)

x ¢t [\I/(T3)g3</01 N (T3, T4) - - -

1
(Qeoy)(t) :/0 N(t, 1)

1
< g1 ( | ¥ 0 v ()] dw) . 'de} d@] r,

+/01g(t,1) /OlN(T,Tl)d)l \11(71)g1</01N(11,12)d>1 [‘1’(72)

X g2</01 N(T2,73) ! [\II(Tg)g3</01 N(T3,7T4) -

1
X gr—1 </0 N(Tgfl,’tg)d)il [\I/(Tg)gg(wl(Tg))] dTg) s dT3:| dTQ] dTldT

1
>ri+ Tk/ 4 (t,t)dt
0
>rg,  (since 9(t, T) is positive).

Thus, if @y € P;, N OAg, then
Qe[| = ([ . (2)

It is evident that 0 € Ay, C KQJQ C Ay k. From (1) and (2), it follows from Theorem 1 that the op-

erator {2 has a fixed point w[lk] € P;,N(A1,5\A2k) such that wgk] (t) >0on (0,1),and k € N. Next

setting wypi1 = wi, we obtain denumerably many positive solutions {(wgk},wgﬂ, e ,wgd)}zo:l

of (1)-(2) given iteratively by

1
wj(t) :/0 N(t, 1) Y (1) fi (w1 (0)]dr, te (0,1), j=0,6—1,...,1.

The proof is completed. O

For Zn: ; = 1, we have the following theorem.
Theorem 4. Assume that (Hy) — (H3) hold, let {31}32, be such that tp11 < 31 < lg, k =
1,2,3,.... Let {Ri}32, and {ry}>, be such that
Ry <Ay mi <Orp < Ry, keEN,
where O is defined in Theorem 3. Further, assume that g; satisfies (A2) and
(A3) gj(w) < d)(%) for allt € [0,1], 0 < w < Ry, where

-1

Pi 0

My <IN TT 0" ()
1=1
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Then the iterative boundary value problem (1)-(2) has denumerably many positive solutions

{(wgr],w[;], ... ,wéﬂ) o, such that w]m(t) >0o0n(0,1),7=1,2,..., and r € N.

Proof. For a fixed k, let Ay be as in the proof of Theorem 3 and let w; € P;, N OAy . Again

@1(T) < Rg = ||w1]], for all T € (0,1). By (As) and for 1,1 € (0,1), we have

1

1
/O R(te_1, 1) [0 (r)ge(@1 ()] dey < /0 R(te,70) b ¥ () ge(wn (70))] dey

My Ry,

<
T 1+R

1
/ON(W,U)d)_l[‘I’(Te)]dTe

MyR), [!
< 11;/0 N(Tz,Tz)¢1[E¢i(Te)]dTe

n

M 1
s, v [T @i

IA

]YiRéHNHOOilj 6~ ()

Continuing with this bootstrapping argument, we get

R
K < Ry.

<
- 1+R

<
Pi ™

\P(n)gl( / N ot [wz)gg( / Nt )

Q)0 = [ Wm0~
<o [wims ([ N
<e( [ (170 (8 ()] i) i de] an
+ [ [ seee feon( [ sewe v

X g2</01 N(T2,7T3)p |:\I’(T3)g3</01 N(Ts,T4) - -

1
< ([ Wresmo Wrgdm i) i m] drrd

Rk L sz
<= 4(t,t)d
—1+ﬁ+5§[3’ﬁ{/ﬁ (t.7) T}1+R

< Ry.

Since R, = ||w]| for @i € P;, N OA i, we get

1@ ]| < [ ]-

(3)

Now define Ay, = {w1 € & : ||| < O,}. Let wy € Py, N OAyy, and let T € [3x, 1 — 31]. Then,

the argument leading to (2) can be done to the present case. Hence, the proof is complete.

O
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1
Lastly, the case Z — > 1.
=1 Pi

Theorem 5. Assume that (Hi) — (Hs) hold, let {31}72, be such that tp11 < 3 < tg, k =
1,2,3,.... Let {Ry}72, and {ri}3>, be such that

Rii1 < Agkrk < Org < Rg, k€N,

where 0 is defined in Theorem 3. Further, assume that £; satisfies (A2) and

(Ag)  gj(w) < d)(J\ﬁ};’“) for all t € [0,1], 0 < w < Ry, where

n -1
My < < IR [T Il0 ), | -0
=1

Then the iterative boundary value problem (1)-(2) has denumerably many positive solutions
{(wgﬂ,w[;], - ,wéﬂ) o0 | such that wjm(t) >0o0n(0,1),j=1,2,....,0 andr € N.

Proof. The proof is similar to the proof of Theorem 3. So, we omit details here. O

4 Example
In this section, we present an example to check validity of our main results.

Example 1. Consider the following fractional order boundary value problem,

¢ [C-@&+8wj (t)] + \Il(t)gJ (wJJrl(t)) =0,0<t<1, j=12,
Wj+1(t) = wl(t), 0<t<l,
@;(0) — @} (0) = I3, wy(1),
w;(1) + wj(1) = L3 ow; (1),

where
7 <0
o) =9 T T
w?, w > 0,
and
U(t) = P1(t) - b2(D),
in which
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(0.07 x 10716, w € (1071, +00),
77468 x 10~ (16k+8) _0.07x 1016k (w _ 10—16k) +0.07 x 10~ 16k

10— (16k+8) _109—16k
w e |i10—(16k+8)’ 10—16k:| ’

gi(@) = 16k 1 16k 16k
77468 x 10~ (16KF8) @ € (£ x 10706kFS) 10~ (16k+8) )
77468%xx1§)0*_<zfg:f;)—_oi%zﬁ&;(llgm16) (w . 10—(16k+16)) +0.07 x 107(16k+16),
. (10—(1619—1—16)’% % 10—(16k+8):|’
for j =1,2. Let
31 &1 1
ti=— — —, 3 = =(t; + t; 1 =1,2,3,....
J 64 — 4(7“—}—1)4’ 3j 2( ]+ ]+1)> J ) 4y 9,
Then
_B 11
7397 648 T 32
and )
tiv1 <35 <tj,3; > g
Also,
5 2 5 2 1
1 187 9] 97 q3 187 4 97 S 27 (7T) ( T)’
4bla(oc — 1) 4+ 0 — 2]
= = 0.1224489796.
P —a+tblo— 12 +4al +b(o—1)]
Therefore,

1-31 1
R=1, / N(T, T)dT = 0.05389278403, Aéj = max{g,gj} > 5 7=1,2,3,....
31

It is not difficult to see that

15 1
th=—<-=,t—tix1=—— i=1,2.3,....
1 32<2> J 7+1 4<]+2)47 J s Ly 9y
0 4 et 2
1 1
Since g j—4 :% and E ]—2 = %, it follows that
]:1 j:1
R) — 1 47 o 1
t"=limt, = — — _ = — - —— > —
jose 7 T 64 24(“1)4 64 360 5
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Y1, Yo € LP[0,1] for all 0 < p < 2. So

1
Y1 =1y = 7
and
n 1_51
Ay [T / (g, T)dTy ~0.003592852269.
i=1 31
1
So, 8 = 13 = 278.3303974, and
© rnaX{0.003592852269’ } ’an

1
1 q
IRl = [/0 IN(T, T)|qd’t:| ~ 0.7456267277 for ¢ =2.

Next, let 0 < ¢ < 1 be fixed. Then 1, s € £1+2[0,1]. It follows that

1

o e = |52 (3 + 1) 2'%] T

3—¢

1
3—¢

[~ (Wa)ll14e = [3%5 (2 el 1) (1/3)311 e

So, for 0 < € < 1, we have

0.5679904165 <

i=1
Take M; = 0.56. In addition if we take
Ry = 1078 ), = 107 8F+4),

then )
Rpyq = 10~ F+8) < = X 1076k < AL 7y,

<rp =107 < By =107,

n —1
NI ] Hd)_l(ﬂf’i)Hpi] < 0.7830857747.

273

Or, = 278.3303974 x 10~ GF4) < 036 10=8k — M pp — 193 . and g; satisfies the

1+R
following growth conditions:

' MiR;\ = MR}
8i(@) <& (H—ﬁ) T (1+8)72
gj(@) > d(0ry) = 0%rf

_77467.81012 x 10-066+8) o ¢ (1 q-(16k+8) 10—(16k+8)]
9 5 5 .

=0.0784 x 10719 € [0, 10—16’f]

Then all the conditions of Theorem 3 are satisfied. Therefore, by Theorem 3, the boundary value

problem (1) has countably many positive solutions {w}k]}z‘;l such that 10~k < ij[k]” <

1078 for each j =1,2,3,...,0, k=1,2,3,....



274 K.R. Prasad, M. Khuddush, M. Rashmita

Acknowledgements

The author thanks the editor and two anonymous reviewers for their careful reading and useful
comments that have resulted in a significant improvement of the manuscript.

References

[1] H. Belbali, M. Benbachir, Stability for coupled systems on networks with Caputo-Hadamard
fractional derivative, J. Math. Model. 1 (2021) 107-118.

[2] A. Cabada, G. Wang, Positive solutions of nonlinear fractional differential equations with
integral boundary value conditions, J. Math. Anal. Appl. 389 (2012) 403-411.

[3] M.J. De Lemos, Turbulence in Porous Media: Modeling and Applications, Elsevier, 2012.

[4] S.M. Ege, F.S. Topal, Ezistence of positive solutions for fractional order boundary value
problems, J. Appl. Anal. Comput. 7 (2017) 702-712.

[5] F.T. Fen, 1.Y. Karaca, O.B. Ozen, Positive solutions of boundary value problems for p-
Laplacian fractional differential equations, Filomat 31 (2017) 1265-1277.

[6] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, San
Diego, 1988.

[7] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differ-
ential Equations, Elsevier B. V, Amsterdam, 2006.

[8] L.S. Leibenson, General problem of the movement of a compressible fluid in a porous
medium, Izvestiia Akademii Nauk Kirgizskoi SSR 9 (1983) 7-10.

[9] T. Li, N. Pintus, and G. Viglialoro, Properties of solutions to porous medium problems with
different sources and boundary conditions, Z. Angew. Math. Phys. 70 (2019) 86.

[10] X. Liu, M. Jia, W. Ge, Multiple solutions of a p-Laplacian model involving a fractional
derivative, Adv. Differ. Equ. 2013(1) (2013) 126.

[11] Z. H. Liu, L. Lu, A class of BVPs for nonlinear fractional differential equations with p-
Laplacian operator, Electron. J. Qual. Theory Differ. Equ. 70 (2012) 1-16.

[12] A.L. Ljung, V. Frishfelds, T.S. Lundstrm, B.D. Marjavaara, Discrete and continuous mod-
eling of heat and mass transport in drying of a bed of iron ore pellets, Drying Technol. 30
(2012) 760-773.

[13] H. Lu, Z. Han, S. Sun, J. Liu, Ezistence on positive solutions for boundary value problems of
nonlinear fractional differential equations with p-Laplacian, Adv. Differ. Equ. 2013 (2013)
30.

[14] A.K. Nain, R.K. Vats, A. Kumar, Caputo-Hadamard fractional differential equation with
impulsive boundary conditions, J. Math. Model. 9 (2021) 93-106.



Denumerably many positive solutions for fractional order singular BVP 275

[15] 1. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.

[16] K. Rajendra Prasad, B.M.B. Krushna, Eigenvalues for iterative systems of Sturm-Liouville
fractional order two-point boundary value problems, Fract. Calc. Appl. Anal. 17 (2014)
638-653.

[17] R. Shah and T. Li, The thermal and laminar boundary layer flow over prolate and oblate
spheroids, Int. J. Heat Mass Transfer 121 (2018) 607—619.

[18] X.S. Tang, C.Y. Yan, Q. Liu, Existence of solutions of two-point boundary value problems
for fractional p-Laplace differential equations at resonance, J. Appl. Math. Comput. 41
(2013) 119-131.

[19] G. Viglialoro and T.E. Woolley, Boundedness in a parabolic-elliptic chemotazis system with
nonlinear diffusion and sensitivity and logistic source, Math. Methods Appl. Sci. 41 (2018)
1809-1824.

[20] H. Wahash, S. Panchal, M. Abdo, Positive solutions for generalized Caputo fractional dif-
ferential equations with integral boundary conditions, J. Math. Model. 8(4) (2020) 393-414.

[21] K. Zhao, J. Liu, Multiple monotone positive solutions of integral BVPs for a higher-order
fractional differential equation with monotone homomorphism, Adv. Differ. Equ. 2016
(2016) 20.

[22] Y. Zhao, H. Chen, L. Huang, Ezistence of positive solutions for nonlinear fractional func-
tional differential equation, Comput. Math. Appl. 64 (2012) 3456-3467.



	1 Introduction
	2 Kernel and its bounds
	3 Denumerably many positive solutions
	4 Example

