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Abstract. The CMRH (Changing Minimal Residual method based on the Hessenberg process)
is an iterative method for solving nonsymmetric linear systems. The method generates a Krylov
subspace in which an approximate solution is determined. The CMRH method is generally
used with restarting to reduce the storage. Restarting often slows down the convergence. In
this paper we present augmentation and deflation techniques for accelerating the convergence
of the restarted CMRH method. Augmentation adds a subspace to the Krylov subspace, while
deflation removes certain parts from the operator. Numerical experiments show that the new
algorithms can be more efficient compared with the CMRH method.

Keywords: Krylov subspace methods, augmentation, deflation, CMRH method, GMRES method, har-

monic Ritz values.

AMS Subject Classification 2010: 65F10.

1 Introduction

In this paper we consider the solution of the linear system of equations

Ax = b, (1)

where A ∈ Rn×n is a nonsingular matrix and b ∈ Rn is a given vector.
A popular class of iterative methods for solving system (1) is Krylov subspace methods.

Krylov subspace methods find an approximate solution

xm ∈ x0 +Km(A, r0), (2)

where Km(A, r0) ≡ span{r0, Ar0, . . . , Am−1r0} denotes an m-dimensional Krylov subspace, x0
is the initial guess and r0 is the initial residual. GMRES is one of the most popular Krylov
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subspace methods for solving system (1). Another method is Quasi-Minimal Residual method
(QMR) which has low storage rather than GMRES. GMRES often exhibits steady convergence,
while QMR convergence curves are characterized by plateaus and sudden drops.

In [36], CMRH method is presented for solving (1) similar to QMR, but uses another basis
for the Krylov subspace. This basis is constructed by the Hessenberg process. This technique
requires less arithmetic operations and storage than Arnoldi process because, at iteration k, it
constructs a lower trapezoidal basis l1, l2, . . . , lk, where li is a vector having (i− 1) leading zero
components and one component is equal to one. Hence, for a dense matrix, performing the
matrix-vector product Ali is achieved with a lower cost comparing to Arnoldi process. Similarly
to GMRES, this method requires one matrix-vector product per iteration. Heyouni and Sadok
[24] proposed an implementation of the CMRH method which minimizes memory requirements.
Some recent developments concerning the CMRH method and the Hessenberg process can be
found in [1–3, 14, 20, 21, 25, 27, 37, 38, 40]. In [13], Duminil presented an implementation for
parallel architectures and an implementation of the left-preconditioned CMRH method.

As GMRES, the CMRH method is often used with restarting strategy to reduce storage, but
restarting slows the convergence of the methods and can make them stagnate in some situations.

Deflation and augmentation are two techniques for accelerating the convergence of Krylov
subspace methods. In augmentation and deflation approaches, the search space of the method
Km is made larger by an appropriately selected subspace U in every step, or the Krylov subspace
method is used for solving a projected problem and then a correction step is applied at the
end. The first deflation and augmentation techniques for solving linear systems were presented
by Nicolaides [32] and Dostàl [9]. For symmetric positive definite matrix A, Saad et al. [35]
described a deflated version of the CG algorithm. Also, Vuik et al. [39] applied deflated CG
with incomplete Cholesky preconditioning for the solution of a class of layered problems with
extreme contrasts in the coefficients. For nonsymmetric systems Chapman and Saad [8] and
Morgan [29–31] proposed augmentation of Krylov subspaces generated by restarted GMRES
method by spaces spanned by certain eigenvectors or Ritz vectors. Convergence properties of
Krylov subspace methods augmented by spaces close to invariant subspaces are discussed by
Saad [34]. These deflation and augmention techniques are more suitable for some types of
problems than others. They can be very effective when convergence is being hampered by a
few eigenvalues [29]. However, they may have little effect on highly non-normal problems [8].
In [12, 18, 19], for some of well-known methods, it was shown that the convergence behavior
of Krylov subspaces methods for non-normal matrices does not depend on the eigenvalues of
the matrix only. In addition, it may be impossible to obtain useful eigenvalue approximations
from either Ritz values [11] or harmonic Ritz values [10] during restart cycles. Baglama and
Reichel [4] proposed to augment the Krylov subspace determined by GMRES by an arbitrary
linear space of low dimension. Baker et al. [5] used the error approximation for augmenting the
next approximation space. For an excellent overview of deflated Krylov subspace methods in
the Hermitian and non-Hermitian cases, we refer the reader to [15–17, 22, 23], where extensive
bibliographical references and historical comments can be found.

In this paper we present deflation and augmentation techniques that have been designed to
accelerate the convergence of the CMRH(m) (restarting CMRH) method for the solution of linear
systems of equations. We propose two strategy that allow augmentation of the Krylov subspaces
generated by CMRH method by a space close to an invariant subspace of A. In addition, we
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introduce a deflated CMRH method that is analogous to deflated GMRES method [22], but
replaces the Arnoldi process by the Hessenberg process. Approximate spectral information
which is required to define the augmentation space is provided by the Hessenberg process. Also
deflated CMRH can break down in the same way as deflated GMRES. We show that breakdowns
cannot occur if the augmentation space is an exact A-invariant subspace.

The paper is organized as follows. In Section 2, we shortly review the Hessenberg process
and CMRH method. We present two augmented CMRH methods in Section 3. In Section 4,
we describe a combined deflated and augmented CMRH method and show that under certain
conditions, the method determines a solution without breakdown. Section 5 demonstrates the
effectiveness of the proposed methods. Conclusions are summarized in Section 6.

Throughout the paper, all vectors and matrices are assumed to be real. We denote the range
(or, the image) of a matrix M by R(M). For the null space (or kernel) of M we write N (M).
For a vector v, ‖v‖ always denotes the Euclidean norm ‖v‖ =

√
(vT v) and ‖v‖∞ denotes the

maximum norm ‖v‖∞ = maxi=1,...n |vi|, where vi is the ith component of the vector v. Z†

denotes the pseudo-inverse of the matrix Z; see, for example, [36]. Some Matlab notation is
used; for instance, Hk(i + 1 : m + 1, 1 : m) denotes the portion of Hk with rows from i + 1 to

m + 1 and columns from 1 to m. Finally, Ik is the k × k identity matrix. ej and e
(s)
j denote

the jth column of identity matrices In and Is, respectively. The symbol ↔ means swapping
contents: x↔ y ⇔ t = x;x = y; y = t.

2 CMRH algorithm

The CMRH method is an algorithm for solving nonsymmetric linear systems in which the Arnoldi
component of GMRES is replaced by the Hessenberg process (see [36]). Given an initial guess
x0 for the exact solution x? = A−1b, the Hessenberg process with pivoting constructs a basis of
the Krylov subspace Km(A, r0) = span{r0, Ar0, . . . , Am−1r0}, where r0 = b − Ax0 is the initial
residual.

Let l1 = r0/(r0)p1 , where p1 ∈ {1, . . . , n} is such that |(r0)p1 | =‖ r0 ‖∞. The Hessenberg
process with pivoting computes a matrix Lm = [l1, . . . , lm] whose columns form a basis of the
Krylov subspace Km(A, r0) by using the formulas

w = Alj −
j∑
i=1

hi,jli, for j = 1, . . . ,m,

and

hj+1,jlj+1 = w.

The parameters hi,j are determined such that

lj+1⊥ep1 , . . . , epj and (lj+1)pj+1 = 1,

where pi ∈ {1, 2, . . . , n} and pj+1 = i0, and i0 satisfies ‖w‖∞ = |(w)i0 |. Let H̄j be the (j+ 1)× j
upper Hessenberg matrix whose nonzero entries are the hi,j , and let Hj be the matrix obtained
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from H̄j by deleting its last row, we have

ALj = Lj+1H̄j

= LjHj + hj+1,jlj+1(e
(j)
j )T . (3)

If p denotes the permutation vector defined by p1, p2, . . . , pn (as in Algorithm 1) and

Pn = [ep1 , ep2 , . . . , epn ]T ,

denotes the n × n permutation matrix defined by the vector p, then we can easily check that
PnLj is a unit lower trapezoidal matrix. Using (3), the jth iterates of CMRH is defined by

xj = x0 + Ljyj ,

where yj minimizes the following problem:

min
y∈Rj

‖ H̄jy − (r0)p1e
(j+1)
1 ‖ .

So, the iterate xj can be written as

xj = x0 + LjH̄
†
j (r0)p1e

(j+1)
1 . (4)

Notice that if ‖w‖∞ = 0 at step j, then, in exact arithmetic, the degree of the minimal
polynomial of A with respect to the vector r0 is j [26] and we have constructed an invariant
subspace and the process must be stopped. In this case, xj is the exact solution of (1), (see
Theorem 3 of [36]). CMRH(m) algorithm can be summarized as shown in Algorithm 1. More
details about the CMRH algorithm can be found in [36].

Finally, we recall the definition of a harmonic Ritz pair [33] which is required to define the
augmentation space.

Definition 1. Consider a subspace W of Cn. Given a matrix A ∈ Cn×n, θ̃ ∈ C, and ỹ ∈ W,
(θ̃, ỹ) is a harmonic Ritz pair of A with respect to W if and only if

Aỹ − θ̃ỹ ⊥ AW,

or equivalently, for the canonical scalar product,

∀w̃ ∈ R(AW), w̃H(Aỹ − θ̃ỹ) = 0.

We call ỹ a harmonic Ritz vector associated with the harmonic Ritz value θ̃.

Assume that the columns of Ws = [w1, w2, . . . , ws] ∈ Rn×s constitute a basis of W, the
harmonic Ritz pairs (θ̃i, ỹi), i = 1, 2, . . . , s, can be obtained by solving the small generalized
eigenvalue problem

W T
s A

TAWsgi = θ̃iW
T
s A

TWsgi, ỹi = Wsgi, i = 1, 2, . . . , s. (5)
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Algorithm 1. CMRH(m) method
Choose m.

Start: for given x0, compute r0 = b−Ax0 and set p = [1, 2, . . . , n]T .

Determine i0 such that |(r0)i0 | = ‖r0‖∞, l1 = r0/(r0)i0 , p1 ↔ pi0
Iterate: For j = 1, . . . ,m

u = Alj,

For i = 1, . . . , j

hi,j = (u)pi
,

u = u− hi,j li,
end

If (j < n and u 6= 0) then

Determine i0 ∈ {j + 1, . . . , n} such that |(u)pi0
| = ‖(u)pj+1:pn

‖∞,

hj+1,j = (u)pi0
, lj+1 = u/hj+1,j, pj+1 ↔ pi0

else

hj+1,j = 0, Stop.

end

If (an estimate of) ‖ b−Axj ‖ is small enough or j = n then

xj = x0 + [l1, . . . , lj ] ∗ yj, where yj minimizes ‖ H̄jy − (r0)p1
e
(j+1)
1 ‖,y ∈ Rj.

Stop iteration

end

end

xm = x0 + [l1, . . . , lm] ∗ ym, where ym minimizes ‖ H̄my − (r0)p1
e
(m+1)
1 ‖, y ∈ Rm.

x0 := xm, go to Start.

3 Adding approximate eigenvector to the subspace

Restarting CMRH may lead to poor convergence and even stagnation. The convergence can be
improved in many situations. For accelerating the convergence of restarting CMRH, as restarting
GMRES [28, 29, 31], we propose that approximate eigenvectors corresponding to a few of the
smallest eigenvalues in magnitude be formed and added to the Krylov subspace for CMRH.
We present two implementations of the augmented CMRH method. In the implementations
presented here, the subspace of projection is of the form K = Km+Uk, where Km is the standard
Krylov subspace whose dimension ism and Uk = span{Uk} is a subspace with dimension k, where
Uk = [ỹ1, ỹ2, . . . , ỹk] with ỹi, i = 1, . . . , k, being the harmonic Ritz vectors corresponding to the
k smallest harmonic Ritz values (in magnitude).

Let s = m + k. In the first algorithm (called augmented-CMRH algorithm), the solution
space K is defined by

K = span{ỹ1, ỹ2, . . . , ỹk, lk+1, lk+2, . . . , ls},

where lk+1, lk+2, . . . , ls are the Hessenberg vectors. Let Ws = [ỹ1, ỹ2, . . . , ỹk, lk+1, lk+2, . . . , ls]
be the n × s matrix whose columns are basis vectors for the augmented subspace K. We first
compute the LU factorization with pivoting

AUk = LkRk, (6)
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where Rk ∈ Rk×k is upper triangular and Lk ∈ Rn×k. Let p = [p1, p2, . . . , pn]T be the per-
mutation vector and Pn = [ep1 , ep2 , . . . , epn ]T be the permutation matrix defined by this LU
factorization with pivoting, so, L̂k = PnLk is the lower trapezoidal matrix.

Letting Pk = [ep1 , ep2 , . . . , epk ]T and using the oblique projector Q = Lk(PkLk)
−1Pk on the

subspace generated by the basis Lk = [l1, l2, . . . , lk], and along the subspace generated by the
basis P Tk = [ep1 , ep2 , . . . , epk ], we define the normalized vector

lk+1 =
(I − LkCn)r0

((I − LkCn)r0)p̃k+1

, (7)

where Cn = (PkLk)
−1Pk, r0 is the residual vector from previous cycle, p̃k+1 = i0, and i0 satisfies

‖(I−LkCn)r0‖∞ = |((I−LkCn)r0)i0 |. Using p̃k+1, we update the permutation vector p. We then
append columns to Lk, which are determined by a modified Hessenberg process with pivoting.
The initial vector for the modified Hessenberg process is chosen to be lk+1. The generated
vectors are appended to the matrix Lk as they become available. After m steps of this modified
Hessenberg process with pivoting, we have

AWs = Ls+1H̄s, (8)

where Ls+1 = [Lk lk+1, . . . , ls+1] ∈ Rn×(s+1).
Let p̃ = [p1, . . . , pk, p̃k+1, . . . , p̃n]T denotes the updated permutation vector p and P̃n =

[ep1 , . . . , epk , ep̃k+1
. . . , ep̃n ]T denotes the updated permutation matrix Pn obtained after m steps

of the modified Hessenberg process with pivoting, then L̂s+1 = P̃nLs+1 is a lower trapezoidal
matrix. We mention that the first column of trailing n×(m+1) submatrix Ls+1(:, k+1 : s+1) of
Ls+1 is lk+1 defined by (7) and remaining columns of Ls+1(:, k+1 : s+ 1) are determined by the
m steps of the modified Hessenberg process. The leading principal k×k submatrix of the upper
Hessenberg matrix H̄s ∈ R(s+1)×s is the upper triangular matrix Rk in the LU factorization
(6). The entries of the trailing m columns of H̄s are determined by the modified Hessenberg
process. In addition, by defining the vector fs+1 = [γ1, . . . , γk, γk+1, 0, . . . , 0]T ∈ Rs+1, where
[γ1, . . . , γk]

T = Cnr0 and γk+1 = ((I − LkCn)r0)p̃k+1
, we can easily show that r0 = Ls+1fs+1.

The sth iterate of augmented CMRH is defined by

xs = x0 +Wsd, (9)

where d ∈ Rs. From the relation (8) and the definition of vector fs+1, we have

rs = b−Axs = r0 −AWsd = Ls+1(fs+1 − H̄sd).

Since Ls+1 is not orthogonal, as CMRH method, we obtain d such that ‖ fs+1 − H̄sd ‖ is
minimized. Hence (9) can be written as

xs = x0 +WsH̄
†
sfs+1.

To find approximate eigenvectors of A, using the subspace spanned by the columns of Ws,
the relation (5), and AWs = Ls+1H̄s, we solve the small generalized eigenvalue problem

H̄T
s L

T
s+1Ls+1H̄sgi = θ̃iH̄

T
s L

T
s+1Wsgi. (10)
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The gi’s associated with the k smallest harmonic Ritz values (in magnitude) θ̃i are needed and
the corresponding harmonic Ritz vectors ỹi = Wsgi, i = 1, . . . , k, will be used for adding to the
next Krylov subspace. If ỹi is complex, the real and imaginary parts are used separately.

We mention that, the implementation is a little different for the first cycle (i = 0). Standard
CMRH(s) is used and Ws = Ls is produced with the Hessenberg process by the initial vector
r0. The algorithm is given just for the second and subsequent runs.

Now we can summarize one restart cycle i of augmented-CMRH algorithm as shown in
Algorithm 2.

Algorithm 2. One restart cycle i of the augmented-CMRH(m,k)
Let ỹ1, ỹ2, . . . , ỹk be given harmonic Ritz vectors.

Compute ri = b−Axi and s = m+ k. Set wj = ỹj, for j = 1, . . . , k and p = [1, 2, . . . , n]T .

Perform the LU factorization of AWs(:, 1 : k) as AWs(:, 1 : k) = LkUk with the permutation matrix

PT
k = [ep1

, ep2
, . . . , epn

].

Set Ls+1(1 : n, 1 : k) = Lk and H(1 : k, 1 : k) = Uk,

Set u = ri
For j = 1, . . . , k

γj = (u)pj
, u = u− γj lj

end

Determine i0 ∈ {k + 1, . . . , n} such that |(u)pi0
| = ‖(u)pk+1:pn‖∞, set γk+1 = (u)pi0

and pk+1 ↔ pi0 .

Set lk+1 = u/γk+1,

For j = k + 1, . . . , s

u = Alj,

For t = 1, . . . , j

ht,j = (u)pt
, u = u− ht,j lt,

end

If ( u 6= 0) then

Determine i0 ∈ {j+1, . . . , n} such that |(u)pi0
| = ‖(u)pj+1:pn

‖∞, hj+1,j = (u)pi0
, lj+1 = u/hj+1,j,

pj+1 ↔ pi0 .

else

hj+1,j = 0, Stop.

end

Set wj = lj.

end

Set Ls+1 = [l1, l2, . . . , ls+1], Ws = [w1, w2 . . . , ws], H̄s = {hi,j}1≤i≤j+1;1≤j≤s

Set fs+1 = [γ1, . . . , γk, γk+1, 0, . . . , 0]T ∈ Rs+1.

Compute xi+1 = xi +Wsd̂, where d̂ minimizes ‖ fs+1 − H̄sd ‖, d ∈ Rs.

Solve the generalized eigen problem H̄T
s L

T
s+1Ls+1H̄sgj = θ̃jH̄

T
s L

T
s+1Wsgj for the appropriate gj and form

ỹj = Wsgj for j = 1, 2, . . . , k.

In the implementation of second algorithm (called CMRH-E), as GMRES-E [29], we first
generate the basis of the Krylov subspace Km, then we add the approximate eigenvectors to
it. Suppose that [l1, l2, . . . , lm] have been produced by Hessenberg process (with pivoting) with
initial vector r0, and k harmonic Ritz vectors have been derived from the previous cycle. Let
Ws = [l1, l2, . . . , lm, ỹ1, ỹ2, . . . , ỹk], a slight modification in the Hessenberg procedure is used to
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deduce a trapezoidal basis of K. It consists of defining u in Algorithm 1 (line 5 of Algorithm 1)
now as

u = Alj (1 ≤ j ≤ m) and u = Aỹj−m (m+ 1 ≤ j ≤ s).

With this definition, we obtain the modified Hessenberg relation AWs = Ls+1H̄s, where Ls+1 =
[l1, l2, . . . , ls+1] is an n× (s+ 1) matrix and H̄s is an (s+ 1)× s upper-Hessenberg matrix. Let
Ps+1 = [ep1 , ep2 , . . . , epn ]T denotes the permutation matrix obtained after s steps of the modified
Hessenberg process, then L̂s+1 = Ps+1Ls+1 is a lower trapezoidal matrix.

The approximate solution of system (1) can be written as xs = x0 +Wsd, where d ∈ Rs. So,
we have

rs = b−Axs = r0 −AWsd = Ls+1((r0)p1e
(s+1)
1 − H̄sd).

Since Ls+1 is not orthogonal, as CMRH, by defining d̄ as

d̄ = argmin
d∈Rs

‖ (r0)p1e
(s+1)
1 − H̄sd ‖,

the approximate solution xs can be written as

xs = x0 +WsH̄
†
s(r0)p1e

(s+1)
1 .

In this method, as augmented CMRH algorithm, the needed approximate eigenvectors of
A can be found by using the subspace spanned by the columns of Ws and solving the small
generalized eigenvalue problem (10).

Putting these results together gives the Algorithm 3.

Algorithm 3. One restarting cycle i of the CMRH-E(m,k)
Let ỹ1, ỹ2, . . . , ỹk be given harmonic Ritz vectors.

Compute ri = b−Axi and s = m+ k. Set p = [1, 2 . . . , n]T .

Determine i0 such that |(ri)i0 | = ‖ri‖∞, β = (ri)i0 , l1 = ri/β, p1 ↔ pi0 .

For j = 1, . . . , s

u =

{
Alj if j ≤ m
Aỹj−m otherwise.

For t = 1, . . . , j

ht,j = (u)pt
,

u = u− ht,j lt,
end

If ( u 6= 0) then

Determine i0 ∈ {j + 1, . . . , n} such that |(u)pi0
| = ‖(u)pj+1:pn

‖∞,

hj+1,j = (u)pi0
, lj+1 = u/hj+1,j, pj+1 ↔ pi0

else

hj+1,j = 0, Stop.

end

end

Set Ls+1 = [l1, l2, . . . , ls+1], Ws = [l1, . . . , lm, ỹ1, . . . , ỹk], H̄s = {hi,j}1≤i≤j+1;1≤j≤s

Compute xi+1 = xi +Wsd̂, where d̂ minimizes ‖ βe(s+1)
1 − H̄sd ‖, d ∈ Rs,

Solve the generalized eigen problem H̄T
s L

T
s+1Ls+1H̄sgj = θ̃jH̄

T
s L

T
s+1Wsgj for the appropriate

gj and form ỹj = Wsgj, for j = 1, 2, . . . , k.
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4 CMRH with deflated restarting

The general idea of deflation is to split the approximation space into two complementary sub-
spaces such that the linear system projected onto one of these subspaces, referred to as the
deflated linear system, will be easier to solve iteratively than the original linear system (1).
These subspaces can be chosen in different ways. The Krylov subspace method is then confined
in one of this subspace, by projecting the initial residual into this space and by replacing A by its
restriction to this space. If the projection operator is chosen properly, the deflated linear system
will be easier to solve iteratively than the original linear system. We combine simultaneously
deflation and augmentation in the CMRH method. In this case, the search space K will be

K = Km(Â, r̂0) + Uk,

where Uk is the augmentation space of dimension k, Km(Â, r̂0) represents the deflated Krylov
subspace, Â refers to the deflated operator, and r̂0 refers to the deflated residual. Given any
initial guess x0 and s = m+ k, we consider an approximation solution of the form

xs ∈ x0 +Km(Â, r̂0) + Uk.

This implies the following relation for the residual

rs ∈ r0 +AKm(Â, r̂0) +AUk.

As in [31]; we select Uk as an approximate invariant subspace and update this subspace at the end
of each cycle. Let Uk be an n×k matrix whose columns vectors form a basis of the approximate
invariant subspace Uk. Assume that Z = AUk, then the matrix E := ZTZ is nonsingular. We
define the n× n matrices

Q := ZE−1ZT , P := In −Q. (11)

We note that P 2 = P , PAUk = 0, and (AUk)
TP = 0, so, P is the projection on (AUk)⊥ along

AUk.
Using matrices (11) and matrix Uk, we set up the deflated system

Âx = b̂, (12)

where Â := PA and b̂ := Pb. We point out that Â is completely determined by A and the choice
of the matrix Uk. Also, the system (12) is consistent, since it results from a left-multiplication
of the consistent matrix equation Ax = b with P .

Since PAUk = 0, PA is singular, hence it is important to analyze the possibilities of a break
down when solving the linear system (12). In the next subsection, we show that when CMRH is
used to solve the deflated system (12), as GMRES, a break down can not occur if the condition
N (PA) ∩R(PA) = {0} holds.

By using r̂0 = b̂−Âx0 and the Hessenberg process (with pivoting) started with l1 = r̂0/(r̂0)p1 ,
where |(r̂0)p1 | =‖ r̂0 ‖∞, we can construct the basis Lm = [l1, l2, . . . , lm] for the Krylov subspace
Km(Â, r̂0) = span{r̂0, Âr̂0, . . . , Âm−1r̂0}. We have also the Hessenberg relation

ÂLm = Lm+1H̄m, (13)
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where H̄m is an (m+ 1)×m upper Hessenberg matrix. Hence the approximate solution xs from
the affine space x0 +Km(Â, r̂0) + Uk can be written as

xs = x0 + Lmks + Ukcs,

with coordinate vectors ks ∈ Rm and cs ∈ Rk. So, we have

rs = b−Axs = r0 −ALmks −AUkcs.

Let β = (r̂0)p1 . From (13), Z = AUk, and r̂0 = Pr0 = (In −Q)r0, we have

rs = βl1 +Qr0 − (Â+QA)Lmks − Zcs
= βl1 + ZE−1ZT r0 − Lm+1H̄mks − ZE−1ZTALmks − Zcs
= [Z Lm+1]Bs,

where

Bs =

[
E−1ZT r0

e
(m+1)
1 β

]
−
[
Ik E−1Cm
0 H̄m

] [
cs
ks

]
,

with Cm = ZTALm ∈ Rk×m. Since [Z Lm+1] has not orthonormal columns, for computing cs
and ks, we impose the following minimizing condition on the residual vectors rs

min ‖ Bs ‖= min
ks∈Rm,cs∈Rk

‖

[
E−1ZT r0

e
(m+1)
1 β

]
−
[
Ik E−1Cm
0 H̄m

] [
cs
ks

]
‖ . (14)

This problem decouples into an (m+1)×m least squares problem for ks and an explicit formula
for cs:

min
ks∈Rm

‖ βe(m+1)
1 − H̄mks ‖, cs := E−1ZT r0 − E−1Cmks.

We observe that the explicit inclusion of Uk can be omitted when instead we first construct the
iterate x̂m = x0 + Lmks ∈ x0 + Km(Â, r̂0) by using the quasi minimal residual norm and then
apply the correction xs = x̂m +Ukcs. We can easily show that the projected residuals are equal
to the original ones.

To define the subspace Uk for the next cycle, first we use the subspace spanned by the
columns of Ws = [Uk Lm] which satisfies the relation

AWs = Ŵs+1Ḡs, (15)

where

Ŵs+1 = [Z Lm+1], Ḡs =

[
Ik E−1Cm
0 H̄m

]
. (16)
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By using (5) and (15), we compute the required harmonic Ritz pairs (θ̃j , ỹj), j = 1, . . . , s, by
solving the small generalized eigenvalue problem

ḠTs Ŵ
T
s+1Ŵs+1Ḡsgj = θ̃jḠ

T
s Ŵ

T
s+1Wsgj , ỹj = Wsgj . (17)

Next, we store the k eigenvectors gj associated with the smallest eigenvalues (in magnitude) θ̃j
in Gk and define Ỹk = WsGk. By performing the LU factorization (with pivoting) of ḠsGk, as

ḠsGk = L̂kÛk, (with the permutation matrix P̂k = [e
(s+1)
p1 , e

(s+1)
p2 , . . . , e

(s+1)
ps+1 ]T ), we define

Unewk = ỸkÛ
−1
k and Znew = Ŵs+1L̂k.

These relations and (15) together imply that AUnewk = Znew.
Putting these results together gives the following algorithm.

Algorithm 4. One restart cycle i of the CMRH-DR
Let Uk and Z = AUk be given matrices.

Compute ri = b−Axi and s = m+ k. Set p = [1, 2, . . . , n]T .

Compute E = ZTZ, Q = ZE−1ZT , P = In −Q.
Compute r̂i = Pri and Â = PA.

Determine i0 such that |(r̂i)i0 | = ‖r̂i‖∞, β = (r̂i)i0 , p1 ↔ pi0 , c = βe1.

Perform m Hessenberg steps with Â, letting l1 = r̂0/β and generating Lm+1, H̄m, and

Cm = ZTALm.

Set Ws = [Uk Lm], Ŵs+1 = [Z Lm+1] and Ḡs =

[
Ik E−1Cm

0 H̄m

]
.

Solve min ‖ c− H̄mks ‖ for ks.

Compute cs = E−1ZT r0 − E−1Cmks.

Compute xi+1 = xi + Lmks + Ukcs, ri+1 = b−Axi+1.

Compute the k eigenvectors gj associated with the smallest eigenvalues (in magnitude) θ̃j of

ḠT
s Ŵ

T
s+1Ŵs+1Ḡsgj = θ̃jḠ

T
s Ŵ

T
s+1Wsgj and store in Gk.

Compute Ỹk = WsGk

Perform the LU factorization of ḠsGk as ḠsGk = L̂kÛk and P̂k = [e
(s+1)
p1 , e

(s+1)
p2 , . . . , e

(s+1)
ps+1 ]T

Compute Z = Ŵs+1L̂k, Uk = ỸkÛ
−1
k . (Then we have Z = AUk)

For the first run, standard CMRH(s) is used and Ws = Ls, Ŵs+1 = Ls+1, and Ḡs = H̄s are
produced with the Hessenberg process by the initial vector r0.

4.1 CMRH for a singular systems

A deflated matrix Â is singular if Uk 6= 0, and we have to discuss whether the application of
CMRH to the deflated system yields a well defined sequence of iterates that terminates with a
solution. The application of GMRES to such systems has been analyzed in [7,17,22]. As in [7];
we state the following lemma for the properties of CMRH applied to singular consistent systems.

Lemma 1. Apply CMRH to (1) and suppose that dimKk = k for some k ≥ 0. Then exactly
one of the following holds:
(i) dimA(Kk) = k − 1 and A(x0 + z) 6= b for every z ∈ Kk;
(ii) dimA(Kk) = k, dimKk+1 = k, xk is uniquely defined, and Axk = b;
(iii) dimA(Kk) = k, dimKk+1 = k + 1, xk is uniquely defined, and Axk 6= b.
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Proof. As shown in Lemma 2.1 in [7], we have k − 1 6 dimA(Kk) 6 k for all k ≥ 0. We have
also r0 /∈ A(Kk−1) if k > 0. If dimA(Kk) = k − 1, then conclusions (ii) and (iii) can not hold.
In this case, as in [7]; we can show that for every z ∈ Kk, we have A(x0 + z) 6= b, and (only)
conclusion (i) holds.

If dimA(Kk) = k, from A(Kk) ⊆ Kk+1, we have k = dimA(Kk) ≤ dimKk+1 ≤ k + 1. If
dimKk+1 = k, then we must have A(Kk) = Kk+1 and, hence r0 ∈ A(Kk) and Alk ∈ Kk, then
lk+1 = 0. In this case, from (3), we have ALk = LkHk, rank(Hk) = k, and consequently

(H̄k)
† = ((Hk)

−1, 0). (18)

So, the iterate xk, defined by (4), can be written as follows

xk = x0 + Lk(Hk)
−1(r0)p1e

(k)
1 .

Using ALk = LkHk and the last equality, we have

rk = b−Axk = r0 − (r0)p1ALk(Hk)
−1e

(k)
1

= r0 − (r0)p1LkHk(Hk)
−1e

(k)
1 = r0 − (r0)p1 l1 = 0.

Thus Axk = b, and (only) conclusion (ii) holds. If dimKk+1 = k + 1, then lk+1 6= 0 in

ALk = Lk+1Hk + hk+1,klk+1(e
(k)
k )T . It follows that the decomposition ALk = Lk+1H̄k exists,

the columns of the matrix Lk+1 form a basis of Kk+1, and the matrix H̄k is of full rank and the
iterate xk can be uniquely defined by (4). In this case, we have r0 /∈ A(Kk), rk 6= 0, Axk 6= b
and (only) conclusion (iii) holds.

Using this lemma, the next two theorems give condition under which the CMRH iterates
converge safely to a solution of the system. The proof is similar to the ones of Theorem 2.2
in [7] and Theorem 4.1 in [16], so we omit them here.

Theorem 1. If the CMRH method is applied to (1), then, at some step, either
(a) CMRH breaks down through rank deficiency of the least-squares problem

min
d∈Rk

‖ H̄kd− (r0)p1e
(k+1)
1 ‖,

without determining a solution xk = x0 + Lkdk or
(b) CMRH determines a solution without breakdown and then breaks down at the next step
through degeneracy of the Krylov subspace.

Theorem 2. Consider an arbitrary matrix Â ∈ Cn×n and a vector b̂ ∈ R(Â) (i.e., the linear
system Âx = b̂ is consistent). Then the following conditions are equivalent:
1. For each initial guess x0 ∈ Rn, the CMRH method applied to the linear equation Âx = b̂ is
well defined at each iteration step k and it terminates with a solution of the system.
2. N (Â) ∩R(Â) = {0}.

Finally, by using the above results, we can show that, just as for deflated GMRES [16], for
each initial guess x0 ∈ Rn, the CMRH method applied to the singular consistent equation (12)
is well defined at each iteration step and it terminates with a solution of the system when Uk is
an invariant subspace, i.e., when AUk = Uk.
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5 Numerical expriments

In this section, we present some results of solving linear systems of the form Ax = b to illustrate
the performance of the proposed algorithms. The codes are written in the programming package
Matlab and tested on a Workstation Intel Corei3, 2.40GHz. For all problems, the initial vector
is the zero vector. For all matrices, the right-hand side was taken to be a vector with entries
having random values between 0 and 1. The Jacobi (or diagonal) preconditioner has been used for
all the test problems. The stopping criterion ‖ri‖ < 10−8‖r0‖ was used. The maximum allowed
number of cycles is kmax = 3000. We compare CMRH(m + k) with augmented-CMRH(m,k),
CMRH-E(m,k), and CMRH-DR(m,k) methods.

For the first set of examples, we used the matrices

A1(i, j) =

{
ε, if i = j,
2min(i,j)−1
n−i+j , if i 6= j,

with n = 100, ε = 0.1, and ε = 0.0001, and

A2 =



ε 1
−1 ε 1

ε 1
. . .

. . .
. . .

−1 ε 1
−1 ε


,

with n = 100, ε = 0.01, and ε = 0.0001 [6].
For the second set of experiments, we used some matrices from Matrix Market collection∗

for the matrix A. These matrices with their generic properties are given in Table 1. In Table

Table 1: Test problem information.
Matrix\property order sym. nnz
nos3 960 Yes 8402
cdde1 961 No 4681
Sherman1 1000 Yes 2375
Sherman4 1104 No 3786
Sherman5 3312 No 20793
Saylr4 3564 No 22316
poisson3Da 13514 No 352762

2, we give the number of cycles (Cycle), and the matrix-vector products (Mvp) required for
convergence. The notation “×” means that the relative residual norms have not reached the
accuracy 10−8 after 3000 cycles. The results presented in Table 2 indicate that the augmented-
CMRH(m,k), CMRH-E(m,k), and CMRH-DR(m,k) are effective for these problems and they
are much better than standard CMRH(m + k). As we observe, these examples get better
results with CMRH-DR(m,k) in terms of matrix-vector products (except for Sherman4 which has
better results with augmented-CMRH(18,2)). In addition, using four approximate eigenvectors

∗National institute of Standards and Technology: Matrix Market. http://math.nist.gov/Matrix-Market.

http://math.nist.gov/Matrix-Market
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Table 2: Cycles and matrix-vector products required for convergence.

CMRH(m+ k) augmented-CMRH(m,k) CMRH-E(m,k) CMRH-DR(m,k)
Matrix m k Cycle Mvp Cycle Mvp Cycle Mvp Cycle Mvp
A1 with 20 0 688 13760
ε =0.1 18 2 125 2500 96 1920 99 1784

16 4 51 1020 60 1200 47 756
A1 with 20 0 63 1260
ε=0.0001 18 2 17 340 26 520 16 290

16 4 12 240 18 360 12 196
A2 with 20 0 426 8520
ε =0.01 18 2 70 1400 76 1520 65 1172

16 4 42 840 46 920 35 564
A2 with 20 0 577 11540
ε =0.0001 18 2 77 1540 71 1420 60 1082

16 4 41 820 49 980 36 580
Sherman1 20 0 69 1380

18 2 32 640 38 760 31 560
16 4 22 440 24 480 21 340

Sherman4 20 0 19 380
18 2 7 140 8 160 8 146
16 4 7 140 8 160 7 116

Sherman5 20 0 38 760
18 2 11 220 12 240 11 200
16 4 11 220 12 240 11 180

cdde1 20 0 425 8500
18 2 13 260 22 440 12 218
16 4 11 220 17 340 10 164

nos3 20 0 1118 22360
18 2 58 1160 59 1180 45 812
16 4 23 460 41 820 19 308

poisson3Da 20 0 23 460
18 2 13 260 13 260 13 236
16 4 13 260 13 260 12 196

Saylr4 20 0 × ×
18 2 × × 2233 44660 1471 26480
16 4 2710 54200 × × 768 12292

(m = 16 and k = 4) gives the lowest number of cycles and matrix-vector products for all test
matrices (except for matrix Saylr4 which have better results with CMRH-E(18,2)).

For the matrices Sherman1, Sherman4, Sherman5, and Saylr4, the relative residual norms
(‖ri‖/‖r0‖) are plotted against the number of matrix-vector products. See figures 1 and 2
for the graph of convergence of the methods. These figures show that augmented-CMRH(17,3),
CMRH-E(17,3), and CMRH-DR(17,3) compete well for these examples and are much better than
CMRH(20). CMRH-DR is also better than augmented-CMRH and CMRH-E in terms of matrix-
vector products. The augmented-CMRH(17,3) and CMRH-E(17,3) have similar convergence.
Finally, we mention that, for Saylr4 (Fig. 2 (right)), CMRH(20) is not convergence in 3000
cycles and reaches the relative residual norm of 0.0023, while augmented-CMRH(17,3), CMRH-
E(17,3), and CMRH-DR(17,3) need 25820, 23240, and 14810 Mvps and have the relative residual
norms of 9.8022e-09, 9.4538e-09, and 9.8836e-09, respectively.
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Figure 1: The relative residual norm against matrix-vector products for the matrices Sherman1
(left) and Sherman4 (right).

Figure 2: The relative residual norm against matrix-vector products for matrices Sherman5
(left) and Saylr4 (right).

6 Conclusions

In this paper, we have described three methods that accelerate the convergence of CMRH(m).
The techniques are straightforward and easy to implement. Numerical experiments show that
the new methods can shrink the slow convergence phase and thus considerably accelerate the
convergence of CMRH. The methods are not really needed for easy problems where few restarts
are used. The experiments show that the results of CMRH-DR algorithm are often better than
those of augmented-CMRH and CMRH-E algorithms.
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