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Abstract. This paper studies a problem of inverse scattering on the basis of maximum entropy
principle. The advantage of the method implies maximization of the entropy functional, what
is the main condition and the scattering data and any a priory information are considered as
constraints. This rephrasing of the problem leads to significant simplifications, since the entropy
functional is known to be concave. Other peculiar properties of the method include his stability
to various kinds of artifacts and adaptability to various schemes of measurement.
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1 Introduction

Entropy is the concept that has played a central role in a number of fields of science, especially
in statistical mechanics and information theory. The idea of the maximum entropy principle
as a method of solving a wide range of physics problems with incomplete information was
expressed in general form by Jaynes [12, 13]. The idea is based on the common sense and the
scientific principle “. . . we must use that probability distribution which has maximum entropy
subject to whatever is known. This is the only unbiased assignment we can make; to use any
other would amount to arbitrary assumption of information which by hypothesis we do not
have” [12, p.623]. Gabor T. Herman in his book [11, p.117] writes “. . . the maximum entropy
solution has the smallest information content, and so it is least likely to mislead the user by the
presence of spurious features.”

The maximum entropy method is one of the methods widely used in astronomy, radio astron-
omy, plasma physics, [9,10,23], crystallography [19,24], for the solution of integral equations [1,7]
and so on. The acquisition of experimental data is always bound up with the sort of restrictions.
For instance, in practice, it is almost impossible to acquire a set of measurements over all the
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scattering angles; corruption with noise of the scattered fields measured by the detectors; distri-
bution of scattering angles for a given energy instead of exact values given by Compton’s law,
etc. The maximum entropy method in these cases will yield the result maximally insensitive to
the missing information [12].

The Compton effect is used to probe the electron density of matter and applied often to
nondestructive material control. The data measured in Compton scattering experiments is
represented by the integrals of distribution function g(x) over the cones, which are defined by
the conical transform (1), [21, p.3]. Figure 1 displays the representation of conical projections.

G(x,β, ω) = K(ω) sin(ω)

2π∫
0

∞∫
0

g(x + rα(ϕ))δ(α · β − cosω)rdrdϕ, (1)

where vertex x = (x0i, y0j) lying on the plane X − Y in 100 different positions, that is i, j =
1 ÷ 10, the vector β in our case coincides with the axis Z ′ of the rotated coordinate system,
ω ∈ [0, π/2], ϕ ∈ [0, 2π], cos(ω) = α · β, K(ω) is the Klein-Nishina distribution which describes
the probability of a photon scattering with a given energy by angle ω. There is a large amount
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Figure 1: A sketch for measurement of scattered radiation measurement for inversion of the
conical ray transform.

of publications related to the inversion of Compton scattering data. In [17, 18] an inversion of
weighted cone transform is considered. In [15] provided are inversion formulas using complete
Compton data for three- and two-dimensional cases. An inversion formula for the conical Radon
transform arising in Compton experiments with the cylindrical camera are given in [21, 22],
exact reconstruction formulas of filtered back-projection type for inverting of conical Radon
transform in Rd are derived in [6, 14]. The use of an orthogonal spherical expansion to convert
the cone-surface integrals into plane integrals is proposed in [2]. Webber [26] has shown that the
electron density may be reconstructed analytically, while using the incoherent scattered data.
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An interesting inversion method has been proposed by Bruce Smith [25]. A three dimensional
Compton scattering tomography problem is considered in [27]. The paper contains many good
references relevant to the inversion of Compton scattering data.

In the present paper, is considered an iterative maximum entropy method of reconstruction
of a scattering object from its scattered radiation data. As obvious from many numerical ex-
periments, the maximum entropy method provides for an acceptable reconstruction even with
an incomplete set of scattering data, what is important for analytical inversion methods. In
practice, it is almost impossible to obtain a set of projections over all the scattering angles.
With a slight correction of the program code, the algorithm solves the inversion problem for a
complete data set, for data recorded by the detector located in the X−Y plane with or without
collimation.

The paper is organized as follows. In the Introduction, a short survey of specifics of the
maximum entropy method and a number of recent publications related to Compton scattering
problems are given. Section two describes the construction of the maximum entropy method.
In section three, are given the results of computer simulation.

2 The inversion method

Let g(x) be the integrable three-dimensional object function to be reconstructed in a compact
support D ⊂ B3 = {x ∈ R3 : |x| ≤ 1}. The measurable data for cone beam geometry are
assumed to be defined by the formula (3) below. It is proposed to use three systems of reference:
two Cartesian systems x = (x, y, z) and xj = (xj , yj , zj), i.e. the laboratory one and the reference
system of scattering data registration, respectively, and cone coordinates uj = (uj , vj , wj) related
to the coordinate system xj , as given in [20]. The transformation of the coordinate system
x = (x, y, z) to xj = (xj , yj , zj) is conducted by the rotation matrix Rj , xj = Rj(αi, βn)x,
i = 1, . . . , I, n = 1, . . . , N , j is an ordering of (i, n), for instance, in the Fortran style, by formula
j = (n − 1) · I + i. The expression for matrix Rj in terms of the Euler angles α (0 ≤ α < 2π),
β (0 ≤ β ≤ π) is given by

R(α, β) =

 cosβ cosα − sinα sinβ cosα
cosβ sinα cosα sinβ sinα
− sinβ 0 cosβ

 ,

where angle α is specified by the rotation about axis z and β is specified by the rotation about
a new axis yj . The conical coordinates (uj , vj , wj) with the vertex at zj = −dj are written in
the rotated system of coordinates (xj , yj , zj) by the following transformation

uj = C(zj) xj , C(zj) =

 (1 + zj/dj)
−1 0 0

0 (1 + zj/dj)
−1 0

0 0 1

 , (2a)

xj = C−1(wj) uj , C−1(wj) =

 (1 + wj/dj) 0 0
0 (1 + wj/dj) 0
0 0 1

 . (2b)
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To simplify the notations, the following functional dependencies for direct and inverse transfor-
mations are used for j = 1, 2, . . . , J .

uj = Uj(xj , yj , zj), xj = Xj(uj , vj , wj),

vj = Vj(xj , yj , zj), yj = Yj(uj , vj , wj),

wj = Wj(xj , yj , zj), zj = Zj(uj , vj , wj).

Hence the relation between the unknown source function g(x) and the scattering data functions
Gj(u, v) measured on the (uj , vj)–plane is

Gj(u, v)=

∫
R3

dx g(x) δ
(
u− Uj(x)

)
δ
(
v − Vj(x)

)
=

∞∫
0

dw
∣∣Jj∣∣ g(x(u, v, w)

)
, (3)

where the Jacobian matrix, Jj , of the transformation is simply calculated using (2a,2b).

Jj =
∂(x, y, z)

∂(u, v, w)
= (1 + w/dj)

2.

The entropy functional is defined as [8, p.172]

E(g) = −
∫
D

dx g(x) ln(g(x) · C), (4)

where C is the normalization constant.
The reconstruction procedure conducted on the basis of the maximum entropy method is reduced
to the following optimization problem with linear constraints:

max
g∈L2(D)

E(g) (5a)

Gj(u, v) =

∞∫
0

dw
∣∣Jj∣∣ g(x(u, v, w)

)
. (5b)

The problem (5a-5b) is solved by using Lagrange’s method [4]. The Lagrangian writes as

L(g,Λ) = E(g)−
∫
dudv

J∑
j=1

Λj(u, v)
[
Gj(u, v)−

∫
dw |Jj | g(Xj , Yj , Zj)

]
. (6)

The integration is carried out over the region of definition of the distribution function g(x),
Λ = (Λ1,Λ2, . . . ,ΛJ) is the Lagrange multipliers.

The result of replacement of variables represents the second integral in (6) as follows∫
D
du |Jj | Λj(u, v) g(u) =

∫
D
dx g(x) Λj

(
Uj , Vj

)
. (7)
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When taking the Fréchet derivatives of functional L(g,Λ) and equating it to zero, one has

g(x) =
1

eC
exp
[ J∑
k=1

Λk(Uk(x), Vk(x)
]

=
1

C

J∏
k=1

Hk

(
Uk(x), Vk(x)

)
, (8)

where e ≈ 2.71828 is the basis of the natural logarithm, Hk(Uk, Vk) ≡ exp(Λk(Uk, Vk)− 1/J).

The unknown functions Hk(Uk, Vk) may be evaluated by substituting equation (8) into con-
straints (3):

Gj(u, v) =
1

C

∫
Lj(D)

dw |Jj |
J∏
k=1

Hk

(
Uk, Vk

)
. (9)

The following equations for the functions Hj are obtained:

Gj(u, v) =
1

C
·Hj(u, v)

∫
Lj(D)

dw |Jj |
J∏
k 6=j

Hk

(
Ukj(u, v, w), Vkj(u, v, w)

)
, (10)

where Ukj ≡ Uk(xj , yj , zj), Vkj ≡ Vk(xj , yj , zj).
Matrices C and R are used to evaluate elements Ukj ≡ (Ukj , Vkj ,Wkj) as

Ukj = C(zk)RkR−1j C−1(wj)uj .

This leads to the following iterative scheme:

H i+1
j (u, v) =

Gj(u, v) · C∫
Lj(D)

dw
∣∣1 + w/dj

∣∣2 J∏
k 6=j

H i
k

(
Ukj , Vkj

) , j = i mod (J + 1); (11)

H i+1
j (u, v) = H i

j(u, v), j 6= i mod (J + 1); (12)

H0
j (u, v) =

{
1, if Gj(u, v) 6= 0,

0, if Gj(u, v) = 0.
(13)

The coefficients Λj in (6) may also be defined as the solution of unconstrained dual minimization
problem when the equation (3) for Gj(u, v) is consistent:

Φ(Λ)=
1

eC

∫
dx exp

[ J∑
j=1

Λj

(
Uj(x), Vj(x)

)]
−
∫
dudv

J∑
j=1

Λj(u, v)Gj(u, v), (14)

Since the functional (14) is strictly convex, and the minimum value of Φ(Λ1, . . . ,ΛJ) and the
maximum value of L(g,Λ) coincide [16, p.242], the iterative process above (11-13) converges.
Algorithm ((11-13) is essentially one of the multiplicative algebraic methods developed taking
into account the specificity of the scattering problem under consideration [5, p.135].
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3 Computer simulation

This section describes the results of computer simulation for demonstrating the algorithm. The
solid toroid perturbed by toroidal mode m = 3 with the aspect ratio Asp = 5 are considered as
the model for the reconstruction∗. We have

x = (R0 cos(mϕ) + r cos θ) cosϕ

y = (R0 cos(mϕ) + r cos θ) sinϕ (15)

z = r cos θ,

where R0 is the distance from the center of the tube to the center of the torus and is known as
the “major radius”, the parameter r is the tube’s radius and is known as “minor radius”, θ and
ϕ are the poloidal and toroidal angles, respectively.

The reconstructions were performed with the data spoiled by some artificial noise. The noise
level was taken as 2.5% of maximum level of measured scattering data. The discrepancy between
exact and reconstructed models represents the ratio of discrete analog of L2(D) norms for the
exact model and the reconstructed one, respectively, and has the following form.

∆2 =

M∑
i=0

(gi − g̃i)2

M∑
i=0

g2i

.

Here the summation is conducted over all grid points of the 3D reconstruction domain, gi and
g̃i are the values of the exact model and its estimation at the i-th point of the grid.
Since the scattered fields measured at the detectors are always corrupted by noise, and noise
can also arise during computations, the reconstructed image is, therefore, also noisy. This is
clearly seen in Fig. 2. The following procedure for smoothing a three-dimensional array have
been used.

Ri =


1

w

w−1∑
j=0

Ai+J−w/2, i = w/2, . . . , N − w

Ai, otherwise,

where N is the number of elements in array A, w is the smoothing window for each dimension.
For example, if w = 3 is used to smooth a three-dimensional array, the smoothing window will
contain 27 elements, including the element being smoothed.

Fig. 4 shows the images of the exact and reconstructed models in x − y (left) and x − z
(right) sections; a) the exact model; b) reconstruction is conducted without collimation, that is,
the cone axis is fixed in the laboratory frame of reference; c) reconstruction is conducted with
collimation, that is, the axis of the cone is oriented along the axis zj of the rotated coordinate
system. The error of reconstruction depending on the number of measurements for the three
models with different toroidal modes m = 1, 2, 3 are given in Fig. 3. The relative error of
reconstruction is not more than 10− 15% for 100 number of measurements.

∗toroidal aspect ratio is defined as Asp = R0/r.
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Figure 2: Perturbed by the toroidal mode m = 3 model toroid (left) and reconstructed one
(right) with the aspect ratio Asp = 5.0. The relative error of reconstruction is not more than
10.5%. Reconstruction is performed with data measurements without collimation.number of measurementserror of reconstruction in %
Figure 3: The reconstruction error (in per cent) against measurement numbers for different
toroidal modes (m = 1(−+−), m = 2(−×−), m = 3(− ∗ −).
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a)

b)

c)

Figure 4: The images of the exact and reconstructed solid toroids in x−y (left) and x−z (right)
sections; a) exact model; b) reconstruction is performed without collimation, that is, the cone
axis is fixed in laboratory frame of reference; c) reconstruction is performed with collimation,
that is, the axis of the cone is oriented along the axis zj of the rotated coordinate system.
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4 Conclusion

The method of reconstruction of 3D scattering object function with the use of the maximum
entropy method has been developed. The method is quite resistant to noise in an experimental
data. The numerical modelling conducted has shows an acceptable accuracy of reconstruction
on the model with small number of measurement data. With minor modification of the program
code, various schemes of measurements may be realized. The method developed can also be
generalized, if necessary, for the sign-altering functions [3].
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