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Abstract. In this paper, we propose a fractional integral equation and prove the existence
and uniqueness of solutions for the Cauchy-type problem for a nonlinear Ψ−Hilfer fractional
integrodifferential equations of the type

HDµ,ν;Ψ
a+ y(t) = f

(
t, y(t),

∫ t

a
K(t, s)y(s)ds

)
,

I1−ρ;Ψ
a+ y(a) = ya.

In this sense, for this new fractional integrodifferential equation, we study the Ulam-Hyers and
Ulam-Hyers-Rassias stability via successive approximation method. Further, we investigate the
dependence of solutions on the initial conditions and uniqueness via ε−approximated solution.

Keywords: Ulam-Hyers stability, Ψ−Hilfer fractional derivative, fractional integrodifferential equations,

Banach fixed-point theorem.

AMS Subject Classification 2010: 26A33, 34A08, 34A12, 34K20, 37C25.

1 Introduction

The study of differentiation and integration to a fractional order is important due to its pop-
ularity and wide applications to real-world phenomena with the hereditary property. One can
refer [10] for more details on fractional calculus theory and interesting applications. The gen-
eralization of Riemann-Liouville and Caputo fractional derivatives, introduced in 1999 by R.
Hilfer [6]. Hilfer fractional definition facilitated dynamic modeling of non-equilibrium processes
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based on interpolation with respect to the parameter Riemann-Liouville and Caputo type op-
erators. Most of the practical systems are integrodifferential equations in nature and hence
the study of integrodifferential system is significant. One of the crucial and interesting areas
of research in the theory of functional equations is devoted to the satbility analysis. Stability
analysis is the fundamental property of the mathematical analysis which has got paramount
importance in many fields of engineering and science. In the existing literature, there are sta-
bilities such as Mittag-Leffler, h-stability, exponential, Lyapunov stability and so on. In the
nineteenth-century, Ulam and Hyer presented an interesting type of stability called Ulam-Hyers
stability, which, nowadays has been picked up a great deal of consideration due to a wide range
of applications in many fields of science such as optimization and mathematical modeling.

The Ulam stability can be considered as a special type of data dependence which was initiated
by Ulam [16]. In [12], Rassias extended the concept of Ulam-Hyers stability. Meanwhile, there
have been few works considering Ulam-Hyers stability of variety of classes of fractional differential
equations [4, 5, 11–20] and the references therein. The most popular techniques that deals with
Ulam-Hyers stabilities of different kinds of differential and integral equations includes: fixed
point technique, successive approximations method and by applying integral inequalities.

In this paper, we are concerned with the global existence and uniqueness of solution, and
Ulam-Hyers stability for the Ψ−Hilfer fractional integrodifferential equations (FIDE) of the
following type

HDµ,ν;Ψ
a+ y(t) = f

(
t, y(t),

∫ t

a
K(t, s)y(s)ds

)
, (1)

I1−ρ;Ψ
a+ y(a) = ya (2)

where t ∈ [a, b], 0 < µ < 1, 0 ≤ ν ≤ 1, HDµ,ν;Ψ
a+ (.) is the (left-sided) Ψ−Hilfer fractional

derivative of order µ and type ν, I1−ρ;Ψ
a+ is (left-sided) fractional integral of order 1 − ρ with

respect to another function Ψ in Riemann-Liouville sense and f : [a, b]×R×R→ R is a given
function that will be specified later.

The main objective of this paper is to prove the global existence and uniqueness of solution to
Ψ−Hilfer fractional integrodifferential equations (1)-(2). Using method of successive approxima-
tions we investigate the Ulam-Hyers (HU) and Ulam-Hyers-Rassias (HUR) stability of Ψ−Hilfer
fractional integrodifferential equation (1). By utilizing generalized Gronwall inequality [17] we
obtain an estimations for the difference of two ε−approximated solutions of Ψ−Hilfer fractional
integrodifferential equations (1)-(2), from which we can derive the results pertaining to unique-
ness and dependence of solutions on the initial conditions. The obtained results are not only
new in the given configuration but also yield several interesting special cases associated with the
particular values of the parameters involved in the given problem (for details, refer Conclusion
section).

The paper is organized as follows. Some basic definitions and results concerning Ψ−Hilfer
fractional derivative are introduced in Section 2. Section 3 devoted to discuss global existence
and uniqueness of solutions of the problem (1)-(2). Section 4 presents the Ulam-Hyers (HU)
and Ulam-Hyers-Rassias (HUR) stability of Ψ−Hilfer FIDE (1) via successive approximations.
Section 5 deals with ε−approximate solution of the Ψ−Hilfer FIDE (1).
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2 Preliminaries

Here we present some definitions, notations and results from [10,17,18] which are used through-
out this paper. Let 0 < a < b < ∞, ∆ = [a, b] ⊂ R+ = [0,∞), 0 ≤ ρ < 1 and Ψ ∈ C1(∆, R)
be an increasing function such that Ψ′(x) 6= 0, ∀x ∈ ∆. The weighted spaces C1−ρ;Ψ(∆, R),
Cρ1−ρ;Ψ(∆, R) and , Cµ,ν1−ρ;Ψ(∆, R) of functions are defined as follows:

(i) C1−ρ;Ψ(∆, R) = {h : (a, b] → R : (Ψ(t) − Ψ(a))1−ρh(t) ∈ C(∆, R)}, with the norm
‖h‖C1−ρ;Ψ = maxt∈∆ |(Ψ(t)−Ψ(a))1−ρh(t)|,

(ii) Cρ1−ρ;Ψ(∆, R) = {h ∈ C1−ρ;Ψ(∆, R) : Dρ
a+h(t) ∈ C1−ρ;Ψ(∆, R)},

(iii) Cµ,ν1−ρ;Ψ(∆, R) = {h ∈ C1−ρ;Ψ(∆, R) :H Dµ,ν
a+ h(t) ∈ C1−ρ;Ψ(∆, R)}.

Definition 1. [10, 14] The Ψ−Riemann fractional integral of order µ > 0 of the function h is
given by

Iµ;Ψ
a+ h(t) =

1

Γ(µ)

∫ t

a
LµΨ(t, η)h(η)dη,

where LµΨ(t, η) = Ψ′(η)(Ψ(t)−Ψ(η))µ−1.

Lemma 1. [10] Let µ > 0, ν > 0 and δ > 0. Then

(i) Iµ;Ψ
a+ Iν;Ψ

a+ h(t) = Iµ+ν;Ψ
a+ h(t)

(ii) If h(t) = (Ψ(t)−Ψ(η))δ−1, then Iµ;Ψ
a+ h(t) = Γ(δ)

Γ(µ+δ)(Ψ(t)−Ψ(η))µ+δ−1.

We need following results [10,14] which are useful in the subsequent analysis of the paper.

Lemma 2. [18] If µ > 0 and 0 ≤ ρ < 1, then Iµ;Ψ
a+ is bounded from Cρ;Ψ(∆, R) to Cρ;Ψ(∆, R).

Also, if ρ ≤ µ, then Iµ;Ψ
a+ is bounded from Cρ;Ψ(∆, R) to C(∆, R).

Definition 2. [17] The Ψ−Hilfer fractional derivative of a function h of order 0 < µ < 1 and
type 0 ≤ ν ≤ 1, is defined by

HDµ,ν
a+ h(t) = I

ν(1−µ);Ψ
a+

(
1

Ψ′(t)

d

dt

)
I

(1−ν)(1−µ);Ψ
a+ h(t).

Lemma 3. [17] If h ∈ C1(∆, R), 0 < µ < 1 and 0 ≤ ν ≤ 1, then

(i) Iµ;Ψ
a+

HDµ,ν
a+ h(t) = h(t)− Ωρ

Ψ(t, a)I
(1−ν)(1−µ);Ψ
a+ h(a) where Ωρ

Ψ(t, a) = (Ψ(t)−Ψ(a))ρ−1

Γ(ρ) ;

(ii) HDµ,ν
a+ I

µ;Ψ
a+ h(t) = h(t).

Definition 3. ( [10]) Let µ > 0, ν > 0. The one parameter Mittag-Leffler function is defined
as

Eµ(z) =

∞∑
k=0

zk

Γ(kµ+ 1)
,

and the two parameter Mittag-Leffler function is defined as

Eµ,ν(z) =
∞∑
k=0

zk

Γ(kµ+ ν)
.
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3 Existence and Uniqueness results

In this section, we will study the existence and uniqueness results of the Cauchy-type problem
(1)-(2) by applying the following modified version of contraction principle.

Lemma 4. [15] Let χ be a Banach space and let T be an operator which maps the elements
of χ into itself for which T r is a contraction, where r is a positive integer then T has a unique
fixed point.

Theorem 1. Let 0 < µ < 1, 0 ≤ ν ≤ 1 and ρ = µ + ν − µν. Let f : (a, b] × R × R → R be

a function such that f
(
t, y(t),

∫ t
a K(t, s)y(s)ds

)
∈ C1−ρ;Ψ(∆, R) for any y ∈ C1−ρ;Ψ(∆, R), and

let f satisfies the Lipschitz condition

|f(t, y1, z1)− f(t, y2, z2)| ≤ L (|y1 − y2|+ |z1 − z2|) , (3)

for all t ∈ (a, b] and for all y1, y2, z1, z2 ∈ R, where L > 0 is Lipschitz constant. Then the
Cauchy problem (1)-(2) has unique solution in C1−ρ;Ψ(∆, R).

Proof. The equivalent fractional integral to the initial value problem (1)-(2) is given by [17], for
t ∈ (a, b],

y(t) = Ωρ
Ψ(t, a)ya + Iµ:Ψ

a+ f

(
t, y(t),

∫ t

a
K(t, s)y(s)ds

)
= Ωρ

Ψ(t, a)ya +
1

Γ(µ)

∫ t

a
LµΨ(t, η)f

(
η, y(η),

∫ η

a
K(η, σ)y(σ)dσ

)
dη. (4)

Our aim is to prove that the fractional integral (4) has a solution in the weighted space
C1−ρ;Ψ(∆, R).

Consider the operator T defined on C1−ρ;Ψ(∆, R) by

(Ty)(t) = Ωρ
Ψ(t, a)ya +

1

Γ(µ)

∫ t

a
LµΨ(t, η)f

(
η, y(η),

∫ η

a
K(η, σ)y(σ)dσ

)
dη. (5)

By Lemma2.2, it follows that

Iµ:Ψ
a+ f

(
t, y(t),

∫ t

a
K(t, s)y(s)ds

)
∈ C1−ρ;Ψ(∆, R).

Clearly, yaΩ
ρ
Ψ(t, a) ∈ C1−ρ;Ψ(∆, R). Therefore, from (5), we have Ty ∈ C1−ρ;Ψ(∆, R) for any

y ∈ C1−ρ;Ψ(∆, R). This proves T maps C1−ρ;Ψ(∆, R) into itself. Note that the fractional integral
equation (5) can be written as fixed point operator equation y = Ty, y ∈ C1−ρ;Ψ(∆, R). We
prove that the operator T has fixed point which will act as a solution for the problem (1)-(2).
For any t ∈ (a, b], consider the space Ct;Ψ = C1−ρ;Ψ([a, t], R) with the norm defined by,

‖y‖Ct;Ψ = max
ω∈[a,t]

∣∣(Ψ(ω)−Ψ(a))1−ρy(ω)
∣∣ .
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Using mathematical induction for any y1, y2 ∈ Ct;Ψ and t ∈ (a, b], we prove that for j ∈ N,

‖T jy1 − T jy2‖Ct;Ψ ≤ Γ(ρ)
(L(1 + (b− a)kb)(Ψ(t)−Ψ(a))µ)j

Γ(jµ+ ρ)
‖y1 − y2‖Ct;Ψ , (6)

where kb = sup{|K(t, s)| : a < t, s ≤ b}.
Let any y1, y2 ∈ Ct;Ψ. Then from the definition of operator T given in (5) and using Lipschitz

condition on f, we have

‖Ty1 − Ty2‖Ct;Ψ

≤ L(1 + (b− a)kb)(Ψ(t)−Ψ(a))1−ρ

Γ(µ)
‖y1 − y2‖Ct;Ψ ×

∫ t

a
LµΨ(t, η) (Ψ(η)−Ψ(a))ρ−1dη

≤ L(1 + (b− a)kb)‖y1 − y2‖Ct;Ψ
[
(Ψ(t)−Ψ(a))1−ρIµ;Ψ

a+ (Ψ(t)−Ψ(a))ρ−1
]

≤ L(1 + (b− a)kb)(Ψ(t)−Ψ(a))µΓ(ρ)

Γ(µ+ ρ)
‖y1 − y2‖Ct;Ψ

Thus the inequality (6) holds for j = 1. Let us suppose that the inequality (6) holds for j = r ∈ N,
i.e. suppose

‖T ry1 − T ry2‖Ct;Ψ ≤ Γ(ρ)
(L(1 + (b− a)kb)(Ψ(t)−Ψ(a))µ)r

Γ(rµ+ ρ)
‖y1 − y2‖Ct;Ψ , (7)

holds. Next we prove that (6) holds for j = r + 1. Let y1, y2 ∈ Ct;Ψ and denote y∗1 = T ry1 and
y∗2 = T ry2. Then using the definition of operator T and Lipschitz condition on f, we get

‖T r+1y1 − T r+1y2‖Ct;Ψ = ‖Ty∗1 − Ty∗2‖Ct;Ψ

≤ L(1 + (b− a)kb) max
ω∈[a,t]

∣∣∣∣(Ψ(ω)−Ψ(a))1−ρ 1

Γ(µ)

∫ ω

a
LµΨ(ω, η)|y∗1(η)− y∗2(η)|dη

∣∣∣∣
≤ L(1 + (b− a)kb)(Ψ(t)−Ψ(a))1−ρ

Γ(µ)

∫ t

a
LµΨ(t, η) (Ψ(η)−Ψ(a))ρ−1‖y∗1 − y∗2‖Ct;Ψdη.

From (7), we have

‖y∗1 − y∗2‖Ct;Ψ = ‖T ry1 − T ry2‖Ct;Ψ

≤ Γ(ρ)
(L(1 + (b− a)kb)(Ψ(t)−Ψ(a))µ)r

Γ(rµ+ ρ)
‖y1 − y2‖Ct;Ψ .

Therefore,

‖T r+1y1 − T r+1y2‖Ct;Ψ

≤ L(1 + (b− a)kb)(Ψ(t)−Ψ(a))1−ρ

Γ(µ)

∫ t

a
LµΨ(t, η) (Ψ(η)−Ψ(a))ρ−1

× Γ(ρ)
(L(1 + (b− a)kb)(Ψ(η)−Ψ(a))µ)r

Γ(rµ+ ρ)
‖y1 − y2‖Ct;Ψdη

≤ (L(1 + (b− a)kb)(Ψ(t)−Ψ(a))µ)r+1Γ(ρ)

Γ((r + 1)µ+ ρ)
‖y1 − y2‖Ct;Ψ .
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Thus we have

‖T r+1y1 − T r+1y2‖Ct;Ψ ≤
(L(1 + (b− a)kb)(Ψ(t)−Ψ(a))µ)r+1Γ(ρ)

Γ((r + 1)µ+ ρ)
‖y1 − y2‖Ct;Ψ .

Therefore, by principle of mathematical induction the inequality (6) holds for all j ∈ N and for
every t in ∆. As a consequence we find on the fundamental interval ∆,

‖T jy1 − T jy2‖C1−ρ;Ψ(∆,R) ≤ Γ(ρ)
(L(1 + (b− a)kb)(Ψ(t)−Ψ(a))µ)j

Γ(jµ+ ρ)
‖y1 − y2‖C1−ρ;Ψ(∆,R). (8)

By definition of two parameter Mittag-Leffler function, we have

Eµ,ρ(L(1 + (b− a)kb)(Ψ(b)−Ψ(a))µ) =
∞∑
j=0

(L(1 + (b− a)kb)(Ψ(b)−Ψ(a))µ)j

Γ(jµ+ ρ)
.

Note that
(L(1 + (b− a)kb)(Ψ(b)−Ψ(a))µ)j

Γ(jµ+ ρ)
is the jth term of the convergent series of real

numbers. Therefore,

lim
j→∞

(L(1 + (b− a)kb)(Ψ(b)−Ψ(a))µ)j

Γ(jµ+ ρ)
= 0.

Thus we can choose j ∈ N such that

Γ(ρ)
(L(1 + (b− a)kb)(Ψ(b)−Ψ(a))µ)j

Γ(jµ+ ρ)
< 1,

so that T j is a contraction. Therefore, by Lemma 4, T has a unique fixed point y∗ in C1−ρ;Ψ(∆, R),
which is a unique solution of the Cauchy-type problem (1)-(2).

Remark 1. The existence result proved above with no restriction on the interval ∆ = [a, b], and
hence solution y∗ of (1)-(2) exists for any a, b(0 < a < b <∞). Thus the Theorem 1 guarantees
global unique solution in C1−ρ;Ψ(∆, R).

4 Ulam-Hyers stability

To discuss HU and HUR stability of (1), we adopt the approach of [13, 20]. For ε > 0 and
continuous function φ : ∆→ [0,∞), we consider the following inequalities :∣∣∣∣HDµ,ν;Ψ

a+ y∗(t)− f
(
t, y∗(t),

∫ t

a
K(t, s)y∗(s)ds

)∣∣∣∣ ≤ ε, t ∈ ∆, (9)∣∣∣∣HDµ,ν;Ψ
a+ y∗(t)− f

(
t, y∗(t),

∫ t

a
K(t, s)y∗(s)ds

)∣∣∣∣ ≤ φ(t), t ∈ ∆, (10)∣∣∣∣HDµ,ν;Ψ
a+ y∗(t)− f

(
t, y∗(t),

∫ t

a
K(t, s)y∗(s)ds

)∣∣∣∣ ≤ εφ(t), t ∈ ∆. (11)
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Definition 4. The problem (1) has HU stability if there exists a real number Cf > 0 such that
for each ε > 0 and for each solution y∗ ∈ C1−ρ;Ψ(∆, R) of the inequation (9) there exists a
solution y ∈ C1−ρ;Ψ(∆, R) of (1) with ‖y∗ − y‖C1−ρ;Ψ(∆,R) ≤ Cf ε.

Definition 5. The problem (1) has generalized HU stability if there exists a function Cf ∈
([0,∞), [0,∞)) with Cf (0) = 0 such that for each solution y∗ ∈ C1−ρ;Ψ(∆, R) of the inequation
(9) there exists a solution y ∈ C1−ρ;Ψ(∆, R) of (1) with ‖y∗ − y‖C1−ρ;Ψ(∆,R) ≤ Cf (ε).

Definition 6. The problem (1) has HUR stability with respect to a function φ if there exists a
real number Cf,φ > 0 such that for each solution y∗ ∈ C1−ρ;Ψ(∆, R) of the inequation (11) there
exists a solution y ∈ C1−ρ;Ψ(∆, R) of (1) with

|(Ψ(t)−Ψ(a))1−ρ(y∗(t)− y(t))| ≤ Cf,φεφ(t), t ∈ (∆, R).

Definition 7. The problem (1) has generalized HUR stability with respect to a function φ if there
exists a real number Cf,φ > 0 such that for each solution y∗ ∈ C1−ρ;Ψ(∆, R) of the inequation
(10) there exists a solution y ∈ C1−ρ;Ψ(∆, R) of (1) with

|(Ψ(t)−Ψ(a))1−ρ(y∗(t)− y(t))| ≤ Cf,φφ(t), t ∈ ∆.

In the next theorem we will make use of the successive approximation method to prove that
the Ψ−Hilfer FDE (1) is HU stable.

Theorem 2. Let f : (a, b]×R×R→ R be a function such that

f
(
t, y(t),

∫ t
a K(t, s)y(s)ds

)
∈ C1−ρ;Ψ(∆, R) for any y ∈ C1−ρ;Ψ(∆, R), and that satisfies the

Lipschitz condition

|f(t, y1, z1)− f(t, y2, z2)| ≤ L(|y1 − y2|+ |z1 − z2|),

where t ∈ (a, b], y1, y2, z1, z2 ∈ R and L > 0 is Lipschitz constant. For every ε > 0, if y∗ ∈
C1−ρ;Ψ(∆, R) satisfies∣∣∣∣HDµ,ν;Ψ

a+ y∗(t)− f
(
t, y∗(t),

∫ t

a
K(t, s)y∗(s)ds

)∣∣∣∣ ≤ ε, t ∈ ∆,

then there exists a solution y of equation (1) in C1−ρ;Ψ(∆, R) withI1−ρ;Ψ
a+ y∗(a) = I1−ρ;Ψ

a+ y(a) such
that for t ∈ ∆,

‖y∗ − y‖C1−ρ;Ψ(∆,R) ≤
[

(Eµ(L(1 + (b− a)kb)(Ψ(b)−Ψ(a))µ)− 1)

L(1 + (b− a)kb)
(Ψ(b)−Ψ(a))1−ρ

]
ε.

Proof. Fix any ε > 0, let y∗ ∈ C1−ρ;Ψ(∆, R) satisfies∣∣∣∣HDµ,ν;Ψ
a+ y∗(t)− f

(
t, y∗(t),

∫ t

a
K(t, s)y∗(s)ds

)∣∣∣∣ ≤ ε, t ∈ ∆. (12)
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Then there exists a function σy∗ ∈ C1−ρ;Ψ(∆, R) (depending on y∗) such that |σy∗(t)| ≤ ε, t ∈ ∆
and

HDµ,ν;Ψ
a+ y∗(t) = f

(
t, y∗(t),

∫ t

a
K(t, s)y∗(s)ds

)
+ σy∗(t), t ∈ ∆. (13)

If y∗(t) satisfies (13) then it satisfies equivalent fractional integral equation

y∗(t) = Ωρ
Ψ(t, a)I1−ρ

a+ y∗(a) +
1

Γ(µ)

∫ t

a
LµΨ(t, η)

× f
(
η, y∗(η),

∫ η

a
K(η, σ)y∗(σ)dσ

)
dη +

1

Γ(µ)

∫ t

a
LµΨ(t, η)σy∗(η)dη. (14)

Define

y0(t) = y∗(t), t ∈ ∆, (15)

and consider the sequence {yn}∞n=1 ⊆ C1−ρ;Ψ(∆, R) defined by

yn(t) = Ωρ
Ψ(t, a)I1−ρ

a+ y∗(a)

+
1

Γ(µ)

∫ t

a
LµΨ(t, η)f

(
η, yn−1(η),

∫ η

a
K(η, σ)yn−1(σ)dσ

)
dη, t ∈ ∆. (16)

Using mathematical induction firstly we prove that for every t ∈ ∆ and yj ∈ C1−ρ;Ψ[a, t] = Ct;Ψ

‖yj − yj−1‖Ct;Ψ ≤
ε

L(1 + (b− a)kb)

(L(1 + (b− a)kb)(Ψ(t)−Ψ(a))µ)j

Γ(jµ+ 1)

× (Ψ(t)−Ψ(a))1−ρ, j ∈ N. (17)

By definition of successive approximations and using (14) we have

‖y1 − y0‖Ct;Ψ = max
ω∈[a,t]

∣∣∣∣(Ψ(ω)−Ψ(a))1−ρ 1

Γ(µ)

∫ ω

a
LµΨ(ω, η)σy1(η)dη

∣∣∣∣
≤ ε max

ω∈[a,t]

[
(Ψ(ω)−Ψ(a))1−ρ 1

Γ(µ)

∫ ω

a
LµΨ(ω, η)dη

]
≤ ε

L(1 + (b− a)kb)

(L(1 + (b− a)kb)(Ψ(t)−Ψ(a))µ)

Γ(µ+ 1)
(Ψ(t)−Ψ(a))1−ρ.

Therefore,

‖y1 − y0‖Ct;Ψ ≤
ε

L(1 + (b− a)kb)

(L(1 + (b− a)kb)(Ψ(t)−Ψ(a))µ)

Γ(µ+ 1)
(Ψ(t)−Ψ(a))1−ρ,

which proves the inequality (17) for j = 1. Let us suppose that the inequality (17) holds for
j = r ∈ N, we prove it for j = r + 1. By definition of successive approximations and Lipschitz
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condition on f, we obtain

‖yr+1 − yr‖Ct;Ψ
= max

ω∈[0,t]

∣∣(Ψ(ω)−Ψ(a))1−ρ{yr+1(ω)− yr(ω)}
∣∣

≤ L(1 + (b− a)kb) max
ω∈[a,t]

[
(Ψ(ω)−Ψ(a))1−ρ 1

Γ(µ)

∫ ω

a
LµΨ(ω, η)|yr(η)− yr−1(η)|dη

]
≤ L(1 + (b− a)kb)(Ψ(t)−Ψ(a))1−ρ

Γ(µ)

∫ t

a
LµΨ(t, η)(Ψ(η)−Ψ(a))ρ−1 ‖yr − yr−1‖Cη;Ψ

dη

Using the inequality (17) for j = r, we have

‖yr+1 − yr‖Ct;Ψ ≤
ε

L(1 + (b− a)kb)

(L(1 + (b− a)kb))
r+1

Γ(rµ+ 1)
(Ψ(t)−Ψ(a))1−ρIµ;Ψ

a+ (Ψ(t)−Ψ(a))rµ

≤ ε

L(1 + (b− a)kb)

(L(1 + (b− a)kb))
r+1

Γ(rµ+ 1)
(Ψ(t)−Ψ(a))1−ρ

× Γ(rµ+ 1)

Γ((r + 1)µ+ 1)
(Ψ(t)−Ψ(a))(r+1)µ.

Therefore,

‖yr+1 − yr‖Ct;Ψ ≤
ε

L(1 + (b− a)kb)

(L(1 + (b− a)kb)(Ψ(t)−Ψ(a))µ)r+1

Γ((r + 1)µ+ 1)
(Ψ(t)−Ψ(a))1−ρ,

which is the inequality (17) for j = r + 1. Using the principle of mathematical induction the
inequality (17) holds for every j ∈ N and every t ∈ ∆. Therefore,

‖yj − yj−1‖C1−ρ;Ψ(∆,R) ≤
ε

L(1 + (b− a)kb)

(L(1 + (b− a)kb)(Ψ(t)−Ψ(a))µ)j

Γ(jµ+ 1)
(Ψ(t)−Ψ(a))1−ρ.

Now using this estimation we have

∞∑
j=1

‖yj − yj−1‖C1−ρ;Ψ(∆,R) ≤
ε

L(1 + (b− a)kb)
(Ψ(t)−Ψ(a))1−ρ

×
∞∑
j=1

(L(1 + (b− a)kb)(Ψ(t)−Ψ(a))µ)j

Γ(jµ+ 1)
.

Thus we have
∞∑
j=1

‖yj − yj−1‖C1−ρ;Ψ(∆,R) ≤
ε

L(1 + (b− a)kb)
(Ψ(t)−Ψ(a))1−ρ

× (Eµ(L(1 + (b− a)kb)(Ψ(b)−Ψ(a))µ)− 1). (18)

Hence the series

y0 +

∞∑
j=1

(yj − yj−1) (19)
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converges in the weighted space C1−ρ;Ψ(∆, R). Let y ∈ C1−ρ;Ψ(∆, R) such that

y = y0 +
∞∑
j=1

(yj − yj−1), (20)

Noting that yn = y0 +
∑n

j=1(yj − yj−1), is the nth partial sum of the series (19), we have
‖yn − y‖C1−ρ;Ψ(∆,R) → 0 as n→∞.

Next, we prove that this limit function y is the solution of fractional integral equation with
I1−ρ;Ψ
a+ y∗(a) = I1−ρ;Ψ

a+ y(a). Therefore, by the definition of successive approximation, for any
t ∈ ∆, we have ∣∣∣(Ψ(t)−Ψ(a))1−ρ

(
y(t)− Ωρ

Ψ(t, a)I1−ρ
a+ y(a)

− 1

Γ(µ)

∫ t

a
LµΨ(t, η)f

(
η, y(η),

∫ η

a
K(η, σ)y(σ)dσ

)
dη

)∣∣∣∣
≤ ‖y − yn‖C1−ρ;Ψ[a,b] + L(1 + (b− a)kb)

×
[
(Ψ(t)−Ψ(a))1−ρ 1

Γ(µ)

∫ t

a
LµΨ(t, η)|yn−1(η)− y(η)|dη

]
≤ ‖y − yn‖C1−ρ;Ψ[a,b] +

(
L(1 + (b− a)kb)Γ(ρ)

Γ(µ+ ρ)
(Ψ(t)−Ψ(a))µ

)
× ‖yn−1 − y‖C1−ρ;Ψ[a,b], ∀n ∈ N.

By taking limit as n→∞ in the above inequality, for all t ∈ [a, b], we obtain∣∣∣(Ψ(t)−Ψ(a))1−ρ
(
y(t)− Ωρ

Ψ(t, a)I1−ρ
a+ y(a)

− 1

Γ(µ)

∫ t

a
LµΨ(t, η)f

(
η, y(η),

∫ η

a
K(η, σ)y(σ)dσ

)
dη

)∣∣∣∣ = 0.

Since, (Ψ(t)−Ψ(a))1−ρ 6= 0 for all t ∈ ∆, we have

y(t) = Ωρ
Ψ(t, a)I1−ρ

a+ y(a) +
1

Γ(µ)

∫ t

a
LµΨ(t, η)f

(
η, y(η),

∫ η

a
K(η, σ)y(σ)dσ

)
dη. (21)

This proves that y is the solution of (1)-(2) in C1−ρ;Ψ(∆, R). Further, for the solution y∗ of
inequation (12) and the solution y of the equation (1), using (15) and (20), for any t ∈ ∆, we
have ∣∣(Ψ(t)−Ψ(a))1−ρ(y∗(t)− y(t))

∣∣
≤
∞∑
j=1

∣∣(Ψ(t)−Ψ(a))1−ρ (yj(t)− yj−1(t))
∣∣ ≤ ∞∑

j=1

‖yj − yj−1‖C1−ρ[a,b]

≤ ε

L(1 + (b− a)kb)
(Ψ(b)−Ψ(a))1−ρ(Eµ(L(1 + (b− a)kb)(Ψ(b)−Ψ(a))µ)− 1).
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Therefore,

‖y∗ − y‖C1−ρ;Ψ[a,b] ≤
(

(Eµ(L(1 + (b− a)kb)(Ψ(b)−Ψ(a))µ)− 1)

L(1 + (b− a)kb)
(Ψ(b)−Ψ(a))1−ρ

)
ε.

This proves the equation (1) is HU stable.

Corollary 3. Suppose that the function f satisfies the assumptions of Theorem 2. Then the
problem (1) is generalized HU stable.

Proof. Set

Ψf (ε) =

(
(Eµ(L(1 + (b− a)kb)(Ψ(b)−Ψ(a))µ)− 1)

L(1 + (b− a)kb)
(Ψ(b)−Ψ(a))1−ρ

)
ε,

in the proof of Theorem 2. Then Ψf (0) = 0 and for each y∗ ∈ C1−ρ;Ψ(∆, R) that satisfies the
inequality ∣∣∣∣HDµ,ν;Ψ

a+ y∗(t)− f
(
t, y∗(t),

∫ t

a
K(t, s)y∗(s)ds

)∣∣∣∣ ≤ ε, t ∈ ∆,

there exists a solution y of equation (1) in C1−ρ;Ψ(∆, R) with I1−ρ;Ψ
a+ y∗(a) = I1−ρ;Ψ

a+ y(a) such
that

‖y∗ − y‖C1−ρ;Ψ[a,b] ≤ Ψf (ε), t ∈ ∆.

Hence fractional integrodifferential equation (1) is generalized HU stable.

Theorem 4. Let f : (a, b]×R×R→ R be a function such that

f

(
t, y(t),

∫ t

a
K(t, s)y(s)ds

)
∈ C1−ρ;Ψ(∆, R),

for any y ∈ C1−ρ;Ψ(∆, R), and that satisfies the Lipschitz condition

|f(t, y1, z1)− f(t, y2, z2)| ≤ L(|y1 − y2|+ |z1 − z2|),

where t ∈ (a, b], y1, y2, z1, z2 ∈ R and L > 0 is Lipschitz constant. For every ε > 0, if y∗ ∈
C1−ρ;Ψ(∆, R) satisfies∣∣∣∣HDµ,ν;Ψ

a+ y∗(t)− f
(
t, y∗(t),

∫ t

a
K(t, s)y∗(s)ds

)∣∣∣∣ ≤ εφ(t), t ∈ ∆,

where φ ∈ C(∆, R+) is a non-decreasing function such that

|Iµ;Ψ
a+ φ(t)| ≤ λφ(t), t ∈ ∆

and λ > 0 is a constant satisfying 0 < λL(1 + (b − a)kb) < 1. Then, there exists a solution
y ∈ C1−ρ;Ψ(∆, R) of equation (1) with I1−ρ;Ψ

a+ y∗(a) = I1−ρ;Ψ
a+ y(a) such that∣∣(Ψ(t)−Ψ(a))1−ρ(y∗(t)− y(t))

∣∣ ≤ [ λ

1− λL(1 + (b− a)kb)
(Ψ(b)−Ψ(a))1−ρ

]
εφ(t), t ∈ ∆.
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Proof. For every ε > 0, let y∗ ∈ C1−ρ;Ψ(∆, R) satisfies∣∣∣∣HDµ,ν;Ψ
a+ y∗(t)− f

(
t, y∗(t),

∫ t

a
K(t, s)y∗(s)ds

)∣∣∣∣ ≤ εφ(t), t ∈ ∆,

Proceeding as in the proof of Theorem 2 there exists a function
σy∗ ∈ C1−ρ;Ψ(∆, R) (depending on y∗) such that

y∗(t) = Ωρ
Ψ(t, a)I1−ρ;Ψ

a+ y∗(a) + Iµ;Ψ
a+ f

(
t, y∗(t),

∫ t

a
K(t, σ)y∗(σ)dσ

)
+ Iµ;Ψ

a+ σy∗(t), t ∈ ∆,

Further, using mathematical induction, one can prove that the sequence of successive approxi-
mations {yn}∞n=1 ⊂ C1−ρ;Ψ(∆, R) defined by

yn(t) = Ωρ
Ψ(t, a)I1−ρ

a+ y∗(a)
1

Γ(µ)

∫ t

a
LµΨ(t, η)f

(
η, yn−1(η),

∫ η

a
K(η, σ)yn−1(σ)dσ

)
dη. (22)

satisfy the inequality

‖yj − yj−1‖Ct;Ψ ≤
ε

L(1 + (b− a)kb)
(λL(1 + (b− a)kb))

j × (Ψ(t)−Ψ(a))1−ρφ(t), j ∈ N. (23)

Using the inequation (23), we obtain

∞∑
j=1

‖yj − yj−1‖Ct;Ψ ≤
ε

L(1 + (b− a)kb)

 ∞∑
j=1

(λL(1 + (b− a)kb))
j

 (Ψ(t)−Ψ(a))1−ρφ(t).

Thus
∞∑
j=1

‖yj − yj−1‖Ct;Ψ ≤ ε
(

λ

1− λL(1 + (b− a)kb)

)
(Ψ(t)−Ψ(a))1−ρφ(t). (24)

Following the steps as in the proof of the Theorem 2 there exists y ∈ C1−ρ;Ψ(∆, R) such that

‖yn−y‖C1−ρ;Ψ(∆,R) → 0 as n→∞. This y is the solution of the problem (1)-(2) with I1−ρ;Ψ
a+ y(a) =

I1−ρ;Ψ
a+ y∗(a), and we have y = y0 +

∑∞
j=1(yj−yj−1). Further, for the solution y∗ and the solution

y of the equation (1), for any t ∈ ∆,∣∣(Ψ(t)−Ψ(a))1−ρ(y∗(t)− y(t))
∣∣ ≤ ∞∑

j=1

∣∣(Ψ(t)−Ψ(a))1−ρ (yj(t)− yj−1(t))
∣∣

≤
∞∑
j=1

‖yj − yj−1‖Ct,Ψ

≤ ε

(
λ

1− λL(1 + (b− a)kb)

)
(Ψ(t)−Ψ(a))1−ρφ(t).

Thus, we have∣∣(Ψ(t)−Ψ(a))1−ρ(y∗(t)− y(t))
∣∣ ≤ ( λ

1− λL(1 + (b− a)kb)
(Ψ(b)−Ψ(a))1−ρ

)
ε φ(t).

This proves the equation (1) is HUR stable.



On global existence and Ulam-Hyers stability of Ψ−Hilfer fractional . . . 131

Corollary 5. Suppose that the function f satisfies the assumptions of Theorem 4. Then, the
problem (1) is generalized HUR stable.

Proof. Set ε = 1 and

Cf,φ =

(
λ

1− λL(1 + (b− a)kb)
(Ψ(b)−Ψ(a))1−ρ

)
,

in the proof of Theorem 4. Then for each solution y∗ ∈ C1−ρ;Ψ(∆, R) that satisfies the inequality∣∣∣∣HDµ,ν;Ψ
a+ y∗(t)− f

(
t, y∗(t),

∫ t

a
K(t, s)y∗(s)ds

)∣∣∣∣ ≤ φ(t), t ∈ ∆,

there exists a solution y of equation (1) in C1−ρ;Ψ(∆, R) with I1−ρ;Ψ
a+ y∗(a) = I1−ρ;Ψ

a+ y(a) such
that ∣∣(Ψ(t)−Ψ(a))1−ρ(y∗(t)− y(t))

∣∣ ≤ Cf,φφ(t), t ∈ ∆.

Hence the fractional integrodifferential equation (1) is generalized HUR stable.

5 ε−Approximate solutions to Hilfer FIDE

Definition 8. A function y∗ ∈ C1−ρ;Ψ(∆, R) that satisfy the fractional integrodifferential in-
equality ∣∣∣∣HDµ,ν;Ψ

a+ y∗(t)− f
(
t, y∗(t),

∫ t

a
K(t, s)y∗(s)ds

)∣∣∣∣ ≤ ε, t ∈ ∆,

is called an ε−approximate solutions of Ψ−Hilfer FIDE (1).

Theorem 6. ( [17]) Let u, v be two integrable, non negative functions and g be a continuous,
nonnegative, nondecreasing function with domain ∆. If

u(t) ≤ v(t) + g(t)

∫ t

a
LµΨ(τ, s)u(τ)dτ,

then

u(t) ≤ v(t) +

∫ t

a

∞∑
k=1

[g(t)Γ(µ)]k

Γ(µk)
LµkΨ (τ, s)v(τ)dτ, ∀t ∈ ∆. (25)

Theorem 7. Let f : (a, b] × R × R → R be a function which satisfies the Lipschitz condition
|f(t, y1, z1)− f(t, y2, z2)| ≤ L(|y1 − y2|+ |z1 − z2|), where t ∈ (a, b], y1, y2, z1, z2 ∈ R and L > 0
is Lipschitz constant.
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Let y∗i ∈ C1−ρ;Ψ(∆, R), (i = 1, 2) be an εi−approximate solutions of FIDE (1) corresponding to

I1−ρ;Ψ
a+ y∗i (a) = y

(i)
a ∈ R, respectively. Then

‖y∗1 − y∗2‖C1−ρ;Ψ(∆,R)

≤ (ε1 + ε2)

(
(Ψ(b)−Ψ(a))µ−ρ+1

Γ(µ+ 1)
+

∞∑
k=1

(L(1 + (b− a)kb))
k

Γ((k + 1)µ− ρ+ 1)
(Ψ(b)−Ψ(a))(k+1)µ

)

+ |y(1)
a − y(2)

a |

(
1

Γ(ρ)
+

∞∑
k=1

(L(1 + (b− a)kb))
k

Γ(ρ+ kµ)
(Ψ(b)−Ψ(a))kµ

)
. (26)

Proof. Let y∗i ∈ C1−ρ;Ψ(∆, R), (i = 1, 2) be an εi−approximate solutions of FIDE (1) that

satisfy the initial condition I1−ρ;Ψ
a+ y∗i (a) = y

(i)
a ∈ R. Then∣∣∣∣HDµ,ν;Ψ

a+ y∗i (t)− f
(
t, y∗i (t),

∫ t

a
K(t, s)y∗i (s)ds

)∣∣∣∣ ≤ εi, t ∈ ∆. (27)

Operating Iµ;Ψ
a+ on both the sides of the above inequation and using the Lemma3, we get

Iµ;Ψ
a+ εi ≥ Iµ;Ψ

a+

∣∣∣∣HDµ,ν;Ψ
a+ y∗i (t)− f

(
t, y∗i (t),

∫ t

a
K(t, s)y∗i (s)ds

)∣∣∣∣
≥
∣∣∣∣Iµ;Ψ
a+

HDµ,ν;Ψ
a+ y∗i (t)− I

µ;Ψ
a+ f

(
t, y∗i (t),

∫ t

a
K(t, s)y∗i (s)ds

)∣∣∣∣
≥
∣∣∣∣y∗i (t)− I1−ρ;Ψ

a+ y∗i (a)Ωρ
Ψ(t, a)− Iµ;Ψ

a+ f

(
t, y∗i (t),

∫ t

a
K(t, s)y∗i (s)ds

)∣∣∣∣ .
Therefore,

εi
Γ(µ+ 1)

(Ψ(t)−Ψ(a))µ ≥
∣∣∣∣y∗i (t)− y(i)

a Ωρ
Ψ(t, a)− Iµ;Ψ

a+ f

(
t, y∗i (t),

∫ t

a
K(t, s)y∗i (s)ds

)∣∣∣∣ , (28)

for i = 1, 2. Using the following inequalities

|x− y| ≤ |x|+ |y| and |x| − |y| ≤ |x− y|, x, y ∈ R,

from the equation (28), for any t ∈ ∆, we have

ε1 + ε2
Γ(µ+ 1)

(Ψ(t)−Ψ(a))µ

≥
∣∣∣∣(y∗1(t)− y(1)

a Ωρ
Ψ(t, a)− Iµ;Ψ

a+ f

(
t, y∗1(t),

∫ t

a
K(t, s)y∗1(s)ds

))
−
(
y∗2(t)− y(2)

a Ωρ
Ψ(t, a)− Iµ;Ψ

a+ f

(
t, y∗2(t),

∫ t

a
K(t, s)y∗2(s)ds

))∣∣∣∣
≥ |(y∗1(t)− y∗2(t))| −

∣∣∣(y(1)
a − y(2)

a )Ωρ
Ψ(t, a)

∣∣∣
−
∣∣∣∣Iµa+

[
f

(
t, y∗1(t),

∫ t

a
K(t, s)y∗1(s)ds

)
− f

(
t, y∗2(t),

∫ t

a
K(t, s)y∗2(s)ds

)]∣∣∣∣ .
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Therefore,

|(y∗1(t)− y∗2(t))| ≤ ε1 + ε2
Γ(µ+ 1)

(Ψ(t)−Ψ(a))µ +
∣∣∣(y(1)

a − y(2)
a )Ωρ

Ψ(t, a)
∣∣∣

+
L(1 + (b− a)kb)

Γ(µ)

∫ t

0
LµΨ(t, η) |(y∗1(η)− y∗2(η))| dη.

Applying Theorem 6 with

u(t) = |(y∗1(t)− y∗2(t))| ,

v(t) =
ε1 + ε2

Γ(µ+ 1)
(Ψ(t)−Ψ(a))µ +

∣∣∣(y(1)
a − y(2)

a )Ωρ
Ψ(t, a)

∣∣∣ ,
g(t) =

L(1 + (b− a)kb)

Γ(µ)
,

we obtain

|(y∗1(t)− y∗2(t))|

≤ (ε1 + ε2)

(
(Ψ(t)−Ψ(a))µ

Γ(µ+ 1)
+
∞∑
k=1

(L(1 + (b− a)kb))
k

Γ((k + 1)µ− ρ+ 1)
(Ψ(t)−Ψ(a))(k+1)µ

)

+
∣∣∣y(1)
a − y(2)

a

∣∣∣((Ψ(t)−Ψ(a))ρ−1

Γ(ρ)
+
∞∑
k=1

(L(1 + (b− a)kb))
k

Γ(ρ+ kµ)
(Ψ(t)−Ψ(a))kµ+ρ−1

)
Thus for every t ∈ ∆, we have

(Ψ(t)−Ψ(a))1−ρ |(y∗1(t)− y∗2(t))|

≤ (ε1 + ε2)

(
(Ψ(t)−Ψ(a))µ−ρ+1

Γ(µ+ 1)
+
∞∑
k=1

(L(1 + (b− a)kb))
k

Γ((k + 1)µ− ρ+ 1)
(Ψ(t)−Ψ(a))(k+1)µ

)

+
∣∣∣y(1)
a − y(2)

a

∣∣∣( 1

Γ(ρ)
+
∞∑
k=1

(L(1 + (b− a)kb))
k

Γ(ρ+ kµ)
(Ψ(t)−Ψ(a))kµ

)

≤ (ε1 + ε2)

(
(Ψ(b)−Ψ(a))µ−ρ+1

Γ(µ+ 1)
+
∞∑
k=1

(L(1 + (b− a)kb))
k

Γ((k + 1)µ− ρ+ 1)
(Ψ(b)−Ψ(a))(k+1)µ

)

+
∣∣∣y(1)
a − y(2)

a

∣∣∣( 1

Γ(ρ)
+
∞∑
k=1

(L(1 + (b− a)kb))
k

Γ(ρ+ kµ)
(Ψ(b)−Ψ(a))kµ

)
.

Therefore,

‖y∗1 − y∗2‖C1−ρ;Ψ(∆,R)

≤ (ε1 + ε2)

(
(Ψ(b)−Ψ(a))µ−ρ+1

Γ(µ+ 1)
+
∞∑
k=1

(L(1 + (b− a)kb))
k

Γ((k + 1)µ− ρ+ 1)
(Ψ(b)−Ψ(a))(k+1)µ

)

+
∣∣∣y(1)
a − y(2)

a

∣∣∣( 1

Γ(ρ)
+

∞∑
k=1

(L(1 + (b− a)kb))
k

Γ(ρ+ kµ)
(Ψ(b)−Ψ(a))kµ

)
which is the desired inequality.
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Remark 2. If ε1 = ε2 = 0 in the inequality (27) then y∗1 and y∗2 are the solutions of Cauchy
problem (1)-(2) in the space C1−ρ;Ψ[a, b]. Further, for ε1 = ε2 = 0 the inequality takes the form

‖y∗1 − y∗2‖C1−ρ;Ψ(∆,R) ≤
∣∣∣y(1)
a − y(2)

a

∣∣∣( 1

Γ(ρ)
+
∞∑
k=1

(L(1 + (b− a)kb))
k

Γ(ρ+ kµ)
(Ψ(b)−Ψ(a))kµ

)
,

which provides the information regarding continuous dependance of the solution of the problem

(1)-(2) on initial condition. In addition, if y
(1)
a = y

(2)
a we have ‖y∗1 − y∗2‖C1−ρ;Ψ(∆,R) = 0, which

gives the uniqueness of solution of the problem (1)-(2).

6 Conclusion

In this paper, we have presented the existence-criteria for solutions of Ψ−Hilfer FIDE on initial
condition. HU stability is obtaining via successive approximation method. Also, continuous de-
pendence and uniqueness is studied through ε−approximated solution. Our results are not only
new in the given setting, but also yield some special cases. For example: if

∫ t
a K(t, s)y(s)ds = 0,

then problem (1)-(2) reduces to the problem (1.1)-(1.2) in [11]. We can obtain the results
for different fractional integrodifferential equations by fixing different values of the parameters
like for ν → 1 problem (1) reduces to Ψ−Caputo FIDE, for ν → 0 problem (1) reduces to
Ψ−Riemann-Liouville FIDE, for Ψ(x) = xρ and ν → 0 problem (1) reduces to Katugampola
FIDE, for Ψ(x) = x; ν → 1 problem (1) reduces to Caputo FIDE, also for Ψ(x) = x; ν → 0
problem (1) reduces to Riemann-Liouville FIDE. We belive that the reported results will have a
positive impact on the development of further applications in engineering and applied sciences.
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