Journal of Mathematical Modeling

Solving the Basset equation via Chebyshev
collocation and LDG methods

Mohammad Izadi’, Mehdi Afshart*

T Department of Applied Mathematics, Faculty of Mathematics and Computer, Shahid
Bahonar University of Kerman, Kerman, Iran
tDepartment of Mathematics and Statistics, Zanjan Branch , Islamic Azad University,
Zanjan, Iran.

Email(s): izadiQuk.ac.ir, mafshar@iauz.ac.ir

Abstract. Two different numerical methods are developed to find approximate solutions of a
class of linear fractional differential equations (LFDEs) appearing in the study of the generalized
Basset force, when a sphere sinks in a viscous fluid. In the first one, using the Chebyshev bases,
the collocation points, and the matrix operations, the given LFDE reduces to a matrix equation
while in the second one, we employ the local discontinuous Galerkin (LDG) method, which uses
the natural upwind flux yielding a stable discretization. Unlike the first method, in the latter
method we are able to solve the problem element by element locally and there is no need to solve
a full global matrix. The efficiency of the proposed algorithms are shown via some numerical
examples.
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1 Introduction

The main objective of this work is to develop a collocation algorithm based on Chebyshev
polynomials as well as a discontinuous finite element technique to find an approximate solution
of the following fractional differential equation

a DX () + a1 DX () +ag X(t) = f(), 0<t<T, (1)

subject to the initial condition
X(0) = Xo, (2)
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where a1 # 0, a9, a2, and Xy are arbitrary real constants and f(¢) is a given function denoting

the forcing function. Here, D denotes the usual integer differential operator %, and Diﬁ ) is the
standard Caputo fractional derivative operator of order 3 ¢ N and defined [27]

DWW X(t) = gD X (1), m—1<pB<m, meN, (3)

where J7 is called the Riemann-Liouville fractional integral operator of order f > 0 and is
defined as

1 t o X(s
jﬂX(t):F(ﬁ)L (t*;zﬁds, t>0,
(8)

and I'(+) is the well-known Gamma function. The following properties of the operator D"’ will
be used

Diﬁ)((}') =0 (C is a constant), (4)
F(H + 1) u—_3
————gH# P for pe Ngand u = |[f], or Ng and p > |3,
PP i~ I T+ 1= 5) 1€ N p =[] i ¢ No p> 1] (5)
0, for € Ny and p < [3].
Setting
9
=1 = A > =1/2
a2, ag , a1 (1+2)\) ) A 07 ﬂ / )
we recover the Basset equation, which describes the unsteady motion of a sphere immersed in
a Stokes fluid [21]. Indeed, the author in [21] modeled the Basset force as fractional differential

equation and solved it with some values of 3, A and also compared his solution with asymptotic
behavior of the Basset equation. Discussion about uniqueness of an inverse Basset equation is
considered in [31] while in [9] the authors derive the stability criteria of the Basset equation by
using the duality results of controllability and observability of the linear fractional dynamical
systems and the feedback control. Investigation of the behavior of the fractional Basset equations
via numerical inverse Laplace transform is reported in [23]. In [0, 7], numerical approximations
of the solution of Basset equation is calculated by reduction of the problem to a system of
ordinary and fractional differential equations each of order at most unity. The extended Laguerre
functions are exploited in [20] to solve the Basset equation.

The subject of fractional calculus and fractional differential equations (FDEs) is quite as
old as the classical calculus. However, they have recently proved to be powerful and valuable
tools in the modeling of many phenomena in various fields of science and engineering [19,24,27].
To model many real world problems, it has turned out the use of fractional-order derivatives
are more adequate rather than integer-order ones. That is due to the fact that the fractional
derivatives and integrals enable the description of the memory properties of various materials
and processes [27]. Therefore, one needs to extend the concept of ordinary differentiation as
well as integration to an arbitrary non-integer order. However, most of the resulting FDEs do
not have an exact analytical solution, so the approximate and numerical techniques are pre-
ferred in identifying the solutions behaviour of such fractional equations. Numerous analytical
and numerical methods have been developed for the solution of FDEs. Among other existing
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methods, we mention some schemes such as the spectral collocation polynomials based meth-
ods [10,11], [12=14,17], [28=30], the psuedospectral method [1], B-spline wavelet method [18], the
numerical inverse transform method [23], and local discontinuous Galerkin methods [1, 14, 16],
to name but a few.

Over the past decades, considerable attention has been given to the establishment of tech-
niques for the solution of the fractional differential equations using the orthogonal functions.
The main characteristic of this technique is that it reduces the solution of differential equations
to the solution of a system of algebraic equations. In most of the presented works, the use of
numerical techniques in conjunction with operational matrices for differentiation and integration
operators of some orthogonal polynomials, for the solution of fractional differential equations
on finite and infinite intervals, produced highly accurate solutions for such equations, see [2]
for a recent review. On the other hand, the LDG methods for the fractional ODEs including
one-term and multi-terms were first discussed in [5]. The main idea of the LDG scheme is to
rewrite a given fractional-order differential equation as a system of first-order classical ODEs
and a fractional integral, then apply the discontinuous Galerkin (DG) method on the system and
the fractional integral. A key ingredient for the success of LDG schemes is the correct design of
interface numerical fluxes.

In this work, we are going to propose two different approximation algorithms as the extensions
of the above mentioned papers. Our first approach is based on the generalized fractional order
of the Chebyshev orthogonal functions of the first kind to get an approximation solution of (1)
accurately on the interval [0,7"]. The main idea of the proposed technique based on using these
(orthogonal) functions along with collocation points is that it converts the differential or integral
operator involved in (1)-(2) to an algebraic form, thus greatly reduces the computational effort.
Our second approach is based on the LDG approximation along with a numerical upwind flux
to solve the model problem element by element.

The content of this note is constructed as follows. In Section 2, the Chebyshev polynomials
and some relevant properties are first given. Then, we present the proposed collocation scheme
applied to fractional initial value problem. The final part is devoted to the error analysis
technique based on the residual function of the present method (1)-(2). Hence, an improvement
of the Chebyshev collocation method is introduced by means of the residual error function. The
formulation of the LDG scheme for the Basset equation is established in Section 3. The remaining
part is devoted to the proof of numerical stability of the scheme. The numerical findings of the
Basset fractional equations are reported in detail for various values of involved parameters in
Section 4. Moreover, we compare the approximations obtained using our scheme with the
solutions obtained using other existing schemes. Finally, Section 5 provides the conclusion.

2 Chebyshev-collocation approach

To proceed, basic definitions and fundamental aspects of (generalized) Chebyshev polynomials
and theorems, which are useful for our subsequent sections have been introduced.

2.1 Chebyshev functions

The Chebyshev polynomials play an outstanding role in classical as well as modern numerical
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computations [8]. It is known that the classical Chebyshev polynomials (of the first kind) were
defined on [—1, 1]. Starting with 79(2) = 1 and 71(z) = 1, these polynomials satisfy the following
recurrence relation

Tor1(2) = 22 Tn(2) = Tnoa(2), n=1,2,....

By introducing the change of variable ¢ = 1 —2(%)“, a > 0, one obtains the shifted version of
the polynomials defined on [0,7"] will be denoted by 7,%(t) = 7Tn(z). This transformation was

introduced in [20]. The explicit analytical form of 7,%(¢) of degree (n«) is given for n = 0,1,. ..
n 2k
arn ok _ pn2%(n+k—1)! _
7;L (t) _kz_ocn,kt ) cn,k - (_1) (n—k‘)'Tak (2]{5)" k_o)]-)"'ana (6)
with cg = 1 for all k = 0,1,...,n. It is proved in [26] that the set of fractional polynomial

functions {7*, 7\, ...} are orthogonal on [0,T] with respect to the weight function wr(t) =

™

—dpOmn, n,m = 0.
2xy

JT T () T (t) wr o (t)dt =
0

Here, 6,y is the Kronecker delta function, dy = 2 while d,, = 1 for n > 1. These polynomials
also satisfy the following properties

T (0) =1, TX(T) = (=1)"

2.1.1 Approximation of functions

Any square integrable function g(¢) in (0,7), may be expanded in terms of shifted Chebyshev
polynomials as

o(t) = Y an TE(),
0

where the unknown coefficients a,, are obtained by means of the orthogonality properties of the
shifted Chebyshev polynomials as follows

2a (T o
an=—| 9g) T () wra(t)de, n=0,1,....
7Tdn 0
However, in practice one needs to deal with only the first (N + 1)-terms shifted Chebyshev
polynomials to find an approximate solution of model (1) expressed as

N
gNﬂ(t) = Z anna(t)v OQtQT, (7)
n=0
where the unknown coefficients a,, n = 0,1,..., N are sought. To proceed, we write 7,%(t),
n=0,1,..., N in the matrix form as follows

To(t) = Ba(t) D. (8)
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Here, a superscript ¢ denotes the matrix transpose operation and
To(t) = [To"(1) T°@) ... Ty,

and
Bo(t) =[1 ¢ ¢ ... V],

The upper triangular (N + 1) x (N + 1) matrix D takes the form

11 1 1 | 1
0 c11 c21 ¢31 ... CcN—11 CN,1
0 0 C22 0372 e CN_LQ CN,Q
D= . . .
0 0 0 e 0 CNfl,Nfl CN,Nfl
| 00 0 e 0 0 CN,N

By means of (8) one can write the relation (7) in the matrix form
uN,a(t) = To(t) A =By (t) DA, 9)
where the vector of unknown is
A=lay a1 ... apn]"

We conclude with discussion about the shifted Chebyshev polynomials by considering their
convergence. The following theorem states that the approximation solution gy (t) is convergent
to g(t) exponentially, if one increases the number of basis functions N [26].

Theorem 1. Assuming that Dika)g(t) e C[0,T] for k=0,1,...,N and let
CTy 1 = Span(Tg (t), Ti* (1), - -, TN 1 (£))-

If gn—1,0 = Ta(t)A is the best approzimation to g from CTR _,, then the error bound is presented
as follows:

TN Mo T\ /2
l9(t) = gv-1a(t) v < o)

2NT(Na + 1) \aN!

where My = DX g(1)], t € [0,T1].

Ultimately, to obtain a solution in the form (7) of the problem (1) on the interval 0 < ¢ < T,
we use the spectral collocation points as the roots of generalized fractional order of the Chebyshev
functions. According to [20], the following points are used

1—ap
2

1
tk=T< >°‘, k=0,1,...,N, (10)

where x; = cos (?Vk—ﬂ%) are the zeros of the usual Chebyshev polynomials of degree N + 1 on

(—1,1).
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2.2 The solution procedure

Now, suppose that we approximate the solution X (¢) of the linear IVPs (1) in terms of (N 4 1)-
terms Chebyshev polynomials series denoted by X (t) on the interval [0,T]. As previously
stated, in the vector form one may write

X(t) ~ Xnalt) = Ba(t) DA. (11)

By inserting the collocation points (10) into (11), we get a system of matrix equations in the

form
Xnaol(te) =Ba(ty) DA, k=0,1,...,N.

These equations can be expressed in the following compact representations

XN,a(tO) Ba(to)
X =BDA, X = XN’f*(tl) Copo | P (12)
XN (tn) Ba(tn)

To proceed, we take the fractional derivative of order 8 from both sides of (11) to get
D Xy o(t) = DY) Bo(t) DA. (13)
The computation of PP B, (t) can be easily obtained via the properties (4) and (5) as follows
BO () =DV Bo(t) =[0 D .. DY) N,

To obtain a system of matrix equations for the fractional derivative, we substitute the collocation
points (10) into (13) to get

DI Xy oltr) =BP(4)DA, k=0,1...,N,

which can also be expressed in the matrix form

DY Xivalt) By (1)

B B

X(ﬁ) _ B(ﬁ)]D)A7 X(ﬁ) _ D* XN,oz(tl) 7 B(ﬂ) _ Boc (tl) (14)
DY X xaltn) B (ty)

Our next aim is to find a relationship between Xy ,(t) and its first derivation. To end this,
it suffices to compute %Ea(t). Evidently, the calculation of the integer-order derivations of
B, (t) strictly depends on the values of & and N. These tasks also are obtainable by means of
properties (4)-(5) using integer value of § = 1. For instance, by choosing & = 1/2 and N =7
we get

B (t)z[l A A A e t5].

1
2
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Differentiation with respect to t gives

B

VI

=

3, 5 7 9
_ 1 2412 op 2432 2 D52 g8 2472 afl
(t) [O 0 5 t t 2t 3t 2t t 2t ot

Now, by defining

. d
Ba(t) := —Bu(1),
(1) = 5 Balt)
and using the relation (6) one obtains that
DXNa(t) = Ba(t) DA. (15)

By placing the collocation points (10) into (15), we arrive at the following matrix expression

DXn,a(to) IEga(to)

. . . DXn ot . B, (t

X - BDA, X - . () . B- Fl) . (16)
DXN,a(tN) Ba(tN)

Now, we are in place to calculate the Chebyshev solutions of (1). The collocation procedure
is based on computing these polynomial coefficients by the aid of collocation points defined
n (10). This can be done by inserting the collocation points into the fractional IVPs (1) to get
the system

as DX () + ay D) X (&) + ao X (t) = f(tr), k=0,1,...,N.
In the matrix form we may write the above equations as

MyX + M XY + MyX =F, (17)

where the coefficient diagonal matrices M; for j = 0, 1,2 and the right-hand side vector F' take
the forms

a; 0O ... 0 f(t())
0 a 0 ft
", ; . ('1)
0 0 ... aj (N+1)x (N+1) ftn) (N+1)x1

Substituting the relations (14) and (16) into (17), the fundamental matrix equation is obtained

WA=F, (18)
where
W= (M,B + M B” + MyB)D.
Obviously, Eq. (18) is a linear matrix equation with a,, n = 0,1,..., N, being the unknown

Chebyshev coefficients to be sought.
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We are left with the task of entering the boundary conditions (2) into the former matrix
equation. To take into account the first condition X (0) = Xy, we tend ¢ — 0 in (11) to get the
following matrix representation

WoA =Xy, Wyo:=B,(0)D=[1 1 ... 1].

For convenience, by replacing the first row of the augmented matrix [W; F] by the row matrix
[Wo; Xo] we arrive at the new augmented system

T 1 1 1 1 1 - X, T
w10 w1 w1 2 w13 ce W N ;o f(t)
_ w2,0 w2 1 w32 w3 .. W N ;o f(t2)
[W:.F|=| . : . . o L . (19)
) Lo o
WN-1,0 WN—-1,1 WN-12 WN-13 --- WN—1.N ; f(tnN=1)
| wno  wN wWN2  WN3 ... WN,N ;o f(tn)

Thus, the unknown Chebyshev coefficients in (11) will be calculated via solving this linear system
of equations. This task can be easily performed by means of linear solvers.

2.3 Error estimation based on residual functions and improvement of solu-
tions

In this section, the error estimation based on the residual function is introduced for the method
and thus the approximate solution (1) is corrected by the residual correction technique. This
technique was previously used in [3,25] and recently in [32]. This error estimation is useful,
in particular, when the exact solution of the boundary value problems is not yet known and
one requires some tools to measure the accuracy of the proposed collocation scheme. Briefly
speaking, our goal is to construct an approximate solution based on the already calculated
Chebyshev solution Xy (t) in the form

e

XN,M,a(t) = XN,a(t) + gN,M,Oé(t)v (20)

where Sma(t) is the Chebyshev solution of the error problem obtained by using the residual
error function as described below. Here, the positive constant M is selected such that M > N.
To continue, let us define the residual function for the present method as

Ruvalt) = LIXnal(t) = F(1) = as DXna(t) + a1 DY Xya(t) + a0 Xna(t) = (1), (21)
Clearly, the approximate solution X o (t) is satisfied with the following problem
LIXNa|(t) = f(t) + Rna(t), Xna(0)= Xo. (22)

Assuming that the function X (¢) is the exact solution of (1), we define the error function Ey 4 (t)
as

EN,a(t) = X(t) - XN,a(t)- (23)
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By putting (23) into (1) and (2) while exploiting (21)-(22), we arrive at the error differential
equation with the homogeneous boundary conditions

4y DEN o (t) + a1 DV EN o(t) + ag Ena(t) = —Ryalt), Ena(0) = 0. (24)

Now, we solve the error differential equation (24) by means of the Chebyshev-collocation scheme
already described in the last section to get the approximation

M
Enatalt) = Y em TE(D), (25)
m=0

for the error function €y (t) for M > N. Once the approximate solution 5Wa (t) is obtained,
the corrected solution Xy a7 (t) defined in (20) will be known.

3 LDG approach

In this part, we shall formulate the LDG methods for the Basset equation in (1). To do this we
first introduce some basic notation, see also [5, 15, 16,22].

Let J = (0,T) is given and consider (1) on J. To proceed, we introduce two variables
zo(t) = X(t) and x1(t) = DX (t). By means of (3) we may rewrite (1) as the following first-
order system

1 (t) — d:cc(l)t(t) o,
ara1(t) + ar oI Py (1) + aoo(t) = £(2), (26)
zp(0) — Xo = 0,

where 3 € (0,1] and t € J. Now, let M be a subdivision of the time interval J into into N
subintervals {I,}_; given by I,, = (t,_1,t,). The nodes of M are given as 0 =: g <t; < ... <
tx_1 <ty :=T. By k, we denote the length of each I, i.e., k, = t, —t,_1 forn=1,2,...,N.
We further set k := max?\_, k,. To the mesh M, we associate the broken Sobolev spaces

CUM)={v:J—>R|v|, €La(I), n=1,2,...,.N},

and
HY(JM)={v:J >R | vlr, e H'(I,), n=1,2,...,N}.

Having defined these function spaces, we assume that the solutions belong to corresponding
spaces

<a:0(t),x1(t)> e HY(J, M) x C(J, M).

We emphasize that a function v € H'(J, M) may be discontinuous in ¢ at time level .
Thus, at the nodes of M the left-sided as well as the right-sided limits of piecewise continuous
functions v : J — R will be important. We let v, and v;" being the left- and right-sided limits
of v at ¢,

v =0t (t,) =o(t)) = lim v(t, +5), v, =v (t,) =v(t,) = lim v(t, + s).

" s—07F t—0—
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In Fig. 1, an illustration of the possible jumps in v € H!(J, M) at element interfaces is presented.

tO tn—l ty tn+ 1 T

Figure 1: Partition of the time domain J into elements I,, with width k,, and interfaces ¢,,. The
open circles indicate the left and right limits of function v at interfaces.

Let now ¢ be a positive integer. By P,(I,) we denote the space of polynomials of degree
< q on I, € M. Restricting our approximate solutions to be in a local finite dimensional
subspace V@ c H L(J, M). Next, we choose V(@) being the space of discontinuous and piecewise
polynomial functions defined by

V<®:{’U:J—>R|U|]nepq(]n), n:1727"‘7N}'

On the element I,, we use the quantities Xp(t) and X7 (¢) belong to V(@ represent the computed
DG approximations to the exact solutions zo(t) and z1(t) of he system (26). The following
Lo-inner products shall be used throughout the paper

tn tn
(u, v), :=J wvdt, (u, v), ::f uwdt, Jul? :=J lu|? dt,

n 0 0

We define the weak DG formulation for (26) by first multiplying the first equation by a test
function vy € V@, integrating over I,, and integrating by parts to obtain that

dv _ _
(B0, vo) + (W), TE) = Xoltr)volty) + Xolti_y) volti_,) = 0. (27)
Similarly, we multiply the second integral equation in (26) by a test function v; € V(@ and in-
tegrate over I,,. Utilizing the upwind flux Xy(¢,, ;) instead of Xy(¢,; ;) in (27), the discrete for-

mulation consists of determining Xy, X; € V(@ such that for all vy, v; € V@, andn=1,2,..., N

(B, w®) + (B0, ) =Xt volt) + Xoltr_) volti_,) =0,
az (210, vi(®) +ar (oL V(D). vi(t)) +ao (Xo(t), vi(0))
Xo(tg =0) — X0 =0,

Note that, on the initial step I; = (to,t1) we use Xp(t,) = Xo. We also emphasize that using
the upwind flux as natural choice enables us to solve the equation interval by interval on each
subinterval I,, for n = 1,2,..., N. Thus, we require to invert a local (k + 1) x (k + 1) low-order
matrix instead of a global full matrix. For the implementation details using the Legendre basis
functions, we refer readers to [10,22].
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3.1 Numerical stability

In this section, we investigate the stability of the proposed LDG scheme for the Basset equation
n (1). By rewriting the LDG scheme (28) we have

Xolt) vo(t) = Kot wolti_y) = (B(0), w(®) — (%), 242) o,
az (A1), vl(t)>n +ar (oI (0), vl(t))n + a0 (Xo(t), vl(t))n - (ro, vl(t)>n 0, (29
Xo(ty) = Xo = 0,

which hold for all vg,v1 € V@, and n =1,2,...,N. To proceed, we need the following lemma,
which is based on the semigroup properties of fractional integral operators

Lemma 1. [5] For any S € (0,1) we have

{Olt(l—/@)w’ w] _ [01(1 ), w. tIt(:%ﬁ)w]

n

_ (1-p)r 2
— cos (T) N

n

Denotmg by Xg, Xl € V(@ as the approximate solutlon of Xy, X1 and define the numerical
errors as Z; := X; — X; for i = 0, 1. Observe that Xo and X; both satisfy (29). Subtracting
equations (29) from the same equations with X and X give us the following expression for the
error equations

Eo(ty) volty) — Zolt, 1) volty 1) — (El(t)7 Uo(t))n_< dUO )
a (210, u®) +a (IR0, w®) + oo (200, m(t)) -

n

(31)

for all vg,v; € V@, For convenience we set ag,ag = 1. Taking vy = Zp, v; = Z; in (32) and by
adding these two equations together we arrive at
=20—\ _ = (= = (4F = d_ = =
E3(t) — Bolti_1) Solty) — (S0, 2Z0(®) + (21(0), Z10))
1-8) = -
+ ay (OIt( B):l(t), :1(t)> = 0.
n

Using the fact that (w, ‘illt”) = (w*(t;) — w?(t}_,))/2, one can replace the third term with

n
w = Zp. After multiplying by two, adding £Z3(¢." ) to the last equation and rearranging the
terms to get

- N A - 1-8) = -
(Botti0) = Bolty)) +Eiitn) — Zhtty) + 2122 + 201 (o1 PEi (1), Ea(t) = 0.

n

Summing over n = 1,..., A yields

N 2
—_ —_ — —_ 1-8)— —_
=3(ty) — E5(to) Z( D)= Eolti) 202l + 200 (o VE0), 2] =0,

Utilizing Lemma 1 and assuming that a; > 0, we have proved the following L, stability of (29)
(see also [5, 16]:
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Lemma 2. The LDG scheme (29) is Ly, stable and the numerical errors satisfy

=30) - 265) - 3 (2ot _0) ~Zo(tn 1)) —21El%
=} (32)
—2a1cos((1 Bim )”H 1152 g0

4 Numerical applications

In this section, to describe the efficiency of the proposed Chebyshev collocation as well as LDG
methods, some numerical experiments are performed. To test the validity of the presented
schemes and to compare our results with methods available in the standard literature, the
following two schemes are employed

a) The traditional fractional finite difference method (FFDM) based on the Griinwald-Letnikov
formula [23,27]

X=X, .
as N Zw XjitaX;=1, j=12,...,m,

where the time step Az is taken as Az = T/m and procedure starts with zero condition
Xy =0.

b) Inverse Laplace transform (ILT) [23].

All numerical computations have been done by using MATLAB R2017a.

We consider the Basset equation, which corresponds to § = 1/2 and f(¢t) = 1. We solve this
equation on the computational domain [0,7] with the initial condition given by Xy = 0 and
parameters A = 0.25,2,10,100. Various final times T = 5, 10, 15, and T' = 20 are considered in
both schemes.

First, we consider the Chebyshev collocation method and take o = 1, N = 10. In this case,
we are looking for an approximate solution in the form X (t) = Zi():o anT,1(t), on the interval
[0,7]. Using T = 5, T = 20 and setting the parameter A = 100, the approximate solution
Xi0,1(t) of this model problem using Chebyshev basis functions on the interval 0 < ¢ < T with
T = 5,20 are obtained as follows respectively:

Xi01(t) = —8.8383 x 107719 42,7245 x 107°¢? — 3.7014 x 107 *¢®
+0.002927775866 t" — 0.01507095807 t° + 0.05399542273 t° — 0.1437831673 t*
+0.3107734634 % — 0.5911335485 ¢ + 0.9482283051 ¢ + 1.8163 x 107 1%,
Xio1(t) = — 4.8127 x 10711 #10 4+ 57236 x 107947 — 2.9744 x 107" ¢®
+8.8740 x 1075 ¢" — 1.6801 x 10~ ¢° + 0.002107882581 > — 0.01778296924 t*
+0.1003783155 > — 0.3697532231 t* 4 0.8369021913 ¢ + 1.2840 x 107108,
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Using the second approach, i.e. the LDG scheme with ¢ = 10, NV = 1, the corresponding
approximative solutions for ¢ € [0,T], T' = 5, 20 take the forms
Xp(t) = — 1.7057 x 1070410 4 7.7421 x 107547 — 9.6527 x 10~*¢®
+0.006902075652 " — 0.03146521583 % + 0.09710725216 > — 0.2157254116 t*
+ 0.384055245 3 — 0.6326395462 t + 0.9581583011 ¢ 4+ 0.0006770401163,
Xo(t) = —9.2446 x 10711 +10 + 1.0478 x 1078+% — 5.1636 x 1077 3
+1.4525 x 1077 ¢7 — 2.5759 x 10~* 5 4+ 0.003005128908 > — 0.02340449824 t*
+ 0.1213062685 ¢3 — 0.4105174814 ¢ + 0.8643431644 t + 0.01173216948.
The above approximations are visualized in Fig. 2. In addition to A = 100, the approximated
solutions correspond to A = 0.25,2,10 are also plotted in Fig. 2. It can be seen that that
there are a close relationship between the approximated solutions obtained by the Chebyshev
collocation and LDG methods. Moreover, a comparison between our plots and those given by

the previously well-established methods [0, 7,20] shows that there is a strong level of agreement
in our solutions.
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Figure 2: Comparison of approximated solutions using Chebyshev functions and LDG method
for T'= 5 (left) and T" = 20 (right) for the Basset equation with (N = 10, a = 1), (¢ = 10,
N = 1) and various \ = 0.25, 2,10, 100.

Next, we see the impact of using different IV on the computations. Comparison of residual
error functions for the Basset equation using A = 10, o = 1, and various N = 8,10,...,16 on
the interval [0, 20] are presented in Fig. 3. Another issue to be answered is about using different
values of &« > [ as the local order of basis functions on our calculations in the Chebyshev
collocation approach. For instance, using o = 1/2 equals to f and N = 10, A = 100, the
following approximation is obtained on 0 <t < 5

X1 (1) =0.5581620014 Y2 — 0.5214023613 t*/2 + 0.1455775015 ¢/

— 0.2809450947 72 — 0.02153373848 t%/2 + 0.00168599665 > + 0.1113886801 +*
+0.281731904 ¢3 — 0.3381478491 t? + 0.895822155 ¢ + 4.8141 x 107199,
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Figure 3: Comparison of residual error functions for the Basset equation for A = 10, a = 1, and
various N = 8,10,...,16.

A comparison with X01(t) shows that there is a considerable gap between these two solutions.
Therefore, we consider only o = 1 below. For T' = 20, we further report the numerical results
obtained by the Chebyshev-collocation and LDG schemes for two values of parameter A =
0.25,10 at some points [0,20]. These results correspond to N = 10 and ¢ = 10, N = 1 are
presented in Table 1.

Table 1: Numerical results obtained by Chebyshev-collocation and LDG methods for T' = 20
for the Basset equation using N = 10, ¢ = 10,/ = 1, and )\ = 0.25, 10.

Chebyshev LDG

A=0.25

A=10

A=0.25

A=10

0.24745687871926
0.36229987512529
0.47523639579227
0.54276011876724
0.58759812654452
0.62101313082419
0.64772063970328
0.66882831077307
0.68672759429012
0.70194334105779
0.71508339875847

0.44329246438781
0.62991614800135
0.76751184193410
0.82455908540295
0.85360218977282
0.87192719005300
0.88547512392764
0.89479053340209
0.90247325228560
0.90869786306967
0.91381257282151

0.26719235046467
0.37259196136653
0.47857875382588
0.54677542582372
0.58971027646290
0.62170013995796
0.64976044518700
0.67013493142816
0.68671347484272
0.70382316005383
0.71692377538879

0.464432885264128
0.637924971951327
0.769502482221561
0.826707334038536
0.853553666397951
0.872398628347251
0.886329630908577
0.894616219680941
0.902784006122455
0.908903744240047
0.914102415031257
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We are going to describe the technique of residual correction to improve the current Cheby-
shev polynomial solution Xy 4 (t) for N = 10,a = 1 and A = 10 on the interval [0,7"], where
T = 20. In this case, we get

Xi01(t) = — 4.4234 x 1071 #1904+ 52175 x 107947 — 2.6840 x 10" ¢
+7.9065 x 107047 — 1.4730 x 107*¢° + 1.8101 x 107*¢> — 0.01487437148 ¢*
+0.08137765888 3 — 0.2913971569 t2 + 0.6665159043 ¢.

The corresponding residual error function Rig(t) takes the form

Ri0.1(t) = — 0.33348 + 0.083722¢ — 0.047264 ¢ + 0.02188 ¢* — 0.005824 t*
+9.2631 x 1074#° — 9.1950 x 10775 + 5.7593 x 1076¢7 — 2.2144 x 107" %

T+ 47751 x 1072¢° — 4.4234 x 10~ 10 4 0.49235 ¢7 — 0.28701 ¢2
+0.096182¢2 — 0.020092¢2 + 0.0027167 12 — 2.4117 x 10~4 ¢
£1.3941 x 107°¢% —5.048 x 1077¢2 +1.039 x 107842 —9.2724 x 1011 ¢%.

The next task is to solve the error problem (24) for En(t). Choosing M = 15 and using
the Chebyshev-collocation procedure, the corresponding approximation solution is calculated as
follows

E1015.4(t) =1.0606 x 1071515 — 1.7843 x 1073 ¢'* 4+ 1.3662 x 10711 ¢13
—6.3028 x 10719412 1+ 1.9548 x 1078 ¢! — 4.3064 x 1077 ¢'° + 6.9407 x 1076 ¢°
—8.3030 x 1077 ¢® 4 7.3956 x 107%¢7 — 4.8690 x 1072 ¢% + 0.023238¢°
—0.077542t* + 0.16984 3 — 0.21724 % + 0.12301 ¢t — 2.6612 x 10110,

Finally, after inserting the error function 51/071\571 (t) into (20), the corrected approximate solution
X10’1571(t) for (N, M) = (10, 15) is obtained

X10.15.1(t) =1.0606 x 10717 15 —1.7843 x 10713 14 + 1.3662 x 10711 ¢13
—6.3028 x 10719412 4+ 1.9548 x 1078 ¢! — 4.3068 x 10~7 1% + 6.9459 x 1076 ¢°
—8.3298 x 10794 4 7.4747 x 107%¢" — 5.0163 x 10735 + 0.025048 ¢
—0.092416 t* 4 0.25121 3 — 0.50863 t* + 0.78952¢ — 2.6612 x 10110,

The above Chebyshev approximate solution X9 1(¢) and its corrected approximation X 151 (%)
are visualized in Fig. 4. It can be seen that these solutions are very close to each other.

Next, we verify the accuracy of the proposed Chebyshev-collocation and LDG methods
compared to existing numerical methods in standard literature when applied to Basset equation.
In Table 2, we report the numerical results correspond to N = 10 obtained by the Chebyshev-
collocation procedure using a = 1 for different A = 0.25,2,10,100. In the LDG scheme, we
additionally utilize p = 10 and N' = 1. Comparison results of the ILT [23] utilizing 15-terms and
the FFDM [23] for Az = 0.1,0.01 in some points for numerical solution of the Basset equation
are also shown in Table 2.
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Figure 4: The approximated Chebyshev and its corrected solutions X 1(t) and Xig 15,1(t) of
the Basset equation using (N, M) = (10,15),a =1, and 8 = 1/2.

It should be noticed that, we have further utilized various basis functions such as Chelyshkov |
novel Bessel [17], and Legendre [11] functions rather than Chebyshev polynomials in the pro-
posed collocation scheme. However, our experiments show that the same results are obtained
when different bases are used in the computations.

5 Conclusions

In this paper, two approximation procedures were proposed for the solution of the Basset equa-
tion as a fractional-order differential equation with initial condition arising in the modeling of
the unsteady motion of a particle accelerating a viscous fluid under the action of gravity. The
first method was based upon Chebyshev polynomials and the other one was an upwinded LDG
scheme. In the first approach, utilizing the Chebyshev functions together with the collocation
points, the differential equations are transformed into an algebraic system of linear equations.
On the other hand, the main feature of the LDG is an element-by-element solution, hence, there
is no need for a full global solution. Moreover, the stability of the scheme was proven in the
Ly norm. Numerical examples were given to illustrate the efficiency and accuracy of the pre-
sented methods and a comparison between the presented methods and other existing schemes
was carried out.
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