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Abstract.This paper presents an approximate method to solve a class of
fractional partial differential equations (FPDEs). First, we introduce radial
basis functions (RBFs) combined with wavelets. Next, we obtain fractional
integral operator (FIO) of wavelets-radial basis functions (W-RBFs) di-
rectly. In the next step, the W-RBFs and their FIO are used to transform
the problem under consideration into a system of algebraic equations, which
can be simply solved to achieve the solution of the problem. Finally, some
numerical examples are presented to illustrate the efficiency and accuracy
of the method.
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1 Introduction

Recently, there has been a great deal of interest in fractional calculus since
there have been many applications in different fields of physics and engi-
neering, for example viscoelastic flows, fluid-dynamic traffic model, porous
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media, biology, chemistry, acoustics and psychology [1]. Furthermore, frac-
tional partial differential equations (FPDEs) have been the focus of numer-
ous studies [26]. Some of FPDEs have been studied and solved, such as the
fractional Fokker-Planck equation [39], the fractional telegraph equation [7],
the fractional advection-diffusion equation [38], the fractional KdV equa-
tion [20], the fractional sine-Gordon equation, the fractional transport equa-
tion [16] and the space and time fractional diffusion-wave equation [24]. In
general, most of fractional differential equations (FDEs) do not have exact
solution. So, recent years, some scientists have devoted for solving of FDEs
and dynamic systems containing fractional derivatives, and have proposed
various numerical schemes such as homotopy analysis method [5], Ado-
mian decomposition method [23], Chebyshev spectral approximation [15],
Bernoulli wavelets method [27] and Legendre polynomials method [30].

In the last decade or so, radial basis functions (RBFs) have been ex-
tensively applied in various context and emerged as a potential alterna-
tive for approximation of partial differential equations (PDEs). The use
of RBFs in the numerical solution of PDEs has achieved popularity [6]
in science and engineering as it is meshless and can readily be extended
to multi-dimensional problems. For example Kansa [17] modified Hardy’s
multiquadric scheme to solve PDEs. Wu [36] proved the convergence of
RBFs Hermite-Birkhoff interpolation. Wendland [35] combined the theory
of RBFs with the Galerkin schemes for numerical solution of PDEs. The
authors of [12] studied the meshless collocation method using RBFs for
numerical solution of systems of equations with linear differential or inte-
gral operators. Wendland [34] obtained error estimates for interpolation by
a special class of compactly supported RBFs. The authors of [37] intro-
duced a suitable variational formulation for the local error of scattered data
interpolation by RBFs. Duan and Tan [10] combined the domain decompo-
sition scheme with the meshless Galerkin scheme for numerical solution of
PDEs using RBFs. The author of [3] applied the theory of RBFs together
with Galerkin scheme to deal with PDEs with Dirichlet boundary condi-
tions. Shokri and Dehghan [31] presented a numerical technique based on
collocation and RBFs for solving the improved Boussinesq equation. The
author of [8] applied collocation points and radial basis functions for solving
nonlinear sine-Gordon equation.

In this manuscript, we introduce new RBFs combined with wavelets for
solving time-space fractional partial differential equations. Then, we de-
rive a new Riemann-Liouville fractional integral operator for wavelet-radial
basis functions. Our scheme is based on reducing the main problem into
the corresponding system of algebraic equations by expanding the solution
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as W-RBFs with unknown coefficients and using the fractional operator
of integration, which can be simply solved to obtain the solution of the
problem.

2 Radial basis functions

In this part, the RBFs schemes have been proposed for interpolation of
scattered data. Table 1 lists some well-known RBFs. Let r be the Euclidean
distance between x∗ ∈ Rd and any x ∈ Rd, i.e., ‖x− x∗‖2. A RBF on Rd is
a function of the form

φ∗ = φ(‖x− x∗‖2),

which depends only on the distance between x ∈ Rd and a fixed point x∗ ∈
Rd [13]. This property implies that the RBFs φ∗ are radially symmetric
about x∗. From Table 1, we see RBFs are infinitely differentiable, globally
supported and depend on a free parameter ε.

Let x1, x2, x3, . . . , xN ∈ Ω ⊂ Rd be a set of scattered data. The idea
behind the use of RBFs is interpolation with a linear combination of RBFs
of the same types as:

G(x) =

N∑
i=1

λiφi(x),

where φi = φ(‖x− xi‖) and λi are unknown scalars for i = 1, 2, . . . , N. As-
sume that we want to interpolate the given values gi = g(xi), i = 1, 2, . . . , N.
The unknown scalars λi are chosen, so that G(xj) = gj , j = 1, 2, . . . , N
which results in the following linear system of equations:

Aλ = g,

where for i, j ∈ {1, 2, 3, . . . , N}, Aij = φi(xj), λ = [λ1, λ2, . . . , λN ] and
g = [g1, g2, . . . , gN ]. Authors of [19,25] demonstrated that the interpolation
matrix is invertible for distinct interpolation points. The optimal choice
of shape parameter is an open question and it is usually elected by brute
force.

Assume that

xi, i = 1, . . . , 2k−1M(m̂ = 2k−1M);

tj , j = 1, . . . , 2k
′−1M ′(m̃ = 2k

′−1M ′),

are the zeros of Legendre wavelets [40]. Therefore we have wavelet- radial
basis functions (W-RBFs). Also, we let

Ψ(x, t) = [ψ1,1(x, t), . . . , ψ1,2k′−1M ′(x, t), ψ2,1(x, t), . . . , ψ2,2k′−1M ′(x, t),

. . . , ψ2k−1M,1(x, t), . . . , ψ2k−1M,2k′−1M ′(x, t)]
T , (1)
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Table 1: Some well-known functions that generate RBFs.

Name of RBF Definition

Multiquadric (MQ) φ(r) =
√
ε2 + r2

Inverse quadratic (IQ) φ(r) = 1
(ε2+r2)

Inverse multiquadric (IMQ) φ(r) = 1√
ε2+r2

Gaussian (GA) φ(r) = e−ε
2r2

Thin plate splines (TPS) φ(r) = r2 log r

where
ψi,j(x, t) = e−ε

2((x−xi)2+(t−tj)2),

for i = 1, 2, . . . , 2k−1M ; j = 1, 2, . . . , 2k
′−1M ′.

3 Riemann-Liouville fractional integral operator
for W-RBFs

The Riemann-Liouville fractional integral operator R
0 Iαx for Ψ(x, t) in Eq.

(1) is given by
R
0 IαxΨ(x, t) = R(α, x, t), (2)

where

R(α, x, t) = [R0 Iαxψ1,1(x, t), . . . ,R0 Iαxψ1,2k′−1M ′(x, t),
R
0 Iαxψ2,1(x, t), . . . ,

R
0 Iαxψ2,2k′−1M ′(x, t), . . . ,

R
0 Iαxψ2k−1M,1(x, t),

. . . ,R0 Iαxψ2k−1M,2k′−1M ′(x, t)]
T . (3)

To obtain R
0 Iαxψi,j(x, t), we use the definition of Riemann-Liouville frac-

tional integral [29]. So, we obtain

R
0 Iαxψi,j(x, t) =

1

Γ(α)

∫ x

0
(x− s)α−1ψi,j(s, t)ds. (4)

In above relation, we transfer the interval [0, x] into [−1, 1] as

R
0 Iαxψi,j(x, t) =

1

Γ(α)

∫ 1

−1
(x− x

2
− x

2
τ)α−1ψi,j(

x

2
+
x

2
τ, t)

x

2
dτ

=
x

2Γ(α)

∫ 1

−1
(
x

2
− x

2
τ)α−1ψi,j(

x

2
+
x

2
τ, t)dτ. (5)
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Now, we use the Gauss-Legendre numerical integration [33] to approximate
the integral in Eq. (5) as

R
0 Iαxψi,j(x, t) '

x

2Γ(α)

n̂∑
s=1

ωs(
x

2
− x

2
τs)

α−1e−ε
2((x

2
+x

2
τs−xi)2+(t−tj)2)

=

(
x

2Γ(α)

n̂∑
s=1

ωs(
x

2
− x

2
τs)

α−1e−ε
2(x

2
+x

2
τs−xi)2

)
e−ε

2(t−tj)2 ,

(6)

where τs and ωs are nods and weights of Gauss-Legendre given in [33].
Similarly, the integral with respect to t of vectors Ψ(x, t) in (1) may be

given as:
R
0 Iαt Ψ(x, t) = R′(α, x, t), (7)

where

R
0 Iαt ψi,j(x, t) ' e−ε

2(x−xi)2
(

t

2Γ(α)

n̂∑
s=1

ωs(
t

2
− t

2
τs)

α−1e−ε
2( t

2
+ t

2
τs−tj)2

)
.

(8)
Also, we let

R
0 Iα1

x
R
0 I

α2
t Ψ(x, t) = R′′(α1, α2, x, t). (9)

By using Eqs. (6) and (8), we get

R
0 Iα1

x
R
0 I

α2
t ψi,j(x, t) ' R

0 Iα1
x

(
e−ε

2(x−xi)2
(

t

2Γ(α2)

n̂∑
s=1

ωs(
t

2
− t

2
τs)

α2−1

e−ε
2( t

2
+ t

2
τs−tj)2

))
=

(
x

2Γ(α1)

n̂∑
s=1

ωs

(
x

2
− x

2
τs)

α1−1e−ε
2(x

2
+x

2
τs−xi)2

)(
t

2Γ(α2)

n̂′∑
s′=1

ωs′

(
t

2
− t

2
τs′)

α2−1e−ε
2( t

2
+ t

2
τs′−tj)2

)
. (10)

4 Description of the scheme

This part is devoted to the study of time-space FPDEs as:

∂αζ(x, t)

∂xα
= F(x, t, ζ(x, t),

∂βζ(x, t)

∂xβ
,
∂νζ(x, t)

∂tν
), 0 < β, ν ≤ 1, 1 < α ≤ 2,

(11)
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with the initial and boundary conditions as

ζ(x, 0) = f0(x), 0 ≤ x ≤ `, (12)

ζ(0, t) = g0(t), ζ(`, t) = g1(t), 0 ≤ t ≤ ˆ̀, (13)

where the function F is continuously differentiable with respect to all its
arguments, f0 and gi are given functions in L2[0, `] and L2[0, ˆ̀], respectively.
For solving this problem, we expand

∂α+νζ(x, t)

∂xα∂tν
' CTΨ(x, t), (14)

where C is an unknown vector. By fractional integration of order ν of Eq.
(14) with respect to t, we get

∂αζ(x, t)

∂xα
' ∂αζ̃(x, t)

∂xα
= CTR′(ν, x, t) +

∂αζ(x, t)

∂xα

∣∣∣∣
t=0

= CTR′(ν, x, t) +
∂αf0(x)

∂xα
. (15)

By fractional integration of order α of Eq. (14) with respect to x, achieves

∂νζ(x, t)

∂tν
' CTR(α, x, t) +

∂νζ(x, t)

∂tν

∣∣∣∣
x=0

+ x
∂

∂x
(
∂νζ(x, t)

∂tν
)

∣∣∣∣
x=0

. (16)

Putting x = ` in Eq. (16) and considering Eq. (13), we have

∂

∂x
(
∂νζ(x, t)

∂tν
)

∣∣∣∣
x=0

=
1

`
(
∂νg1(t)

∂tν
− CTR(α, `, t)− ∂νg0(t)

∂tν
). (17)

By using Eq. (17), we can rewrite Eq. (16) as

∂νζ(x, t)

∂tν
' ∂ν ζ̃(x, t)

∂tν
= CTR(α, x, t)− x

`
CTR(α, `, t)

+(1− x

`
)
∂νg0(t)

∂tν
+
x

`

∂νg1(t)

∂tν
. (18)

By fractional integration of order α of Eq. (15) with respect to x and
considering Eq. (13), we get

ζ(x, t) ' CTR′′(α, ν, x, t) + f0(x)− f0(0)− xf ′0(0) + g0(t) + x
∂ζ(x, t)

∂x

∣∣∣∣
x=0

.

(19)
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Putting x = ` in Eq. (19) and considering the initial and boundary condi-
tions, we have

∂u(x, t)

∂x

∣∣∣∣
x=0

=
1

`
(g1(t)− CTR′′(α, ν, `, t)− f0(`) + f0(0) + `f ′0(0)− g0(t)).

(20)
Now, we can rewrite Eq. (19) as

ζ(x, t) ' ζ̃(x, t) = CTR′′(α, ν, x, t)− x

`
CTR′′(α, ν, `, t) +H(x, t), (21)

where

H(x, t) = g0(t) + f0(x)− f0(0)− xf ′0(0) +
x

`
(g1(t)− g0(t))

+
x

`
(−f0(`) + f0(0) + `f ′0(0)).

By fractional differentiation of order β with respect to x from Eq. (21), we
obtain

∂βζ(x, t)

∂xβ
' ∂β ζ̃(x, t)

∂xβ
= CTR′′(α− β, ν, x, t)

− x1−β

Γ(2− β)
CTR′′(α, ν, `, t) +

∂βH(x, t)

∂xβ
. (22)

Substituting Eqs. (15), (18), (21) and (22) in Eq. (11) and collocating this
equation at the m̂ and m̃ zeros of the shifted Legendre polynomials Pm̂(x)
and Pm̃(t), respectively, arrives at

∂αζ̃(xi, tj)

∂xα
−F(xi, tj , ζ̃(xi, tj),

∂β ζ̃(xi, tj)

∂xβ
,
∂ν ζ̃(xi, tj)

∂tν
) = 0,

i = 1, 2, . . . , m̂, j = 1, 2, . . . , m̃. (23)

Eq. (23) gives m̂×m̃ equations, which can be solved for ci,j , i = 1, 2, . . . , m̂,
j = 1, 2, . . . , m̃.

5 Error bound

In this section, we estimate the bound of the applied equation for the
proposed scheme method in the Sobolev space. The Sobolev norm in the
domain ∆ = (a, b)d in Rd with d = 2, 3 for µ ≥ 1 is defined as [4, 28]

‖ζ‖Hµ(∆) =

( µ∑
k=0

d∑
i=1

‖D(k)
i ζ‖2L2(∆)

) 1
2

, (24)
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where D
(k)
i ξ denotes the kth derivative of ζ respect to variable of ith. The

symbol |ζ|Hµ;M (∆) was defined by [4, 28]

|ζ|Hµ;M (∆) =

( µ∑
k=min(µ,M+1)

d∑
i=1

‖D(k)
i ζ‖2L2(∆)

) 1
2

.

For simplicity of work, we let ` = `′ = 1 and m̂ = m̃. Of course for `, `′ 6= 1
and m̂ 6= m̃ the procedure is similar.

Theorem 1. Consider ζ ∈ Hµ(∆) with µ ≥ 1 and ∆ = [0, 1] × [0, 1]. If
ζ̃ =

∑m̂
i=0

∑m̃
j=0 cijψi,j , is the best approximation of ζ then

‖ζ − ζ̃‖L2(∆) ≤ cm̂1−µ|ζ|Hµ;m̂(∆). (25)

Also, for 1 ≤ l ≤ µ,

‖ζ − ζ̃‖Hl(∆) ≤ cm̂%(l)−µ|ζ|Hµ;m̂(∆), (26)

where c depends on µ and

%(l) =

{
0, l = 0,
2l − 1

2 , l > 0.

Proof. Let PN = PN (∆) be the space of all algebraic polynomials of degree
up to N in each variable xi for i = 1, 2, . . . , d. If ζ ′ is the best approximation
of ζ upon PN , so for all ζ ∈ Hµ(∆), µ ≥ 1, we have [4]

‖ζ − ζ ′‖L2(∆) ≤ cN1−µ|ζ|Hµ;N (∆), (27)

and for 1 ≤ l ≤ µ,

‖ζ − ζ ′‖Hl(∆) ≤ cN%(l)−µ|ζ|Hµ;N (∆). (28)

Since the best approximation is unique [18] we have

‖ζ − ζ̃‖L2(∆) = ‖ζ − ζ ′‖L2(∆) ≤ cm̂1−µ|ζ|Hµ;m̂(∆),

and for 1 ≤ l ≤ µ,

‖ζ − ζ̃‖Hl(∆) = ‖ζ − ζ ′‖Hl(∆) ≤ cm̂%(l)−µ|ζ|Hµ;m̂(∆),

where

%(l) =

{
0, l = 0,
2l − 1

2 , l > 0.
,

which completes the proof.
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Theorem 2. Let ζ ∈ Hµ(∆) with µ ≥ 1 and n− 1 < q ≤ n, then

‖C0 Dq
xζ(x, t)− C

0 D
q
xζ̃(x, t)‖L2(∆) ≤

cm̂%(l)−µ

Γ(n− q + 1)
|ζ|Hµ;m̂(∆), (29)

where 1 ≤ l ≤ µ.

Proof. By using definition of fractional integral and [2]

‖f ∗ g‖p ≤ ‖f‖p‖g‖1,

for n− 1 < q ≤ n, we obtain

‖C0 Dq
xζ(x, t)− C

0 D
q
xζ̃(x, t)‖2L2(∆)

= ‖R0 In−qx (C0 D
n
xζ(x, t)− C

0 D
n
x ζ̃(x, t))‖2L2(∆)

= ‖ 1

x1+q−nΓ(n− q)
∗ (C0 D

n
xζ(x, t)− C

0 D
n
x ζ̃(x, t))‖2L2(∆)

≤
(

1

(n− q)Γ(n− q)

)2

‖C0 Dn
xζ(x, t)− C

0 D
n
x ζ̃(x, t)‖2L2(∆)

≤
(

1

Γ(n− q + 1)

)2

‖ζ(x, t)− ζ̃(x, t)‖2Hl(∆),

by using above equation and Eq. (26) we get Eq. (29).

Corollary 1. From Eq. (29) for ζ ∈ Hµ(∆) with µ ≥ 1 and 1 < α ≤
2, 0 < γ, β ≤ 1 we can write

‖C0 Dα
x ζ(x, t)− C

0 D
α
x ζ̃(x, t)‖L2(∆) ≤

cm̂%(l)−µ

Γ(3− α)
|ζ|Hµ;m̂(∆), (30)

‖C0 Dβ
xζ(x, t)− C

0 D
β
x ζ̃(x, t)‖L2(∆) ≤

cm̂%(l)−µ

Γ(2− β)
|ζ|Hµ;m̂(∆), (31)

‖C0 Dν
t ζ(x, t)− C

0 D
ν
t ζ̃(x, t)‖L2(∆) ≤

cm̂%(l)−µ

Γ(2− ν)
|ζ|Hµ;m̂(∆). (32)

Proof. It is a fast consequence of Theorem 2.

Theorem 3. Let ζ ∈ Hµ(∆) with µ ≥ 1 and F in Eq. (11) is a Lipschitzian
function, with the Lipschitz constant η. The error bound is given by

‖Em̂‖L2(∆) ≤
cm̂%(l)−µ

Γ(3− α)
|ζ|Hµ;m̂(∆) + ηcm̂1−µ|ζ|Hµ;m̂(∆)

+η
cm̂%(l)−µ

Γ(2− β)
|ζ|Hµ;m̂(∆) + η

cm̂%(l)−µ

Γ(2− ν)
|ζ|Hµ;m̂(∆), (33)
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where Em̂ = Rζ −Rζ̃ such that

Rζ = ∂αζ(x,t)
∂xα −F(x, t, ζ(x, t), ∂

βζ(x,t)
∂xβ

, ∂
νζ(x,t)
∂tν ),

and

Rζ̃ = ∂αζ̃(x,t)
∂xα −F(x, t, ζ̃(x, t), ∂

β ζ̃(x,t)
∂xβ

, ∂
ν ζ̃(x,t)
∂tν ).

Proof. By using Eqs. (11), (25) and (30)-(32), we get

‖Em̂‖L2(∆) = ‖∂
αζ(x, t)

∂xα
−F(x, t, ζ(x, t),

∂βζ(x, t)

∂xβ
,
∂νζ(x, t)

∂tν
)

−∂
αζ̃(x, t)

∂xα
+ F(x, t, ζ̃(x, t),

∂β ζ̃(x, t)

∂xβ
,
∂ν ζ̃(x, t)

∂tν
)‖L2(∆)

≤ ‖∂
αζ(x, t)

∂xα
− ∂αζ̃(x, t)

∂xα
‖L2(∆) + η‖ζ(x, t)− ζ̃(x, t)‖L2(∆)

+η‖∂
βζ(x, t)

∂xβ
− ∂β ζ̃(x, t)

∂xβ
‖L2(∆) (34)

+η‖∂
νζ(x, t)

∂tν
− ∂ν ζ̃(x, t)

∂tν
‖L2(∆)

≤ cm̂%(l)−µ

Γ(3− α)
|ξ|Hµ;m̂(∆) + ηcm̂1−µ|ξ|Hµ;m̂(∆)

+η
cm̂%(l)−µ

Γ(2− β)
|ξ|Hµ;m̂(∆) + η

cm̂%(l)−µ

Γ(2− ν)
|ξ|Hµ;m̂(∆). (35)

This complete the proof.

6 Numerical results

In this section, five examples are given to show the efficiency and reliabil-
ity of our method. The computations associated with the examples were
performed using Mathematica 10.

Problem 1. Consider the following time-fractional diffusion equation [14]

∂νζ(x, t)

∂tν
− ∂2ζ(x, t)

∂x2
= 2(

1

Γ(3− ν)
t2−ν − 1),

with the initial and boundary conditions as

ζ(x, 0) = x2, ζ(0, t) = t2, ζ(1, t) = 1 + t2.
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The exact solution for this problem is ζ(x, t) = x2 + t2. We solve this
problem by applying the presented scheme in Section 4. By using k = k′ =
2; M = M ′ = 1; 0 < ε ≤ 1; 0 < ν ≤ 1, we obtain the exact solution. We
compare the absolute error of the present scheme with biorthogonal flatlet
multiwavelets method [14] for k = k′ = 2; M = M ′ = 1; ν = 0.5; ε = 1 and
t = 0.25 in Table 2.

Table 2: Comparison of the absolute error for k = k′ = 2; ν = 0.5 , t = 0.25
with Ref. [14] for Problem 1.

x Ref. [14] Our method

J = 1,m = 2 J = 1,m = 3 J = 2,m = 2 M = M ′ = 1

0.2 3.3× 10−2 4.4× 10−3 8.8× 10−2 0
0.4 1.9× 10−2 5.1× 10−2 9.8× 10−2 0
0.6 1.6× 10−2 7.1× 10−2 3.4× 10−1 0
0.8 1.2× 10−1 2.8× 10−2 4.3× 10−1 0

CPU times − − − 0.564

Problem 2. Consider the following time-fractional equation [22]

∂νζ(x, t)

∂tν
+ x

∂ζ(x, t)

∂x
+
∂2ζ(x, t)

∂x2
= 2t+ 2x2 + 2,

with the initial and boundary conditions ζ(x, 0) = x2, and

ζ(0, t) = 3t2 − 6
t3−ν

Γ(4− ν)
+ 2

t4−2ν

Γ(5− 2ν)
,

ζ(1, t) = 1 + 3t2 − 6
t3−ν

Γ(4− ν)
+ 2

t4−2ν

Γ(5− 2ν)
.

The exact solution for this problem is

ζ(x, t) = x2 + 3t2 − 6 t3−ν

Γ(4−ν) + 2 t4−2ν

Γ(5−2ν) .

Table 3 displays the absolute error and CPU time (in seconds) of the pre-
sented scheme with different choices M,M ′ and ν = 1; k = k′ = 2; ε = 1.
Also, Figure 1 shows the graph of the absolute error and approximate so-
lution for k = k′ = 2; M = M ′ = 3 and ν = 0.5; ε = 1. We compare our
numerical results with usual RBF method for k = k′ = 2, M = M ′ = 3;
ε = 1 and ν = 0.7, 1 in Table 4.
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Table 3: Comparison of the absolute error for k = k′ = 2 and different
values of M,M ′, ν for Problem 2.

(x, t) M = M ′ = 1 M = M ′ = 2 M = M ′ = 3

(0.1, 0.1) 3.47× 10−18 0 0
(0.3, 0.3) 45.55× 10−17 0 0
(0.5, 0.5) 0 0 0
(0.7, 0.7) 0 1.11× 10−16 0
(0.9, 0.9) 2.22× 10−16 2.22× 10−16 0

CPU times 0.5 0.61 1.09

Table 4: Comparison of the absolute error for k = k′ = 2, M = M ′ = 3 for
Problem 2.

(x, t) Usual RBF method Our method
ν = 0.7 ν = 1 ν = 0.7 ν = 1

(0.1, 0.1) 2.05× 10−3 6.94× 10−18 0 0
(0.3, 0.3) 3.90× 10−3 2.78× 10−17 0 0
(0.5, 0.5) 1.66× 10−3 1.11× 10−16 0 0
(0.7, 0.7) 4.53× 10−3 1.11× 10−16 0 0
(0.9, 0.9) 6.69× 10−4 2.22× 10−16 2.22× 10−16 0

Figure 1: (a): absolute error and (b): approximate solutions of the pre-
sented method with k = k′ = 2; M = M ′ = 3 and ν = 0.5; ε = 1 for
Problem 2.

Problem 3. Consider the time-fractional Navier-Stokes equation [11,21]

∂νζ(x, t)

∂tν
= p+

∂2ζ(x, t)

∂x2
+

1

x

∂ζ(x, t)

∂x
,
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with the initial and boundary conditions

ζ(x, 0) = 1−x2, ζ(0, t) = 1+(p−4)
tν

Γ(1 + ν)
, ζ(1, t) = (p−4)

tν

Γ(1 + ν)
.

The exact solution for this problem is

ζ(x, t) = 1− x2 + (p− 4)
tν

Γ(1 + ν)
.

We solve this problem by using the presented scheme in Section 4. By
taking k = k′ = 2; M = M ′ = 2; 0 < ε ≤ 1; 0 < ν ≤ 1, we obtain the same
solution that obtained by the ADM [21] which is the exact solution. Figure
2 shows the absolute error and the numerical results for k = k′ = 2;M =
M ′ = 1 and ν = 1; ε = 1.

Figure 2: (a): absolute error and (b): approximate solutions of the present
method with k = k′ = 2; M = M ′ = 1 and ν = 1; ε = 1 for Problem 3.

Problem 4. Consider the fractional Burgers’ equation [9]

∂νζ(x, t)

∂tν
+ ζ(x, t)

∂ζ(x, t)

∂x
=
∂2ζ(x, t)

∂x2
,

with the initial and boundary conditions

ζ(x, 0) = 2x, ζ(0, t) = 0, ζ(1, t) =
2

1 + 2t
.

The exact solution for case ν = 1 is ζ(x, t) = 2x/(1 + 2t). We solve this
problem by applying the presented scheme in Section 4. By using k =
k′ = 2; M = M ′ = 1; ε = 1; ν = 1, we obtain the exact solution. Also,
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Figure 3 shows the absolute error and the numerical solutions by W-RBFs
for k = k′ = 2; M = M ′ = 2 and ν = 1; ε = 1.

The exact solutions for values of ν 6= 1 do not exist, therefore, we
measured the reliability by defining the residual error, that as following:

R(x, t) =

∣∣∣∣∂ν ζ̃(x,t)∂tν + ζ̃(x, t)∂ζ̃(x,t)∂x − ∂2ζ̃(x,t)
∂x2

∣∣∣∣,
where ζ̃(x, t) is the numerical solution of the problem. Table 5 displays
numerical values of at some selected points R(x, t) for k = k′ = 2; M =
M ′ = 2; ε = 1 with different values of ν.

Table 5: Numerical values of at some selected points R(x, t) for k = k′ = 2,
M = M ′ = 2 with different values of ν for Problem 4.

(x, t) ν = 0.7 ν = 0.8 ν = 0.9

(0.1, 0.1) 1.50× 10−2 1.55× 10−3 6.94× 10−4

(0.3, 0.3) 1.07× 10−2 1.63× 10−3 6.94× 10−4

(0.5, 0.5) 2.12× 10−3 8.54× 10−4 6.94× 10−4

(0.7, 0.7) 1.49× 10−2 2.79× 10−5 6.94× 10−4

(0.9, 0.9) 2.60× 10−2 7.09× 10−4 6.94× 10−4

Figure 3: (a): absolute error and (b): approximate solutions of the present
method with k = k′ = 2; M = M ′ = 2 and ν = 1; ε = 1 for Problem 4.

Problem 5. Consider the time-fractional Burgers equation with propor-
tional delay [32]

∂νζ(x, t)

∂tν
=
∂2ζ(x, t)

∂x2
+ ζ(

x

2
,
t

2
)
∂ζ(x, t2)

∂x
+

1

2
ζ(x, t),
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with the initial and boundary conditions

ζ(x, 0) = x, ζ(0, t) = 0, ζ(1, t) = et.

The exact solution for case ν = 1 is ζ(x, t) = xet. To demonstrate the
accuracy of the presented scheme, in Table 6, we compare the absolute
errors with the numerical method proposed in [32] and our results with
k = k′ = 2; M = M ′ = 1 and ε = 1, ν = 1. The solution behavior of
ζ(x, t) at x = 1 for various choices of ν = 0.8, 0.9, 1 is depicted in Figure
4. The graph of surface solution for k = k′ = 2; M = M ′ = 1; ε = 1
and ν = 0.8, 0.9, 1 is shown in Figure 5. These figures and table show the
efficiency and accuracy of the W-RBFs method for solving FPDEs.

The exact solutions for values of ν 6= 1 do not exist, therefore, we
measured the reliability by defining the residual error, that as following:

R(x, t) =

∣∣∣∣∂ν ζ̃(x,t)∂tν − ∂2ζ̃(x,t)
∂x2

− ζ̃(x2 ,
t
2)
∂ζ̃(x, t

2
)

∂x − 1
2 ζ̃(x, t)

∣∣∣∣,
where ζ̃(x, t) is the numerical solution of the problem. Table 7 displays
numerical values of at some selected points R(x, t) for k = k′ = 2; M =
M ′ = 5; ε = 1 with different values of ν.

Table 6: Comparison of absolute error for k = k′ = 2; M = M ′ = 1 and
ε = 1, ν = 1 with Ref. [32] for Problem 5.

x t Ref. [32] Presented method

0.25 0.25 2.12× 10−6 0
0.50 7.09× 10−5 0
0.75 5.63× 10−4 0

0.50 0.25 4.24× 10−6 0
0.50 1.42× 10−4 0
0.75 1.13× 10−3 0

0.75 0.25 6.37× 10−6 0
0.50 2.13× 10−4 0
0.75 1.69× 10−3 0

7 Conclusion

In this article, an efficient numerical scheme based on the W-RBFs together
with their FIO was proposed to obtain numerical solutions of FPDEs. Also,
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Table 7: Numerical values of at some selected points R(x, t) for M = M ′ =
1, k = k′ = 2 with various values of ν for Problem 5.

(x, t) ν = 0.8 ν = 0.9 ν = 0.99

(0.1, 0.1) 1.58× 10−3 8.89× 10−4 9.69× 10−5

(0.3, 0.3) 2.17× 10−3 1.23× 10−3 1.35× 10−4

(0.5, 0.5) 5.85× 10−3 3.39× 10−3 3.76× 10−4

(0.7, 0.7) 3.09× 10−3 1.95× 10−3 2.26× 10−4

(0.9, 0.9) 5.19× 10−3 3.13× 10−3 3.59× 10−4

Figure 4: Approximate solution of the present method with k = k′ = 2;
M = M ′ = 1 and different values of ν for Problem 5.

Figure 5: Approximate solution of the present method with k = k′ = 2;
M = M ′ = 1 and (a): ν = 0.8, (b): ν = 0.9, (c): ν = 1 for Problem 5.

a new FIO in the Riemann-Liouville sense for W-RBFs was derived. The
W-RBF and their FIO were applied to convert the problem under consid-
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eration into the corresponding system of algebraic equations, for achieving
the solution of the problem. Our scheme is very convenient for solving the
problem under study, since the initial and boundary conditions are taken
into account automatically and only a small number of W-RBFs are needed
to obtain a satisfactory result. Accuracy and priority of the scheme were
checked on some examples. The obtained results of our scheme were in a
good agreement with the exact solutions.
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