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Abstract. In this paper, we consider a singular differential equation in-
volving Hilfer-Katugampola fractional derivative with the weighted initial
condition. The Picard iterative technique has been successfully applied to
obtain the existence of a unique solution. First, we derive an equivalent
integral equation, then construct the successive approximations and use the
ratio test to discuss its convergence. We demonstrate our results through
a suitable illustrative example.
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1 Introduction

In the last few decades, the wings of fractional calculus (FC) have been
opened as an emerging trend of applied mathematics research with deep
applications in almost all branches of science and engineering. At this
stage, it covers the complex problems of the real world in physics, chemical
processes and materials, signal and image processing, dynamical systems
and engineering. Many researchers devoted to theory and applications of
FC [13, 19, 21] and reported through survey articles [1, 2], research papers
[4–9,11,14,17,22,25] and books [20,23,24] to name few.
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During the theoretical development of FC, plenty of fractional differen-
tial and corresponding integral operators had come into existence and used
by many researchers in their works. The Riemann-Liouville, Hadamard,
Caputo, Hilfer, Katugampola are the frontiers and their theory become
more popular. The investigation of qualitative properties of fractional dif-
ferential equations (FDEs) is always at the centre of development of FC.
The existence of the unique solution of various FDEs involving aforesaid
operators can be found in [1, 3, 6, 7, 9–11,14,17,25].

In 2014, Yang and Liu [25] studied the existence and uniqueness of
singular initial value problems (IVP) involving Riemann-Liouville and Ca-
puto fractional derivatives using Picard iterative processes. Then authors,
in [8,10], discussed the criteria for local existence and uniqueness of solution
to initial value problem involving Hilfer and Hilfer-Hadamard derivative,
respectively, where the equivalence between IVP and the Volterra integral
equation was proved in convenient weighted spaces.

Recently, in [22], Oliveira et. al proposed generalization of Hilfer and
Hilfer-Hadamard fractional derivatives, popularly called Hilfer-Katugampola
derivative. We observe that the existence and uniqueness of solution for
IVP involving Hilfer-Katugampola derivative were discussed, but iterative
scheme for approximating solutions was not reported in the literature.

Motivated by the works cited above, we consider the following weighted
Cauchy-type problem

(
ρDα,β

a+ x
)
(t) = f(t, x), t ∈ Ω, ρ > 0, 0 < α < 1, 0 ≤ β ≤ 1,

lim
t→a+

( tρ − aρ
ρ

)1−γ
x(t) = xa, xa ∈ E ⊂ R, γ = α+ β(1− α),

(1)

where f : Ω×R→ R is the given function, ρDα,β
a+ is the Hilfer-Katugampola

fractional derivative of order α and type β with Ω = [a, b], 0 < a < b ≤ +∞.
The nonlinear function f may be singular at t = a satisfies assumptions
given in Section 2 and initial condition of problem under consideration
is more suitable in engineering applications. We prove the existence and
uniqueness of a solution to Cauchy-type problem (1) using its equivalent
integral representation, properties of beta function and the ratio test (as
a convergence criterion). Further, we construct the computable iterative
scheme to approximate the solution. To our knowledge, solution obtained
for the proposed problem has not been reported in the literature.

In the next section, we list all the definitions and lemmas useful in sub-
sequent sections. In Section 3, we obtain the equivalent integral equation
and the existence of a unique solution by using Picard iterative technique.
We then give an illustrative example in Section 4 to support our findings.
Concluding remarks are given in the last section.
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2 Preliminaries

In this section, we enlist the following definitions and properties from basic
fractional calculus [19,22].

As usual C denotes the Banach space of all continuous functions x :
Ω→ E, with the superemum (uniform) norm

‖x‖∞ = sup
t∈Ω
‖x(t)‖E

and AC(Ω) be the space of absolutely continuous functions from Ω into E.
Denote AC1(Ω)− the space defined by

AC1(Ω) =

{
x : Ω→ E| d

dt
x(t) ∈ AC(Ω)

}
.

Throughout the paper, let δnρ = (tρ−1 d
dt)

n
, n = [α] + 1, and mention [α] as

integer part of α. Define the space

ACnδρ =
{
x : Ω→ E|δn−1

ρ x(t) ∈ AC(Ω)
}
, n ∈ N.

Note that C0,ρ(Ω) = C(Ω) is the space of continuous functions.
Here Lp(a, b), p ≥ 1, is the space of Lebesgue integrable functions on

(a, b). Let the Euler’s gamma and beta functions are defined respectively,
by

Γ(x) =

∫ +∞

0
sx−1e−sds, B(x, y) =

∫ 1

0
(1− s)x−1sy−1ds, x > 0, y > 0.

It is well known that B(x, y) = Γ(x)Γ(y)
Γ(x+y) , for x > 0, y > 0.

Definition 1. [15] Let α ∈ R+, c ∈ R and g ∈ Xp
c (a, b), where R+ = [0,∞)

and Xp
c (a, b) is the space of Lebesgue measurable functions. The left-sided

Katugampola fractional integral of order α is defined by

(ρIαa+g)(t) =

∫ t

a
sρ−1

(
tρ − sρ

ρ

)α−1 g(s)

Γ(α)
ds, t > a, ρ > 0,

where Γ(·) is a Euler’s gamma function.

Definition 2. [16] Let α ∈ R+ \N and ρ > 0. The left-sided Katugampola
fractional derivative ρDα

a+ of order α is defined by

(ρDα
a+g)(t) = δnρ (ρIn−αa+ g)(t)

=

(
tρ−1 d

dt

)n ∫ t

a
sρ−1

(
tρ − sρ

ρ

)n−α−1 g(s)

Γ(n− α)
ds.
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Definition 3. [22] The Hilfer-Katugampola fractional derivative of order
α ∈ (0, 1) and type β ∈ [0, 1] with respect to t is defined by

(ρDα,β
a+ g)(t) = (ρI

β(1−α)
a+ δρ

ρI
(1−β)(1−α)
a+ g)(t), ρ > 0, (2)

for the function for which right hand side expression exists.

Remark 1. The left-sided Hilfer-Katugampola operator ρDα,β
a+ can be writ-

ten as

ρDα,β
a+ = ρI

β(1−α)
a+ δρ

ρI1−γ
a+ = ρI

β(1−α)
a+

ρDγ
a+, γ = α+ β − αβ.

Remark 2. [22] The fractional derivative ρDα,β
a+ is an interpolator of

the following fractional derivatives: Hilfer (ρ → 1) [13], Hilfer-Hadamard
(ρ→ 0+) [14], Katugampola (β = 0) [16], Caputo-Katugampola (β = 1) [3],
Riemann-Liouville (β = 0, ρ → 1) [19], Hadamard (β = 0, ρ → 0+) [18],
Caputo (β = 1, ρ → 1) [19], Caputo-Hadamard (β = 1, ρ → 0+) [12],
Liouville (β = 0, ρ→ 1, a = 0) and Weyl (β = 0, ρ→ 1, a = −∞) [19].

Lemma 1. [15] If α, β > 0, 1 ≤ p ≤ ∞, 0 < a < b < ∞ and ρ, c ∈ R for
ρ ≥ c. Then, for g ∈ Xp

c (a, b) the following relation hold:

(ρIαa+
ρIβa+g)(t) = (ρIα+β

a+ g)(t).

Lemma 2. [22] Let t > a, ρIαa+ and ρDα
a+ are as in Definition 1 and

Definition 2, respectively. Then the following hold:

(i)

(
ρIαa+

(sρ − aρ
ρ

)σ)
(t) =

Γ(σ + 1)

Γ(σ + α+ 1)

( tρ − aρ
ρ

)σ+α

, α ≥ 0, σ > 0,

(ii) for σ = 0,

(
ρIαa+

(sρ − aρ
ρ

)σ)
(t) =

(
ρIαa+1

)
(t) =

(
tρ−aρ
ρ

)α
Γ(α+ 1)

, α ≥ 0,

(iii) for 0 < α < 1,

(
ρDα

a+

(sρ − aρ
ρ

)α−1)
(t) = 0.

The following lemma has great importance in the proof of our further
main results.

Lemma 3. [23] Suppose that x > 0. Then

Γ(x) = lim
m→+∞

mxm!

x(x+ 1)(x+ 2) · · · (x+m)
.
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We denote D = [a, a + h], E = {x : |x
(
tρ−aρ
ρ

)1−γ − xa| ≤ b}, Dh =
(a, a + h] for h > 0, b > 0 and t ∈ Dh. Here we choose I = (a, a + l] and
J = [a, a+ l] such that

l = min

{
h,
(
b
M

Γ(α)
B(α,k+1)

) 1
µ+k

}
, µ = 1− β(1− α).

A function x(t) is said to be a solution of the Cauchy-type problem (1), if

there exists l > 0 such that x ∈ C0(a, a+l] satisfies FDE ρDα,β
a+ x(t) = f(t, x)

almost everywhere on I along with the initial value

lim
t→a+

( tρ − aρ
ρ

)1−γ
x(t) = xa.

To prove the existence of solution of the Cauchy-type problem (1), let
us make the following hypotheses:

(H1) (t, x)→ f(t, ( t
ρ−aρ
ρ )

γ−1
x(t)) is defined on Dh × E satisfies:

(i) x→ f(t, ( t
ρ−aρ
ρ )

γ−1
x(t)) is continuous on E for all t ∈ Dh,

t→ f(t, ( t
ρ−aρ
ρ )

γ−1
x(t)) is measurable on Dh for all x ∈ E;

(ii) for all t ∈ Dh and x ∈ E, there exist k > (β(1 − α) − 1) and

M ≥ 0 such that |f(t, ( t
ρ−aρ
ρ )

γ−1
x(t))| ≤M( t

ρ−aρ
ρ )

k
holds.

(H2) for all t ∈ I and x1, x2 ∈ E, there exists A > 0 such that

|f(t, ( t
ρ−aρ
ρ )

γ−1
x1(t))− f(t, ( t

ρ−aρ
ρ )

γ−1
x2(t))| ≤ A( t

ρ−aρ
ρ )

k|x1 − x2|.

Remark 3. In hypothesis (H1), if ( t
ρ−aρ
ρ )

−k
f(t, ( t

ρ−aρ
ρ )

γ−1
x(t)) is contin-

uous on D × E, one may choose M = max
t∈D

( t
ρ−aρ
ρ )

−k
f(t, ( t

ρ−aρ
ρ )

γ−1
x(t))

continuous on Dh × E for all x ∈ E.

3 Main results

Here, we state and prove the existence and uniqueness of solution to the
Cauchy-type problem (1). We develop the iteration scheme to approximate
the solution and discuss its convergence.

Lemma 4. Suppose that (H1) holds. Then x : J → R is a solution of
the Cauchy-type problem (1) if and only if x : I → R is a solution of the
integral equation

x(t) = xa

(
tρ − aρ

ρ

)γ−1

+

∫ t

a
sρ−1

(
tρ − sρ

ρ

)α−1 f(s, x(s))

Γ(α)
ds. (3)
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Proof. Suppose that x : I → R is a solution of the Cauchy-type problem

(1). Then |
(
tρ−aρ
ρ

)1−γ
x(t) − xa| ≤ b for all t ∈ I. From assumption (H1),

for all t ∈ I, there exist k > (β(1− α)− 1) and M ≥ 0 such that

|f(t, x(t))| =
∣∣f(t, ( tρ − aρ

ρ

)γ−1( tρ − aρ
ρ

)1−γ
x(t)

)∣∣ ≤M( tρ − aρ
ρ

)k
.

Then we have,∣∣∣∣ ∫ t

a
sρ−1

( tρ − sρ
ρ

)α−1 f(s, x(s))

Γ(α)
ds

∣∣∣∣ ≤ ∫ t

a
sρ−1

(
tρ − sρ

ρ

)α−1

M

(
sρ−aρ
ρ

)k
Γ(α)

ds

= M

(
tρ − aρ

ρ

)α+kB(α, k + 1)

Γ(α)
.

Clearly,

lim
t→a+

(
tρ − aρ

ρ

)1−γ ∫ t

a
sρ−1

(
tρ − sρ

ρ

)α−1 f(s, x(s))

Γ(α)
ds = 0.

It follows that

x(t) = xa

(
tρ − aρ

ρ

)γ−1

+

∫ t

a
sρ−1

(
tρ − sρ

ρ

)α−1 f(s, x(s))

Γ(α)
ds, t ∈ I.

Since k > (β(1− α)− 1), then x ∈ C0(I) is a solution of integral equation
(3).

On the other hand, we can see that x : I → R is a solution of the
integral equation (3) implies that x is solution of the Cauchy-type problem
(1) defined on J. The proof is complete.

To prove existence and uniqueness of solution of the Cauchy-type prob-
lem (1), we choose a Picard function sequence as follows:

φ0(t) = xa

(
tρ − aρ

ρ

)γ−1

, t ∈ I,

φn(t) = φ0(t) +

∫ t

a
sρ−1

(
tρ − sρ

ρ

)α−1 f(s, φn−1(s))

Γ(α)
ds, n = 1, 2, . . . .

(4)
We state the following existence-uniqueness theorem.

Theorem 1. Suppose that (H1)-(H2) hold. Then the Cauchy-type problem

(1) has a unique continuous solution, φ(t) = ( t
ρ−aρ
ρ )

γ−1
lim
n→∞

( t
ρ−aρ
ρ )

1−γ
φn(t)

defined on I, with φ0(t) and φn(t) given by (4).
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Lemma 5. Suppose (H1) holds. Then φn is continuous on I and satisfies∣∣( tρ−aρ
ρ

)1−γ
φn(t)− xa

∣∣ ≤ b.
Proof. By assumption (H1), for all t ∈ Dh and |x

(
tρ−aρ
ρ

)1−γ − xa| ≤ b, we
have ∣∣∣∣f(t,( tρ − aρρ

)γ−1

x

)∣∣∣∣ ≤M( tρ − aρρ

)k
.

For n = 1, we have

φ1(t) = xa

(
tρ − aρ

ρ

)γ−1

+

∫ t

a
sρ−1

(
tρ − sρ

ρ

)α−1 f(s, φ0(s))

Γ(α)
ds. (5)

Then∣∣∣∣ ∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1
f(s, φ0(s))

Γ(α)
ds

∣∣∣∣ ≤ ∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1

M

(
sρ−aρ
ρ

)k
Γ(α)

ds

= M

(
tρ − aρ

ρ

)α+kB(α, k + 1)

Γ(α)
.

Clearly, φ1 ∈ C0(I) and from equation (5), we have∣∣∣∣( tρ − aρρ

)1−γ
φ1(t)− xa

∣∣∣∣ ≤ ( tρ − aρρ

)1−γ
M

(
tρ − aρ

ρ

)α+kB(α, k + 1)

Γ(α)

≤Mlα+k+1−γB(α, k + 1)

Γ(α)
. (6)

By induction hypothesis, for n = m and for all t ∈ J, suppose that φm ∈
C0(J) and |( tρ−aρρ )

1−γ
φm(t)− xa| ≤ b. We obtain

φm+1(t) = xa

(
tρ − aρ

ρ

)γ−1

+

∫ t

a
sρ−1

(
tρ − sρ

ρ

)α−1 f(s, φm(s))

Γ(α)
ds. (7)

From above discussion, we obtain φm+1(t) ∈ C0(I) and by equation (7),∣∣∣∣( tρ−aρ
ρ

)1−γ
φm+1(t)− xa

∣∣∣∣
≤
(
tρ − aρ

ρ

)1−γ ∫ t

a
sρ−1

(
tρ − sρ

ρ

)α−1

M

(
sρ−aρ
ρ

)
Γ(α)

ds

= M

(
tρ − aρ

ρ

)α+k+1−γB(α, k + 1)

Γ(α)

≤Mlα+k+1−γB(α, k + 1)

Γ(α)
≤ b.

Thus, the result holds for n = m + 1. As an application of principle of
mathematical induction, it is true for all n. Hence the proof is complete.
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Theorem 2. Suppose (H1)-(H2) hold. Then the sequence {( tρ−aρρ )
1−γ

φn(t)}
is uniformly convergent on J.

Proof. For t ∈ J, consider the series(
tρ − aρ

ρ

)1−γ
φ0(t) +

(
tρ − aρ

ρ

)1−γ
[φ1(t)− φ0(t)] + · · ·

+

(
tρ − aρ

ρ

)1−γ
[φn(t)− φn−1(t)] + · · · . (8)

Using relation (6) in the proof of Lemma 5,(
tρ − aρ

ρ

)1−γ
|φ1(t)− φ0(t)| ≤M

(
tρ − aρ

ρ

)α+k+1−γB(α, k + 1)

Γ(α)
, t ∈ J.

From Lemma 5, we have(
tρ − aρ

ρ

)1−γ
|φ2(t)− φ1(t)| =AM B(α, α+ 2k + 2− γ)

Γ(α)

× B(α, k + 1)

Γ(α)

(
tρ − aρ

ρ

)2(α+k+1−γ)

.

Now suppose for n = m(
tρ − aρ

ρ

)1−γ
|φm+1(t)− φm(t)| ≤ AmM

(
tρ − aρ

ρ

)(m+1)(α+k+1−γ)

× Pm,

where

Pm =
m∏
i=0

B(α, (i+ 1)k + i(α+ 1− γ) + 1)

Γ(α)
. (9)

We have(
tρ − aρ

ρ

)1−γ∣∣∣∣φm+2(t)− φm+1(t)

∣∣∣∣
≤
(
tρ − aρ

ρ

)1−γ ∫ t

a
sρ−1

(
tρ − sρ

ρ

)α−1 |f(s, φm+1(s))− f(s, φm(s))|
Γ(α)

ds

≤
( t
ρ−aρ
ρ )

1−γ

Γ(α)

∫ t

a
sρ−1

(
tρ − sρ

ρ

)α−1

A

(
sρ − aρ

ρ

)k
×
[(

sρ − aρ

ρ

)1−γ
|φm+1(s)− φm(s)|

]
ds,
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which gives(
tρ − aρ

ρ

)1−γ∣∣∣∣φm+2 − φm+1

∣∣∣∣ ≤ Am+1M

(
tρ − aρ

ρ

)(m+2)(α+k+1−γ)

Pm+1.

This means the result is true for n = m+1. By the principal of mathematical
induction, result is true for all n.(

tρ − aρ

ρ

)1−γ
|φn+2(t)− φn+1(t)| ≤ An+1Ml(n+2)(α+k+1−γ)Pn+1. (10)

Now to prove convergence, we consider

∞∑
n=1

un =
∞∑
n=1

MAn+1l(n+2)(α+k+1−γ)
n+1∏
i=0

B(α, (i+ 1)k + i(α+ 1− γ) + 1)

Γ(α)
.

We obtain

un+1

un
=
MAn+2l(n+3)(α+k+1−γ)

∏n+2
i=0

B(α,(i+1)k+i(α+1−γ)+1)
Γ(α)

MAn+1l(n+2)(α+k+1−γ)
∏n+1
i=0

B(α,(i+1)k+i(α+1−γ)+1)
Γ(α)

= Alα+k+1−γ Γ((n+ 3)k + (n+ 2)(α+ 1− γ) + 1)

Γ((n+ 3)(k + α) + (n+ 2)(1− γ) + 1)
.

By using Lemma 3, notation Θ for α+ k + 1− γ, we obtain

un+1

un
= AlΘ

lim
m→∞

m(n+3)k+(n+2)(α+1−γ)+1m!
((n+3)k+(n+2)(α+1−γ)+1)···((n+3)k+(n+2)(α+1−γ)+m+1)

lim
m→∞

m(n+3)(k+α)+(n+2)(1−γ)+1m!
((n+3)(k+α)+(n+2)(1−γ)+1)···((n+3)(k+α)+(n+2)(1−γ)+m+1)

= AlΘ
[

lim
m→∞

m−α ((n+3)(k+α)+(n+2)(1−γ)+1)···((n+3)(k+α)+(n+2)(1−γ)+m+1)
((n+3)k+(n+2)(α+1−γ)+1)···((n+3)k+(n+2)(α+1−γ)+m+1)

]
.

We observe that ((n+3)(k+α)+(n+2)(1−γ)+1)···((n+3)(k+α)+(n+2)(1−γ)+m+1)
((n+3)k+(n+2)(α+1−γ)+1)···((n+3)k+(n+2)(α+1−γ)+m+1) is

bounded for all m,n. Then
un+1

un
→ 0 as n→∞. Thus, the series

∞∑
n=1

un is

convergent. Hence the series (8) is uniformly convergent for t ∈ J. Therefore

the sequence {( tρ−aρρ )
1−γ

φn(t)} is uniformly convergent on J.

Theorem 3. Suppose that (H1) and (H2) are satisfied. Then

φ(t) = (
tρ − aρ

ρ
)
γ−1

lim
n→∞

(
tρ − aρ

ρ
)
1−γ

φn(t)

is unique continuous solution of the integral equation (3) defined on J.
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Proof. Since φ(t) = ( t
ρ−aρ
ρ )

γ−1
lim
n→∞

( t
ρ−aρ
ρ )

1−γ
φn(t) on J, and by Lemma 5,

we can get ( t
ρ−aρ
ρ )

1−γ |φ(t)− x0| ≤ b. Then

|f(t, φn(t))− f(t, φ(t))| ≤ A
(
tρ − aρ

ρ

)k
|φn(t)− φ(t)|, t ∈ I,

which gives(
tρ − aρ

ρ

)−k
|f(t, φn(t))− f(t, φ(t))| ≤ A|φn(t)− φ(t)| → 0,

uniformly as n→ +∞ on I. Therefore(
tρ − aρ

ρ

)1−γ
φ(t) = lim

n→∞
φn(t)

= x0 +
( t
ρ−aρ
ρ )

1−γ

Γ(α)
lim
n→∞

∫ t

a
sρ−1

(
tρ − sρ

ρ

)α−1(sρ − aρ
ρ

)k
×
((

sρ − aρ

ρ

)−k
f(s, φn−1(s))

)
ds

= x0 +
( t
ρ−aρ
ρ )

1−γ

Γ(α)

∫ t

a
sρ−1

(
tρ − sρ

ρ

)α−1(sρ − aρ
ρ

)k
× lim
n→∞

((
sρ − aρ

ρ

)−k
f(s, φn−1(s))

)
ds

= x0 +
( t
ρ−aρ
ρ )

1−γ

Γ(α)

∫ t

a
sρ−1

(
tρ − sρ

ρ

)α−1

f(s, φ(s))ds.

Then φ is a continuous solution of integral equation (3) defined on J.
To prove uniqueness of solution, if possible, suppose that ψ(t) defined

on I is also solution of the integral equation (3). Then ( t
ρ−aρ
ρ )

1−γ |ψ(t)| ≤ b
for all t ∈ I and

ψ(t) = x0

(
tρ − aρ

ρ

)γ−1

+

∫ t

a
sρ−1

(
tρ − sρ

ρ

)α−1

f(s, φ(s))ds, t ∈ I.

It is sufficient to prove that φ(t) ≡ ψ(t) on I. From (H1), there exists
k > (β(1− α)− 1) and M ≥ 0 such that

|f(t, ψ(t))| = |f(t,
( tρ − aρ

ρ

)γ−1( tρ − aρ
ρ

)1−γ
ψ(t))| ≤M

( tρ − aρ
ρ

)k
,

for all t ∈ I. Therefore,
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(
tρ − aρ

ρ

)1−γ

|φ0(t)−ψ(t)| =
(
tρ − aρ

ρ

)1−γ∣∣∣∣ ∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1

f(s, ψ)ds

∣∣∣∣
≤

( t
ρ−aρ
ρ )

1−γ

Γ(α)

∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1

M

(
sρ − aρ

ρ

)k
ds

=
M

Γ(α)

(
tρ − aρ

ρ

)α+k+1−γ B(α, k + 1)

Γ(α)
.

Furthermore, we have(
tρ − aρ

ρ

)1−γ
|φ1(t)− ψ(t)|

=
( t
ρ−aρ
ρ )

1−γ

Γ(α)

∣∣∣∣ ∫ t

a
sρ−1

(
tρ − sρ

ρ

)α−1

[f(s, φ0(s))− f(s, ψ(s))]ds

∣∣∣∣
≤ AM B(α, k + 1)

Γ(α)

B(α, α+ 2k + 2− γ)

Γ(α)

(
tρ − aρ

ρ

)2(α+k+1−γ)

.

By the induction hypothesis, we suppose that(
tρ − aρ

ρ

)1−γ
|φn(t)− ψ(t)| ≤ AnM

(
tρ − aρ

ρ

)(n+1)(α+k+1−γ)

Pn.

Then(
tρ − aρ

ρ

)1−γ
|φn+1(t)− ψ(t)|

≤
(
tρ − aρ

ρ

)1−γ∣∣∣∣ ∫ t

a
sρ−1

(
tρ − sρ

ρ

)α−1

[f(s, φn(s))− f(s, ψ(s))]ds

∣∣∣∣
≤ An+1M

(
tρ − aρ

ρ

)(n+2)(α+k+1−γ) n+1∏
i=0

B(α, (i+ 1)k + i(α+ 1− γ) + 1)

Γ(α)

≤ An+1Ml(n+2)(α+k+1−γ)
n+1∏
i=0

Γ((i+ 1)k + i(α+ 1− γ) + 1)

Γ((i+ 1)(α+ k) + i(1− γ) + 1)
.

By repeating the same arguments used in the proof of Theorem 2, we obtain
the convergent series

∞∑
n=1

An+1Ml(n+2)(α+k+1−γ)
n+1∏
i=0

Γ((i+ 1)k + i(α+ 1− γ) + 1)

Γ((i+ 1)(α+ k) + i(1− γ) + 1)
.
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Therefore, An+1Ml(n+2)(α+k+1−γ)
n+1∏
i=0

Γ((i+1)k+i(α+1−γ)+1)
Γ((i+1)(α+k)+i(1−γ)+1) converges to zero

as n → ∞. We observe that lim
n→∞

(
tρ−aρ
ρ

)1−γ
φn(t) =

(
tρ−aρ
ρ

)1−γ
ψ(t) uni-

formly on J. Thus φ(t) ≡ ψ(t) on I.

Proof of Theorem 1:

Proof. In the light of Lemma 4 and from Theorem 3, one can easily deduce
that

φ(t) =
( tρ − aρ

ρ

)γ−1

lim
n→∞

( tρ − aρ
ρ

)1−γ
φn(t),

is the unique continuous solution of the Cauchy-type problem (1) defined
on I. Thus the proof is ended here.

4 An example

We consider the following singular Cauchy-type problem{ (
ρDα,β

a+

)
x(t) = f(t, x(t)), t > a,

lim
t→a

(
tρ−aρ
ρ

)
x(t) = xa, γ = α+ β(1− α),

(11)

where 
f(t, x(t)) =

(
tρ−aρ
ρ

)− 5
8
(

1+
∣∣ sin( tρ−aρ

ρ

)∣∣)
64
(

1+

√(
tρ−aρ
ρ

))
sin
(
tρ−aρ
ρ

) , t 6= a,

f(t, x(t)) = 0, t = a.

One can easily see that, f is singular at t = a, and is a continuous function
for t ∈ (a, b] = (1, 2].

Let us choose µ = 5
6 , b = 4, ρ = 0.5 > 0, k = −5

8 > −5
6 . Then in

correspondence with Cauchy-type problem (1), we have α = 1
4 , β = 1

2 gives
γ = 5

8 . Thus

l = min

{
0.828428,

(
4

M

Γ(0.625)

Γ(0.375)

)4.8}
,

where

M = max
t∈[1,2],x∈[1,4]

(
1 +

∣∣ sin ( tρ−aρρ

)∣∣)
64
(
1 +

√(
tρ−aρ
ρ

))(
sin
(
tρ−aρ
ρ

)) ≈ 0.019281,
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with
φ0(t) = xa

(
tρ−aρ
ρ

)− 3
4 , t ∈ (1, l],

φn(t) = φ0(t) + 1
Γ( 1

4
)

∫ t

a
s−0.5

(
t0.5−a0.5

0.5

)− 3
4 f(s, φn−1(s))ds, n = 1, 2, . . . .

We observe that, all the conditions of Theorem 1 are satisfied. Therefore,
the Cauchy-type problem (1) has the unique continuous solution φ(t),

φ(t) =
( tρ − aρ

ρ

)− 3
4

lim
n→+∞

( tρ − aρ
ρ

) 3
4

φn(t),

on [1, 4].

5 Concluding remarks

The existence and uniqueness of solution for a general class of FDEs is
obtained with the help of Picard successive approximations. The function
f(t, x) considered without assuming the monotonic property and the itera-
tive scheme is developed for approximating the unique solution. With the
help of traditional convergence criteria, the ratio test, the uniform conver-
gence of solution of the Cauchy-type problem is established. Through our
results, we demonstrated the remedy for disclosing a definite interval for the
existence of a solution which could not be determined by fixed point theory.
Our results essentially improved the existing results in the literature.
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