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Abstract. In this paper, we propose a two-stage approach for feature se-
lection in varying coefficient models with ultra-high-dimensional predictors.
Specifically, we first employ partial correlation coefficient for screening, and
then penalized rank regression is applied for dimension-reduced varying co-
efficient models to further select important predictors and estimate the
coefficient functions. Simulation studies are carried out to examine the
performance of proposed approach. We also illustrate it by a real data
example.
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1 Introduction

With the remarkable development of modern technology, including comput-
ing power and storage, big data of unprecedented size could be collected at
a relatively low cost and have appeared in many areas of advanced scientific
research ranging from genomic and health science to machine learning and
economics. The collected data frequently has an ultra-high dimensionality
p that is allowed to diverge at nonpolynomial (NP) rate with the sample
size n, namely log(p) = O(nρ) for some ρ > 0. For example, in biomedical
research such as genomewide association studies for some mental diseases,
millions of SNPs are potential covariates. In such a “large p, small n”
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problem, it is often assumed that only a small number of these covariates
contribute to the response, which is called the sparsity principle in the lit-
erature. One basic and challenging task is to identify these true important
predictors that are associated with the response. When the dimensional-
ity p is ultra-high, the traditional regularized variable selection approaches
become ineffective, due to the simultaneous challenges of computational
expediency, statistical accuracy and algorithmic stability (see [6]).

To address ultra-high dimensional data with stable computation and
accurate selection, Fan and Lv [3] proposed the sure independent screening
(SIS) procedure for ultra-high dimensional linear model which utilized the
Pearson correlation to rank the importance of each predictor. With the
purpose of handling more complex real data, many authors developed the
SIS procedure and applied it to various statistical models, such as general-
ized linear models (see [6,7]), nonparametric additive models (see [1,10,11])
and varying coefficient models (see [5, 14, 16, 17]). These feature screening
procedures are based on specialized model and perform well when the un-
derlying model assumptions are correct. Since specifying a correct model
for ultra-high dimensional data may be challenging, model-free sure screen-
ing procedures are appealing and have been developed. Zhu et al. [21]
proposed a sure independent ranking and screening (SIRS) procedure for
ultra-high dimensional data in the framework of the general multi-index
models. Li et al. [15] proposed a model-free SIS procedure based on the
distance correlation. These model-free methods are useful selections when
nothing can be known about the underlying model. If we can obtain some
of the characteristics of the model based on the information provided by
the research background, there may be a better way to take account of
those characteristics into the ultra-high dimensional data analysis.

It is well known that nonparametric models are flexible enough to re-
duce modeling biases. However, they suffer from the so-called “curse of
dimensionality”. A remarkable simple and powerful nonparametric model
for dimensionality reductions is the varying-coefficient model,

Y = XTβ(U) + ε, (1)

where X = (X1, . . . , Xp)
T is the vector of predictors, Y is the response,

U is an additional auxiliary variable or index variable, β (U) consists of p
unknown smooth functions of U , and ε is the random noise with conditional
mean 0 and finite conditional variance. An intercept term (i.e., X0 ≡ 1)
can be introduced if necessary. This model assumes that the variables
in the predictor vector X enter the model linearly, meanwhile it allows
regression coefficient functions to very smoothly with the index variable.
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The model retains general nonparametric characteristics and allows the
nonlinear interactions between the index variable U and the predictors. It
arises frequently from economics, finance, politics, epidemiology, medical
science, ecology, among others. For an overview, see [4].

Some feature selection methods have been developed for varying coeffi-
cient models with low-dimensional covariates in literature. Li and Liang [13]
proposed a generalized likelihood ratio test to select significant variables
with varying effects. Wang et al. [19] developed a regularized estimation
procedure based on the basis function approximations and SCAD penalty to
simultaneously select significant variables and estimate the nonzero smooth
coefficient functions. Wang and Xia [18] proposed a shrinkage method in-
tegrating local polynomial regression techniques and LASSO. Nevertheless,
these feature selection procedures were developed for the varying coefficient
models with fixed-dimensional covariates. However, the above methods
may not perform well in ultra-high dimension due to aforementioned chal-
lenges. Liu et al. [16] developed a screening method based on conditional
correlation (CC-SIS) which relies on kernel estimation.

In this paper, we propose a two-stage method for feature selection and
estimation in ultra-high dimensional varying coefficient models. In the
first step, we develop a marginal utility for feature screening based on
partial correlation to reduce the dimensionality. In the second step, we
apply penalized rank regression to perform feature selection and estimation
simultaneously. Simulation studies are conducted to evaluate our method
under different circumstances.

This paper differs from Liu et al. [16] in several ways. They focused on
the two-stage approach consists of (a) reducing the ultra-high dimensional-
ity by using the conditional correlation between the response and predictors
and (b) applying KLASSO method (Wang and Xia [18]), for dimension-
reduced varying coefficient models, which is very sensitive to outliers and
heavy-tailed error distributions. Our work can be regarded as an exten-
sion of Liu et al. [16], with differences and our contributions highlighted
as follows. In first stage, we develop a new screening procedure using par-
tial correlation instead of conditional correlation. The key benefit of our
screening procedure is that the computation is much faster than conditional
correlation which relies on kernel estimation. In second stage, we consider
the problem of simultaneous variable selection and coefficient estimation in
varying coefficient models by using spline approximation and penalization
approach based on rank regression, which is robust with respect to heavy
tailed errors or outliers in the response.

The remainder of this paper is organized as follows. In Section 2, we in-
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troduce the two-step procedure for feature selection and estimation. In Sec-
tion 3, we consider the computation algorithm of the proposed estimator.
Simulation studies are carried out in Section 4 to assess the performance
of the proposed method and to compare it with some existing methods. In
addition, a data set is used as an illustration of varying coefficient models.
Finally, we conclude the paper in Section 5

2 Methodology

2.1 Step 1: Feature screening

The partial correlation ρu,v.w of U and V after controlling for W is by
definition the ordinary correlation between the “residual” variables Ur =
U −α−β(W −µ) and Vr = V −γ−δ(W −µ) where µ = E(W ), α = E(U),
β = Cov(U,W )/V ar(W ), γ = E(V ) and δ = Cov(V,W )/V ar(W ). These
values of α, β, γ and δ are those which minimize EU,W {U −α−β(W −µ)}2
and EV,W {V −γ−δ(W −µ)}2, and so Ur and Vr are the variables U and V
after their linear dependence on W has been removed. The above definition
of partial correlation implies the definitions of partial variances and partial
covariance of U and V as the ordinary variances and covariance of Ur and
Vr. Mathematically, the partial correlation coefficient between U and V ,
when controlling for W , is computed using the following formula

ρU,V.W =
ρUV − ρUWρVW√
1− ρ2UW

√
1− ρ2VW

, (2)

in terms of the pairwise Pearson correlations between U , V and W . Indeed,
the sample partial correlation can be calculated easily by replacing the
sample pairwise Pearson correlations in (2). It can be reached by the R
package ppcor.

It is noteworthy that the covariate U is not a conditional variable but
an additional variable, i.e., the partial correlation is not in general equal to
conditional correlation. The two correlations are equal when the conditional
correlation of U and V given W is free of W . By the way, the conditional
correlation of U and V given W is not necessarily free of W hence can not
in general equal to partial correlation of U and V on W .

In multiple linear regression, the partial correlation measures the strength
of the linear relationship between response and one of the predictors after
“adjusting” for relationships involving all the other variables. This fact mo-
tivated us to develop a feature screening method by ranking the magnitude
of partial correlation between response and each predictor Xj controlling
for index variable U .
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Define the true model index set M and its complement M c by

M = {1 ≤ j ≤ p : βj (u) 6= 0 for some u ∈ U} ,
M c = {1 ≤ j ≤ p : βj (u) = 0 for all u ∈ U} ,

and the marginal utility for feature screening as

ωj = ρ2Xj ,Y.U , j = 1, . . . , p. (3)

Thus the sample estimate of ωj is

ω̂j = ρ̂2Xj ,Y.U , j = 1, . . . , p. (4)

Hence, by ranking the ω̂j from largest to smallest, the important predictors
are determined by the estimated active set

M̂ = {j : 1 ≤ j ≤ p s.t. ω̂j ranks among the first d} ,

where the submodel size d is taken to be smaller than the sample size
n. This procedure reduces the dimensionality from p to a possibly much
smaller space with model size d = |Â|. Fan and Lv [3] suggested setting
d = [n/ log(n)], where [a] refers to the integer part of a.

2.2 Step 2: Post-screening feature selection

In this step, the penalized rank regression is applied to further select im-
portant features and estimate the coefficient function β(u) in model (1).
Suppose that each βj(u), j = 1, . . . , p can be approximated by B-spline
function, that is

βj (u) ≈
K∑
k=1

γjkBjk(u) , j = 1, . . . , p, (5)

where {Bjk (u) , k = 1, . . . ,K} denote a B-spline basis from the collection
of spline functions of a fixed degree and knot sequence on interval [0, 1] and
K is the number of B-spline basis. Suppose that Sn = {Yi, Xi, Ui}ni=1 is an
independent and identically distributed sample from {Y,X, U}. Following
the approximation (5), model (1) becomes

Yi =

p∑
j=1

K∑
k=1

γjkBjk (Ui)Xij + εi, i = 1, . . . , n. (6)

Let πj (.) = (Bj1 (.) , . . . , BjK (.))T be a set of normalized B-spline basis

functions. Define Π (U,X) =
(
X1π1(U)T , . . . , Xpπp(U)T

)T
, Π i=Π (Ui,Xi),
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πij = πj (Ui) , i = 1, . . . , n and π(.) =
(
π1(.)

T , . . . ,πp(.)
T
)T

. So (6) can be

written as

Yi ≈ Π T
i γ + εi, i = 1, . . . , n. (7)

where γT =
(
γT1 , . . . ,γ

T
p

)T
. Based on the above approximation, we obtain

the residual at Ui,

ei = Yi −Π T
i γ, i = 1, . . . , n.

By Jaeckel [9], the rank regression is to minimize the dispersion of the
residuals. So the parameter γ in the basis expansion can be estimated by
minimizing

Q =
1

n

∑
i<j

|ei − ej |. (8)

We denote the minimizer of (8) as γ̂T =
(
γ̂T1 . . . .γ̂

T
p

)T
, where γj =

(γj1, . . . , γjK)T .
Suppose that some covariates are irrelevant in the regression, but it

is unknown to us which ones are important covariates whose correspond-
ing coefficients are nonzero, and which are unimportant covariates whose
corresponding coefficients are zero. However, equation (8) does not have
properties of selecting notable predictors, so we turn to the penalized es-
timation. Let pλ(.) is the SCAD penalty function proposed by Fan and
Li [2], and it is defined in terms of its first order derivative as follows

p′a,λ(x) = λ

{
I(|x| ≤ λ) +

(aλ− |x|)+
(a− 1)λ

I(|x| > λ)

}
, x ≥ 0,

where a > 2 and λ is a nonnegative penalty parameter and governs vari-
able selection or sparsity of the model. We use a = 3.7 as suggested in [2].
Let Rj be a K × K matrix with entries rkk′ =

∫
Bjk (u)Bjk′ (u) du and

‖ γj ‖Rj
= (γTj Rjγj). Our main goal is to identify the insignificant com-

ponents (i.e., βj(u) ≡ 0). This can be achieved by shrinking ‖ γj ‖Rj
to

zero. We define the proposed estimator γ̂ as the minimizer of the following
penalized objective function

Ln (γ) =
1

n

∑
i<j

|ei − ej |+ λ

p∑
j=1

pλ

(
‖ γj ‖Rj

)
. (9)

In the proposed procedure, every βj(u) is characterized by a spline coeffi-

cient vector γj , γ̂j (u) = πj(u)T γ̂j , which can be treated as a group. How-
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ever, different from the SCAD penalization in [2], all components within
the same group j receive the same group-specific penalty.

3 Computation algorithm

Leng [12] pointed that the objective function Q in (8) can be seen as
Jaeckel’s [9] rank dispersion function for Wilcoxon scores. So the first term
in (9) can be approximated by

1

n

∑
i<j

|ei − ej | ≈
1

n

∑
i<j

ωi |ei − ξ|2,

where ξ is the median of {ei}ni=1 and

ωi =

{ R(ei)

n+1
− 1

2

ei−ξ , ei 6= ξ,

0, otherwise,

where R(ei) is the rank of ei among e1, . . . , en. Following [2], we use an iter-
ative local quadratic approximation algorithm to find the minimum of (8).
Using a simple Taylor expansion, given an initial estimate γ̃l from objective
function (8) (equivalently given β̃l), the weights ω̃i and the median of resid-
uals, ξ, can be accordingly obtained. We approximate the regularization
terms by

pλ

(
‖ γj ‖Rj

)
≈ pλ

(
‖ γ̃j‖Rj

)
+

1

2

p
′
λ

(
‖ γ̃j‖Rj

)
‖ γ̃j‖Rj

(
‖ γj ‖2Rj

− ‖ γ̃l‖2Rj

)
.

Therefore, (9) can be locally approximated (except for constant terms) by

Ln (γ) ≈
(
S −Π

′
γ
)T
W̃
(
S −Π

′
γ
)

+
n

2

(
γTΩγ

)
, (10)

where S=Y −In×1, and

Ω = diag
(
p
′
λ

(
‖ γ̃1‖R1

)
R1, . . . , p

′
λ

(
‖ γ̃p‖Rp

)
Rp

)
,

W̃ = diag (ω̃1, . . . , ω̃p) .

The algorithm repeatedly solves the minimization criterion (10) and up-
dates γ(m) to γm+1, m = 1, 2, . . . until convergence.



370 M. Kazemi

4 Numerical studies

4.1 Simulation

For brevity, we refer our screening approach as partial correlation sure in-
dependence screening (PC-SIS). In this section, two simulation examples
including different varying coefficient models with various scenarios are
presented. The first example are allocated to our proposed screening pro-
cedure, while in the second one, the capability of the two-stage method is
examined. In the former case, the finite sample performance of the PC-SIS
is compared with the existing competitors, such as the SIS [3], DC-SIS [15],
SIRS [21] and CC-SIS [16]. Throughout our experiments, we set the total
number of predictors p = 1000, and the covariates u and x = (x1, . . . , xp)

T

are generated as follows.

First draw u∗ and x from (u∗,x) ∼ N(0,Σ), where Σ is a (p+1)×(p+1)
covariance matrix with element σij = ρ|i−j|, i, j = 1, . . . , p+ 1. Then take
u = Φ (u∗), where Φ is the cumulative distribution function of the standard
normal distribution. Thus, u follows a uniform distribution U(0, 1) and is
correlated with x, and all the predictors (x1, . . . , xp) are correlated with
each other. We consider ρ = 0, 0.5, 0.8 for uncorrelated, correlated and
high correlated situation among (u∗,x). The random error ε is drawn from
N(0, 1). In our simulation, we consider d = [n/ log(n)].

To implement the two-stage procedure described in this paper, we need
to choose some parameters including the spline order, the number of basis
K, as well as the regularization parameters λ. We set the spline order to
be q = 4, which means that cubic splines are used in all numerical exam-
ples. For the number of basis functions K, we fixed K = 6. This strategy
is similar to that commonly used in functional smoothing/functional data
analysis literature where the number of knots is chosen to be sufficiently
large so that approximation error is small, and the overfitting can be ef-
fectively controlled by the penalization terms. To select the regularization
parameter λ, we use the BIC criteria.

Example 1. We generate data from the following varying coefficient model.

β1 (u) = 5 log
(
2 + 3u2

)
, β3 (u) = 5 tan(u), β5 (u) = 2(u2 + 1),

β7 (u) = 2 + u, β9 (u) = 3.

So the true model index set in this sample is M = {1, 3, 5, 7, 9}. We set
the sample size n = 200 and evaluate the performance through the three
criteria: “Rj” is the average rank and standard error for an individual true
predictor Xj based on 300 repeats; “pj” is the proportion of submodels
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Table 1: The value of Rj of true predictors for Example 1.

ρ method R1 R3 R5 R7 R9

0 PC-SIS 1.00(0.00) 4.13(11.98) 2.43(0.96) 45.04(32.53) 6.24(27.83)
SIS 1.00(0.00) 6.19(16.98) 2.43(0.93) 65.26(45.33) 8.40(25.58)
DC-SIS 1.00(0.00) 4.48(5.00) 2.64(1.12) 52.15(19.65) 5.35(11.44)
SIRS 1.00(0.00) 4.75(9.50) 2.71(1.21) 41.50(31.45) 4.53(6.90)
CC-SIS 1.00(0.00) 3.73(5.88) 2.92(1.96) 39.70(98.18) 4.47(8.18)

0.5 PC-SIS 1.02(0.41) 2.98(1.05) 2.55(0.99) 6.42(5.48) 7.57(4.81)
SIS 1.01(0.17) 2.88(0.86) 3.30(1.03) 9.17(21.94) 9.53(13.10)
DC-SIS 1.01(0.12) 2.74(0.87) 3.36(1.04) 7.69(8.96) 7.17(2.52)
SIRS 1.01(0.12) 2.71(0.85) 3.37(1.16) 7.24(6.16) 6.90(2.12)
CC-SIS 1.03(0.23) 2.71(0.85) 2.86(1.05) 6.49(1.81) 6.51 (1.78)

with size d containing one true Xj in the 300 simulations; “Pa” is the
proportion of submodels with size d containing all the true predictors in
the 300 simulations.

Table 1 reports the simulation results for average rank and the standard
deviation of Rj (the number in parentheses). From Table 1, we can see
that SIS is less accurate than DC-SIS, SIRS, CC-SIS and PC-SIS, but our
proposed PC-SIS is comparable to the others. It is observed that these four
screening methods perform well in most cases.

In addition, Table 2 shows the results of the proportion of submodels
in which its performance also indicate the adequacy of PC-SIS. From the
simulation results, we can see that DC-SIS, SIRS, CC-SIS and PC-SIS
provide nearly the same powerful results. In summary, the performance of
CC-SIS is slightly better than others, but the cost of computation is high
due to the kernel regression estimate of the conditional correlation. Hence
we can conclude that PC-SIS is a competitive with the existing screening
methods such as the SIS, DC-SIS, SIRS and CC-SIS.

Example 2. We generate data from two following models.

Model 1. Varying coefficient model with five nonzero varying coefficients
and the true model index set M = {2, 100, 400, 600, 1000} as follows

β2 (u) = 2I (u > 0.4) , β100 (u) = 1 + u, β400 (u) = (2− 3u)2,

β600 (u) = 2sin (2πu) , β1000 (u) = eu/(u+1).

Model 2. Partial linear varying coefficient model that the number of con-
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Table 2: The proportion value of pj and pa for Example 1.

ρ method p1 p3 p5 p7 p9 pa
0 PC-SIS 1.000 0.980 1.000 0.780 0.982 0.727

SIS 1.000 0.983 1.000 0.710 0.953 0.673
DC-SIS 1.000 0.993 1.000 0.733 0.980 0.716
SIRS 1.000 0.990 1.000 0.800 0.983 0.783
CC-SIS 1.000 0.996 1.000 0.806 0.993 0.790

0.5 PC-SIS 1.000 1.000 1.000 0.997 0.996 0.987
SIS 1.000 1.000 1.000 0.986 0.983 0.970
DC-SIS 1.000 1.000 1.000 0.986 1.000 0.986
SIRS 1.000 1.000 1.000 0.990 1.000 0.990
CC-SIS 1.000 1.000 1.000 1.000 1.000 1.000

stant coefficient is 3 and two coefficients are varying

β1 (u) = 2 sin(2πu), β2(u) = 8u(1− u), β3(u) = 2.5,

β4(u) = 1, β5(u) = 1.5.

The true model index set in this model is M = {1, 2, 3, 4, 5}. We used sev-
eral criterion to measure the feature selection performance: “NS”: Average
number of nonzero estimated components; “AS” is the percentage of occa-
sions on which all the correct variables are included in the selected model;
“ES” is the frequency of exactly selecting all true variables and nothing
else; “MS” is the percentage of occasions on which some correct variables
are missed; “OS” is the frequency of exactly one false variable selected,
“RASE” is the square root of average squared error

RASE =

 1

ngrid

ngrid∑
i=1

p∑
j=1

(β̂j (ui)− βj (ui))
2


1
2

, (11)

where u1, . . . , ungrid are the grid points at which the functions β̂j (ui) are
evaluated. We report the results based on 200 simulation runs in Table 3.

From Table 3, we observe that for each model, in cases where ρ is large
and n is small, the two-step procedure tends to be too greedy, missing some
true variables. The small values for MS indicates extremely low false neg-
ative rates, and 0% values for OS show zero false positive rates of feature
selection. In addition, the RASE of the estimators are very small. Over-
all, the proposed method has a satisfactory feature selection performance,
except in case where the covariates are high correlated (ρ = 0.8).
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Table 3: Feature selection performance of the two-step procedure.

Model n ρ NS AS ES MS OS RASE

Model 1

200 0.5 4.93 93% 93% 7% 0% 0.5661
0.8 4.54 53% 53% 47% 0% 1.8682

400 0.5 5 100% 100% 0% 0% 0.2277
0.8 4.98 97% 97% 3% 0% 0.3175

Model 2

200 0.5 5 100% 100% 0% 0% 0.4087
0.8 4.47 56% 56% 44% 0% 1.5881

400 0.5 5 100% 100% 0% 0% 0.1943
0.8 4.97 97% 97% 3% 0% 0.4621

4.2 Application to real data

We illustrate the performance of the newly proposed method through a
real data analysis on Boston Housing Data (see [8]). This dataset contains
housing data for 506 census tracts of Boston from the 1970 census. Most
empirical results for the housing value equation are based on a common
specification,

log (MV ) = β0 + β1RM
2 + β2AGE + β3 log (DIS) + β4 log (RAD) + β5TAX

+ β6PTRATIO + β7(B − 0.63)
2

+ β8 log (LSTAT ) + β9CRIM

+ β10ZN + β11INDUS + β12CHAS + β13NOX
2 + ε,

where the response MV is the median value of owner-occupied homes,
the covariates are 13 quantified measurement of its neighborhood whose
description can be found in the manual of R package mlbench. The common
specification uses RM2 and NOX2 to get a better fit, and for comparison
we take these transformed variables as our input variables.

To exploit the power of varying coefficient model, we take the variable
W = log(DIS), the weighted distances to five employment centers in the
Boston region, as the index variable. This allows us to examine how the
distance to the business hubs interact with other variables. It is reasonable
to assume that the impact of other variables on housing price varies with
the distance, which is an important characteristic of the neighborhood, i.e.
the geographical accessibility to employment. Interestingly, rank regression
selects the following submodel

log (MV ) = β0 (W ) + β2 (W )AGE + β5 (W )TAX + β7 (W ) (B − 0.63)2

+ β8 (W ) log (LSTAT ) + β9 (W )CRIM + β10 (W )ZN

+ β12 (W )CHAS + β13 (W )NOX2 + ε.
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We now evaluate the performance of our two-step method in a high dimen-
sional setting. To accomplish this, let {Z1, . . . , Zp} be i.i.d. the standard
normal random variables and U follow the standard uniform distribution.
We then expand the data set by adding the artificial predictors

Xj =
Zj + tU

1 + t
, j = 14, . . . , p.

Note that {W,X1, . . . , X13} are the variables in original data set and the
variables {Xj}pj=14 are known to be irrelevant to the housing price, though
the maximum spurious correlation of these 987 artificial predictors to the
housing price is now small. We take p = 1000, t = 2, and randomly select
n = 406 samples as training set, and compute prediction mean squared
error (PE) on the rest 100 samples. We repeat N = 100 times and report
the average prediction error and model size. Since {Xj}pj=14 are artificial
variables, we also include the number of artificial variables selected by each
method as a proxy for false positives. Prediction error, model size and
selected noise variables and its standard deviations over 100 repetitions
are 0.049(0.010), 9.33(0.866) and 0(0), respectively. As seen, our two-step
method is very effective in filtering noise variables in a high dimensional
setting.

5 Conclusions

In this article, we proposed a two-step procedure for feature selection in
ultra-high dimensional varying coefficient models by combining partial cor-
relation and rank regression. We examined the finite sample performance
of the proposed method via a Monte Carlo simulation study and an illus-
tration through the Boston housing dataset. In conclusion, the proposed
method is very useful in high-dimensional scientific discoveries, which can
select a parsimonious close-to-truth model and reveal interesting relation-
ship between variables, as illustrated in real data analysis.
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