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Abstract. Generalized intervals (intervals whose bounds are not constrained
to be increasingly ordered) extend classical intervals and present algebraic
completion of conventional interval arithmetic, allowing efficient solution
for interval linear systems. In this paper, we use the Cholesky decomposi-
tion of a symmetric generalized interval matrix A introduced by Zhao et al.
(A generalized Cholesky decomposition for interval matrix, Adv. Mat. Res.
479 (2012) 825–828), to construct the algebraic solution of the triangular
interval linear system of equations. Also we utilize this decomposition to
find inner and outer estimations of the generalized solution set of the sym-
metric interval linear systems. Finally some numerical experiments and an
application in economic are given to show the efficiency of the presented
technique.
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1 Introduction

In our paper, the main object under study is the interval linear system

Ax = b, (1)
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with symmetric n× n interval matrix A and n-dimensional interval vector
b. The interval system of equations (1) frequently appears in the cases
when the components of the input data are accompanied by error.

The most important solution sets of the interval system (1) which have
been the subject of more active research in modern interval analysis are
united solution set, tolerable solution set and controllable solution set which
we introduce them later. Obtaining united, tolerable and controllable so-
lution sets is an NP-hard problem [34].

Here, we utilize a generalized interval arithmetic, namely Kaucher arith-
metic due to its interesting algebraic properties to simply obtain good esti-
mations to the solution set of the interval system (1). Generalized intervals
are intervals whose bounds are not constrained to be increasingly ordered.
The set of generalized intervals is a group for addition and for multiplica-
tion of zero free generalized intervals. For an introduction of the generalized
interval arithmetic (also called Kaucher arithmetic), we refer the interested
reader to [18,19,25]. In order to emphasize that a generalized interval can
be considered as a pair of a proper interval and a direction, sometimes
Kaucher arithmetic is called “directed interval arithmetic” [22]. A variant
of Kaucher arithmetic adopted to semantic problems has been proposed and
developed by Gardeñes et al., namely “modal interval arithmetic” [1, 14].
Another generalizations of the interval arithmetic and their applications
can be seen in [2, 16,36,37].

The algebraic properties of Kaucher arithmetic make it a suitable en-
vironment for solving interval algebraic problems [27]. Zhao et al. [38]
introduced the Cholesky decomposition of a generalized interval matrix A
such that A = LLT instead of the weaker relation A ⊆ LLT in classical
interval computations. Using this decomposition, we obtain the algebraic
solution of the triangular interval linear system Ax = b in such a way
that it solves the equation exactly, i.e., the obtained solution x exactly
satisfies Ax = b instead of containing the solution set or including in the
solution set that occur commonly in classical interval computations. We
also introduce the concept of generalized solution set to the interval sys-
tem of equations (1). Then using the proposed technique for obtaining
the algebraic solution of the triangular interval systems, we propose some
approaches to obtain inner and outer estimations of the interval general-
ized solution sets. The new approaches help us to estimate the important
united, tolerable and controllable solution sets with good quality in the
context of classical interval computations.

Some approaches for solving interval linear systems can be seen in [5–9,
17,20,21,23,26,30]. In [32] one can see some applications of Kaucher interval
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arithmetic in identification, tolerance and control problems for the interval
linear equations. Another application of generalized interval arithmetic for
solutions of fuzzy equations can be seen in [31].

The rest of the paper is organized as follows. In Section 2 an overview of
the generalized intervals is given. Section 3 presents the algebraic solution
of the triangular interval linear systems. Some approached for inner and
outer estimations of the generalized solution sets are given in Section 4.
In Section 5, we present an application of our approach in input-output
models of economic. Finally we complete the paper with some concluding
remarks in Section 6.

2 Generalized intervals

The set of proper intervals is denoted by IR := {x = [x,x] : x ≤ x, x,x ∈
R}. This set is extended by the set of improper intervals with bounds
ordered decreasingly which is denoted by IR := {x = [x,x] : x ≥ x, x,x ∈
R}. Totally these two sets construct the set of generalized intervals which is
denoted by KR := {a = [a,a] : a,a ∈ R}. For example [−1, 1] and [1,−1]
are generalized intervals. The ”dual” is an important monadic operator
that reverses the endpoints of the intervals. For x = [x,x], its dual is
defined by

dual(x) := [x,x].

Also, for theoretical aspects, we introduce proper projection of a gener-
alized interval by pro([x,x]) := [min{x,x},max{x,x}]. The generalized
intervals are partially ordered by the inclusion order relation [x,x] ⊆ [y,y]
⇔ (y ≤ x) and (x ≤ y), which extends the inclusion relation of the classi-
cal intervals. More details about Kaucher interval arithmetic can be found
in [19,34].

Generalized interval arithmetic has better algebraic properties than the
classical interval arithmetic. For example, the addition in KR is a group
and the opposite of an interval x is −dual(x), i.e.,

x + (−dual(x)) = x− dual(x) = [0, 0].

On the other hand, the multiplication in KR restricted to zero free intervals,
is also a group and the inverse of such interval x is 1

dual(x) , i.e.,

x · 1

dual(x)
=

x

dual(x)
= [1, 1].
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In Kaucher arithmetic, the monotonicity with respect to inclusion is
maintained, i.e., if ∗ ∈ {+,−, ·, /} and a,b, c,d ∈ KR then we have

a ⊆ b and c ⊆ d⇒ a ∗ c ⊆ b ∗ d.

Note that if x,y ∈ KR, then dual(xy) = dual(x)dual(y). The set of m-by-
n Kaucher interval matrices is denoted by KRm×n. Similar to the scalar
case, for two Kaucher interval matrices A ∈ KRm×n and B ∈ KRn×p, we
have dual(AB) = dual(A)dual(B). For interval number x = [x,x] ∈ KR,
define

Ω := {x ∈ KR : x > 0 ∧ x > 0}, Ω := {x ∈ KR : x ≥ 0 ∧ x ≥ 0},
−Ω := {−x : x ∈ Ω}, −Ω := {−x : x ∈ Ω}.

By the above notations for x ∈ KR, we say x > 0 (x ≥ 0), if x ∈ Ω (x ∈ Ω),
and x < 0 (x ≤ 0) if x ∈ −Ω (−Ω).

Notation 1. If x = [x,x] ∈ KR is positive, we define
√

x as
√

x := [
√

x,
√

x].

It is obvious that by this notation, we have
√

x
√

x = x.

3 The Cholesky decomposition

Suppose A = (Aij) ∈ KRn×n is symmetric, Zhao et al. [38] proposed the
following decomposition, namely Cholesky decomposition, for A

Lii :=

√√√√Aii −
i−1∑
k=1

dual(LikLik), i = 1, ..., n, (2)

Lij :=
Aij −

∑j−1
k=1 dual(LikLjk)

dual(Ljj)
, i > j, (3)

where L is a lower triangular interval matrix such that A = LLT .

Proposition 1. [38] Let A ∈ KRn×n be a symmetric interval matrix.
Provided that the interval matrix L defined by Eqs. (2) and (3) can be
constructed, it satisfies A = LLT .

Example 1. Consider the symmetric interval matrix

A =

 [9, 16] [3, 8] [−4, 4]
[3, 8] [10, 20] [2, 7]

[−4, 4] [2, 7] [1, 3]

 .
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For computing LLT decomposition, using (2) and (3) we can write
L11 =

√
A11 = [3, 4],

L21 = A21
dual(L11)

= [1, 2],

L31 = A31
dual(L11)

= [−1, 1],

L22 =
√

A22 − dual(L21L21) = [3, 4],

L32 = A32−dual(L31L21)
dual(L22)

= [43 ,
5
4 ],

L33 =
√

A33 − dual(L31L31)− dual(L32L32) = [
√
2
3 ,
√
7
4 ].

Therefore, we obtain the following lower triangular interval matrix L

L =

 [3, 4] 0 0
[1, 2] [3, 4] 0

[−1, 1] [43 ,
5
4 ] [

√
2
3 ,
√
7
4 ]

 ,

which satisfies A = LLT .

3.1 Algebraic solution of a triangular interval linear system

Definition 1. An interval vector x ∈ KRn is called an algebraic solution
of the interval linear system Ax = b, with A ∈ KRm×n and b ∈ KRm, if
it satisfies Ax = b.

As previously mentioned, in literature for an interval linear system
Ax = b almost an interval vector x is computed which contains its so-
lution set or includes in the solution set and does not exactly satisfy in the
equation, i.e., almost we have Ax 6= b. Here, we want to utilize the inter-
esting properties of the Kaucher interval arithmetic to construct the exact
solution of the triangular interval linear systems. A triangular interval lin-
ear system is an interval linear system with triangular coefficient matrix.
We want to find the algebraic solution of the lower triangular interval linear
system Ax = b in which

A =


A11 0 · · · 0

... A22
. . .

...
...

. . . 0
An1 · · · · · · Ann

 , b =


b1

b2
...

bn

 , (4)

and 0 /∈ Aii. By forward substitution technique (similar to real arithmetic)
and using opposite and inverse of a generalized interval, we propose the
following answer

xi :=
bi −

∑i−1
j=1 dual(Aijxj)

dual(Aii)
, i = 1, ..., n. (5)
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For a triangular interval linear system with upper triangular coefficient
matrix, the backward substitution technique can be used.

Lemma 1. Let Ax = b be a triangular interval linear system with lower
triangular coefficient matrix A ∈ KRn×n and right-hand side b ∈ KRn de-
noted by (4), then x = (x1, ...,xn)T ∈ KRn constructed by Eq. (5) satisfies
Ax = b, i.e., x is an algebraic solution to Ax = b.

Proof. It is sufficient to prove (Ax)i = bi. Using Eq. (5), we have

(Ax)i =
i∑

k=1

Aikxk =

i∑
k=1

Aik

bk −
∑k−1

j=1 dual(Akjxj)

dual(Akk)

=

i−1∑
k=1

Aik

bk −
∑k−1

j=1 dual(Akjxj)

dual(Akk)
+ (bi −

i−1∑
j=1

dual(Aijxj))

=
i−1∑
j=1

Aijxj + (bi − dual(
i−1∑
j=1

Aijxj)) = bi.

Example 2. Consider the triangular interval linear system Ax = b, with

A =

 [1, 2] 0 0
[2, 5] [−3,−1] 0
[0, 1] [1, 3] [2, 4]

 , b =

 [1, 2]
[2, 3]
[3, 4]

 .

Using Eq. (5) we can write
x1 = b1

dual(A11)
= 1,

x2 = b2−dual(A21x1)
dual(A22)

= [2, 0],

x3 = b3−dual(A31x1)−dual(A32x2)
dual(A33)

= [12 ,
3
4 ].

Therefore we obtain the following generalized interval vector

x =

 1
[2, 0]
[12 ,

3
4 ]

 ,

which satisfies Ax = b.

4 Inner and outer estimations of the generalized
solution sets

In this section, we consider the generalized solution set of the general-
ized symmetric interval linear system Ax = b in which A ∈ KRn×n and
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b ∈ KRn, using the same convention in [15]. Define A†,A‡ ∈ IRn×n and
b†,b‡ ∈ IRn by

A†ij :=

{
Aij , if Aij ∈ IR,
0, otherwise,

A‡ij :=

{
pro(Aij), if Aij ∈ IR,
0, otherwise,

b†i :=

{
bi, if bi ∈ IR,
0, otherwise,

b‡i :=

{
pro(bi), if bi ∈ IR,
0, otherwise.

It is obvious that A = A† + dual(A‡) and b = b† + dual(b‡). The gener-
alized solution set Σ(A,b) is defined as∑

(A,b) := {x ∈ Rn :(∀A‡ ∈ A‡)(∀b‡ ∈ b‡)

(∃A† ∈ A†)(∃b† ∈ b†)(A† +A‡)x = (b† + b‡)}. (6)

Note that the generalized solution set (6) is different from the introduced
generalized solution set by Shary [34]. In the generalized solution set (6),
a component of the input data A or b occurs with the existential quan-
tifier “∃” if it belongs to IR and occurs with the universal quantifier “∀”
if it belongs to IR. While in the generalized solution set introduced by
Shary [34], these occurrences depend on the nature of the problem and are
predetermined, i.e., a component in a problem may occur with the exis-
tential quantifier “∃” while the same parameter occurs with the universal
quantifier “∀” in another problem.

Here we present an analytical result for the inner and outer estimations
of the solution set (6). This analytic result can be used for the inner
and outer estimations of the well-known united, tolerable, and controllable
solution sets of the classical interval linear system Dx = c with D ∈ IRn×n

and c ∈ IRn, as
• The united solution set∑

U

(D, c) := {x ∈ Rn : (∃D ∈ D)(∃c ∈ c)(Dx = c)},

conform with the solution set (6) to the generalized interval linear system
Dx = c.
• The tolerable solution set∑

T

(D, c) := {x ∈ Rn : (∀D ∈ D)(∃c ∈ c)(Dx = c)},

conform with the solution set (6) to the generalized interval linear system
dual(D)x = c.
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• The controllable solution set∑
C

(D, c) := {x ∈ Rn : (∀c ∈ c)(∃D ∈ D)(Dx = c)},

conform with the solution set (6) to the generalized interval linear system
Dx = dual(c).

We manipulate slightly Theorem 1 in [15], to build inner and outer
estimations of the generalized solution set (6) of the symmetric interval
linear systems.

Theorem 1. Let A ∈ KRn×n be symmetric and b ∈ KRn. Suppose L
constructed by Eqs. (2) and (3). If we define the generalized interval vectors
x,x′,y,y′ ∈ KRn by

yi :=
bi −

∑i−1
j=1 Lijdual(yj)

Lii
, i = 1, . . . , n, (7)

xi :=
yi −

∑n
j=i+1 Ljidual(xj)

Lii
, i = 1, . . . , n, (8)

y′i :=
bi −

∑i−1
j=1 Lijy

′
j

Lii
, i = 1, . . . , n, (9)

x′i :=
y′i −

∑n
j=i+1 Ljix

′
j

Lii
, i = 1, . . . , n. (10)

then the following properties hold
1) If L is proper and x is proper then x ⊆ Σ(A,b).
2) Suppose L is improper. If x′ is proper then Σ(A,b) ⊆ x′, otherwise

Σ(A,b) = ∅.

Example 3. [24]Consider the interval linear system Ax = b with

A =

(
[2, 4] [−1, 1]

[−1, 1] [2, 4]

)
, b =

(
[−3, 3]

0

)
,

The solution set
∑

(A,b) of this system is plotted in Fig. 1. Using Eqs.
(2) and (3), the matrix L is obtained as

L =

(
[
√

2, 2] 0

[−1
2 ,

1
2 ] [32 ,

√
15
2 ]

)
,

and this interval matrix satisfies A = LLT . Since L is proper, we com-
pute vectors y and then x, respectively, by Eqs. (7) and (8). We obtain



Inner and outer estimations of the generalized solution sets 353

x = ([−3
2 ,

3
2 ], 0)T , from Fig. 1, one can see x ⊆ Σ(A,b) which confirms

Theorem 1. It is to be noted that using the generalized interval LU de-
composition introduced in [15], we obtain the same result but with more
computational costs.

Example 4. [20,29] Let us consider the symmetric interval linear system
Ax = b, where

A =

(
[2, 4] [−1, 1]

[−1, 1] [2, 4]

)
, b =

(
[0, 2]
[0, 2]

)
,

Fig. 2 shows the solution set of this system. The coefficient matrix A of
this system is similar to the one in previous example and so the triangular
matrix in its Cholesky decomposition is

L =

(
[
√

2, 2] 0

[−1
2 ,

1
2 ] [32 ,

√
15
2 ]

)
,

Now, since L is proper, we obtain the vectors y and x from Eqs. (7) and
(8), respectively, which yield x = ([0, 1], [0, 0.8889])T . Fig. 2 shows that
x ⊆ Σ(A,b) which confirms Theorem 1.

Example 5. Consider the interval linear system Ax = b with

A =

 [100, 150] [3, 5] [1, 7]
[3, 5] [100, 140] [3, 5]
[1, 7] [3, 5] [60, 80]

 , b =

 [0, 14]
[0, 9]
[0, 3]

 .

Since A is proper and nonnegative, we obtain an inner estimation of the
united solution set using algorithm INonNeg introduced in [35]. By choos-
ing the parameters λ = µ = 0.1 (λ and µ are auxiliary scalar parameters in
algorithm INonNeg which help to find inner estimation for the united solu-
tion set, see Algorithm INonNeg in [35]) and the initial point x̃ = (0, 0, 0)T

from the solution set Σ(A,b), this algorithm gives

x =

 [0, 0.0141]
[0, 0.0090]
[0, 0.0494]

 .

Now using Eqs. (2) and (3) for the Cholesky decomposition of the interval
matrix A, the following triangular interval matrix L is obtained

L =

 [10.0000, 12.2475] [0.0000, 0.0000] [0.0000, 0.0000]
[0.3000, 0.4083] [9.9954, 11.8252] [0.0000, 0.0000]
[0.1000, 0.5716] [0.2971, 0.4031] [7.7396, 8.9169]

 .
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Since L is proper, using Eqs. (7) and (8) we obtain

x =

 [0, 0.1371]
[0, 0.0846]
[0, 0.0435]

 .

Since L and x are proper, according to Theorem 1, x ⊆ Σ(A,b). As one
can see, the result obtained by the new technique is wider than the one
computed by algorithm INonNeg and so is more valuable. Also the pro-
posed technique in [15] gives the same result but with more computational
costs.

Example 6. Consider the tridiagonal interval linear system Ax = b, where

A =

 [3, 1] [2, 1] 0
[2, 1] [5, 4] [2, 1]

0 [2, 1] [3, 2]

 , b =

 [1, 2]
[2, 3]
[1, 4]

 .

The generalized solution set
∑

(A,b) of this system conform with the toler-
able solution set

∑
T (dual(A),b). An outer approximation for the tolerable

solution set
∑

T (dual(A),b) can be obtained by the generalized interval
Gauss-Seidel (GIGS) method proposed in [33]. Starting from the initial
box

([−1000, 1000], [−1000, 1000], [−1000, 1000])T ,

the GIGS method gives the following outer approximation

x =

 [0.1249, 2.8001]
[−0.8001, 0.6251]
[0.1249, 2.4001]

 .

Now, we utilize our new approach to obtain an outer estimation for the
solution set. First using Eqs. (2) and (3), we obtain

L =

 [1.7321, 1.0000] 0 0
[1.1547, 1.0000] [1.9149, 1.7321] 0

0 [1.0445, 0.5774] [1.3817, 1.2910]

 ,

which satisfies A = LLT . Since L is improper so we apply Eqs. (9) and
(10) which yields

x′ =

 [0.6419, 0.8378]
[−0.2964, 0.3581]
[0.2661, 1.8283]

 ,
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Figure 1: Solution set of Example 3
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Figure 2: Solution set of Example 4

Since L is improper and x′ is proper, our approach gives the following outer
estimation for the solution set (6)

x =

 [0.6419, 0.8378]
[−0.2964, 0.3581]
[0.2661, 1.8283]

 ,

which is much sharper than the one computed by GIGS method. Also the
generalized LU decomposition method introduced in [15] is not applicable
here.

5 An application in economic

In economic, an input-output (I-O) model is a quantitative economic tech-
nique that represents the interdependencies between different branches of
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Figure 3: Two-way input-output model of the firm (see [28])

a national economy or different regional economies, Wassily Leontief devel-
oped this type of analysis [10]. In Fig. 3, one can see an image of two-way
input-output model of the firm. As mentioned in [29], in compact form,
an I-O model can be written as x = Ax + b, where x is a vector of secto-
rial outputs, A is the input-output technical coefficient matrix and b is the
vector of final demands. The equation x = Ax+ b is equivalent to Bx = b
in which B = I − A and B is called the Leontief matrix. If final demand
is known, then the amount of the goods needed to satisfy this demand can
be found by solving the linear system Bx = b. Now, we want to consider
an I-O model of the 1987 Washington state direct purchase.

Table 1 presents the 1987 Washington State direct purchase coefficient
table estimated from an aggregated model (see [4, 29]). As said in [29], to
evaluate the total economic impact of a $50 million increase in manufactur-
ing exports, the author solved the system Bx = b, where B is the Leontief
matrix and b = (0, 50, 0, 0)T MM$. The vector x is obtained: (3, 60, 27, 42)T

MM$ (Base Case). That means, for example, that a $50 million increase
in manufacturing exports is expected to result in a $3 million production
increase in natural resource industries.

In most cases, due to some sources of uncertainties in I-O models, the
entries of the Leontief matrix are not known exactly, but must be estimated
and therefore are subject to some level of uncertainties. An approach for
representing these uncertainties is utilizing the intervals. If we define in-
terval matrix and interval vector B and b, respectively, bounding Leontief
matrix B and vector b, then we should find the united solution set of the
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Table 1: 1987 Washington State direct purchase coefficient table
Natural Resource Manufacturing Trade and Services Personal Consumption

Natural Resource 0.10453 0.04279 0.00287 0.00305

Manufacturing 0.08263 0.10870 0.05835 0.03212

Trade and Services 0.08667 0.10188 0.20319 0.35550

Personal Consumption 0.62531 0.34483 0.61063 0.07981

interval linear system Bx = b.
Now, suppose uncertainties have the effect shown in Table 2 for inter-

val technology matrix. To evaluate the economic impact of a $50 million
increase in manufacturing exports taking into account the uncertainties on
the technology coefficient matrix, we need to determine the united solution
set of the symmetric interval linear system Bx = b, where B is the interval
technology matrix shown in Table 2, and b = (0, 50, 0, 0)T . Here we find an
inner estimation of this solution set.

The Krawczyk method [23], interval Gauss-Seidel method [23], conju-
gate directions method [3], and verifylss function of Intlab, can not solve
the interval system Bx = b since the interval matrix B is not regular, i.e.,
there is a matrix B̃ ∈ B which is singular. We want to obtain an inner
box for its solution set by our new approach. Using Eqs. (2) and (3), the
triangular matrix L is obtained as follows

L =


[0.3223, 1.0896] 0 0 0
[0.0393, 0.0836] [0.3137, 1.4692] 0 0
[0.0065, 0.0799] [−0.0002, 0.6762] [0.4472, 1.1489] 0
[0.0085, 0.6314] [0.0910, 0.6448] [0.0224, 0.1164] [0.2510, 0.2688]

 ,

and it satisfies B = LLT . Since L is proper, using Eqs. (7) and (8) we
obtain

x =


[−0.6110, 279.8203]
[43.6027, 920.6500]
[−98.4370, 52.2610]

[−329.7889,−200.8584]

 .

Since L and x are proper, according to Theorem 1, x ⊆ Σ(A,b). Note that
the first three components of x contain the first three components of the
solution (3, 60, 27, 42)T of the main system.

6 Concluding remarks

In this paper, using the Cholesky decomposition introduced by Zhao et
al. [38], we proposed an algorithm to find the algebraic solution of the sym-
metric interval systems. We then utilized this decomposition to construct
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Table 2: 1987 Washington State Input-Output study: Direct purchase coefficient table
with uncertainty

Natural Resource Manufacturing Trade and Services Personal Consumption

Natural Resource [ 0.1039, 1.1873] [ 0.0126, 0.0911] [ 0.0020, 0.0871] [ 0.0027, 0.6879]

Manufacturing [ 0.0126, 0.0911] [ 0.1000, 2.1653] [ 0.0000, 1.0000] [ 0.0288, 1.0000]

Trade and Services [ 0.0020, 0.0871] [ 0.0000, 1.0000] [ 0.2000, 1.7834] [ 0.0100, 0.6201]

Personal Consumption [ 0.0027, 0.6879] [ 0.0288, 1.0000] [ 0.0100, 0.6201] [ 0.0718, 0.9002]

inner and outer estimations to the generalized solution set introduced in
Section 4. Also we applied the new approach for solving an important prob-
lem in economic without computing the interval inverse matrix or need to
have an initial guess. The numerical experiments showed the effectiveness
of the proposed approaches.
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