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Abstract. An implicit finite difference method is implied to approximate
a parabolic partial differential equation for capillary formation in tumor
angiogenesis. After that, the stability analysis of the method will be in-
vestigated. At the end, some numerical simulations are considered to show
the applicability and efficiency of the scheme.
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1 Introduction

Mathematical methods can help scientists to find solutions of problems.
There are many types of research to imply methodology for mathematical
models. We can point out the novel biological problems like [3,4]. Although
there are many mathematical models, the capillary formation model in
tumor angiogenesis is the one we address in this paper.

Angiogenesis is a natural phenomenon meaning the formation of new
capillaries from the previous vessels and plays an important role in various
physiological processes such as organ development, wound healing and re-
production. However, the internal conditions of the body sometimes cause
excessive proliferation of this phenomenon causing the formation of a local
tumor.

∗Corresponding author.
Received: 26 February 2020 / Revised: 17 March 2020 / Accepted: 17 March 2020.
DOI: 10.22124/jmm.2020.15830.1386

c© 2020 University of Guilan http://jmm.guilan.ac.ir

http://jmm.guilan.ac.ir


178 A. Shahkarami, B. Ghazanfari

A mathematical model for capillary formation in tumor angiogenesis is
presented as [1, 2, 5–7]
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where u(x, t) represents the concentration of endothelial cells and describes
the motion of endothelial cells with the cell diffusion constant K, which
is chosen as a non-zero constant [1, 2, 6, 7] and h is named the transition
probability function which is defined by

h(x) =
(a+Axs(1− x)s
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)β1(d+ 1−Bxs(1− x)s

d+ 1−Bxs(1− x)s
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.

Moreover, the parameters a, b, d, e, A, B, s, β1, and β2 are some arbitrary
constants [1, 2, 5–7].
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Similarly, for boundary conditions, we obtain
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(3)

Different numerical methods have been proposed to solve the above model.
The first method is to use the method of lines presented by Pumak and
Erdem [6]. This method, first, converts the partial differential equation
(PDE) (1) to a system of ordinary differential equations (ODEs), and then
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solves this system of ODEs [6]. Saadatmandi et al. in [7] implemented a
method based on the shifted Legendre polynomials. The iterated operating
method was published by the authors of [2]. This method, firstly, splits the
equations into two parts, then it applies suitable difference approximation
techniques for each part to obtain linear bounded systems. At the end,
these systems are combined with iterative schemes and the midpoint rule
[2]. Finally, Abbasbandy et al. applied an analysis based on radial basis
functions meshfree method for the problem [1].

To obtain stable numerical solutions, the authors in the first three meth-
ods set the value of the cell diffusion constant, K, in some small values.
However, this restriction was neglected in applying the fourth method [2].

Unfortunately, the stability of the RBF method depends on an extra
parameter called the shape parameter and this makes the stability false for
either the RBF type or some values of the shape parameter.

In the RBF method, the model was approximated by a weighted iter-
ated method based on two levels n and n + 1 for interior domain, and an
approximation based on level n+ 1 for boundary points. In this paper, we
apply a weighted finite difference (FD) method for all points of the spatial
domain at one time level.

The finite difference method is presented in Section 2 and the stability
analysis of the FD method is discussed in Section 3. Finally, some numerical
simulations and the conclusion are presented in Section 4 and Section 5,
respectively.

2 Finite difference method

The purpose of this section is to present a weighted approximating solution
of (2)-(3) between two consecutive time levels n and n+1 based on the finite
difference method. To this end, we impose 0 ≤ θ ≤ 1 and partition the
interval [0, 1] by N points as {xk = k∆x : k = 1, 2, . . . , N} and the interval
[0, τ ] by m + 1 points as {tn = n∆t : n = 0, 1, . . . ,m} where ∆x = 1

N and
∆t = τ

m+1 .
The aim is to attain a numerical solution at time level n + θ. Hence,

we try to approximate (2)-(3) as
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180 A. Shahkarami, B. Ghazanfari

for k = 1, N , where n = 1, 2, . . . ,m.

We denote the numerical solutions of the model at points (k, n), (k, n+
1) and (k, n + θ) by unk , un+1

k and un+θ
k , respectively. To describe un+θ

k in
terms of unk and un+1

k , we consider the θ-weighted average of the time levels
n and n+ 1 for the approximation of right-hand side terms of (4) [8]; that
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We substitute Eqs. (5)-(8) in (4) and we have
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In the above equation, by assigning 0, 1
2 , and 1 to θ, the resulting equa-

tions are equivalent to backward difference, Crank-Nicolson, and forward
difference methods, respectively.

Also, we apply the following backward and forward differences for the
boundary conditions at the points x = 0 and x = 1, respectively, as
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3 Stability analysis

For the stability analysis, we utilize the Von Neumann method based on
the Fourier series. Based on this method, the initial cells are written as
a finite summation. Then the method considers the growth of a function
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reduced by a “variables separable” for the summation [8]. According to
that, we set unk = eiβxkξn with i2 = −1, in Eq. (9) and then
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Then, the method discussed in Eq. (9) is stable if and only if |ξ| ≤ 1 [8].
By a simple calculation, this condition yields

1
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Therefore, by choosing values of K, ∆t and ∆x satisfying in Eq. (11), the
FD method for Eq. (4) will be stable. Also Eq. (11) shows that the FD
method can be extensively applied for solving the model by more extensive
values of K.

4 Numerical simulations

Now, some numerical cases for the presented model are studied. Each
case investigates the change effect of one or more parameters. To have a
comparison, we put a = 0.1, b = 2, e = 10, β1 = β2 = 1, A = 28× 107 and
B = 22× 109 like [1, 2, 6, 7].

We cannot compare the solution directly because of the unavailability of
the exact solution of (1). Therefore, to explain the accuracy and efficiency
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Figure 1: Numerical results of case 4.1.

of the method, we define a pointwise approximate relative error as

ε =

√√√√√∑N
i=1(un

ĩ,Ñ
− uni,N )2∑N

i=1(un
ĩ,Ñ

)2
.

In the above equation, uni,N and un
ĩ,Ñ

are the approximation solutions for

Eqs. (9)-(10) by partitioning of the spatial domain at level n by N , and Ñ
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Table 1: Relative error and L∞ for Case 4.1.

t Relative error Relative error L∞ = ‖un+1 − un‖∞
Ñ = 2N − 1 Ñ = 2N − 3

0.5 2.9166× 10−7 3.6559× 10−6 1.2633× 10−3

10 1.2465× 10−6 1.5616× 10−3 1.2359× 10−3

50 2.1096× 10−5 2.6381× 10−6 1.0201× 10−3

100 5.9114× 10−5 7.3900× 10−5 7.9938× 10−4

300 2.3557× 10−4 2.9549× 10−4 3.7545× 10−4

500 3.9661× 10−4 5.0514× 10−4 2.2954× 10−4

600 4.7300× 10−4 6.0813× 10−4 1.8987× 10−4

750 5.8349× 10−4 7.5986× 10−4 1.4933× 10−4

—

Table 2: A comparison between FD and RBF methods for Case 4.1.

t Relative error Relative error Difference
FD method RBF method

1 0 2.0893× 10−6 2.0893× 10−6

2 2.5790× 10−8 3.1839× 10−3 3.1839× 10−3

10 1.2465× 10−6 4.5941× 10−6 3.3476× 10−6

50 2.1096× 10−5 3.5833× 10−6 1.7513× 10−5

100e 5.9114× 10−5 1.1834× 10−5 4.7280× 10−5

200 1.4812× 10−4 1.1015× 10−5 1.3710× 10−4

375 2.9769× 10−4 1.6142× 10−5 2.8155× 10−4

500 3.9661× 10−4 3.3619× 10−5 3.6299× 10−4

600 4.7300× 10−4 4.8475× 10−5 4.2452× 10−4

750 5.8349× 10−4 7.1250× 10−5 5.1224× 10−4

points, respectively, such that xi in N -point partition is the same as xĩ in
the Ñ -point partition. For this purpose, we choose γ̃ = 2γ−1 or γ̃ = 4γ−3
for γ = N, i.

All solutions obtained by starting with the initial cells, and then used
the iterated method mentioned in Eqs. (9)-(10).

4.1 Case 1

In the first case, we consider the problem (1) with K = 0.00025 as the
cell diffusion constant and τ = 750. The proposed approach is performed
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Figure 2: Numerical results of case 4.2
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Figure 3: Numerical results of case 4.3.
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Table 3: Relative error and L∞ for Case 4.2.

t Relative error Relative error L∞ = ‖un+1 − un‖∞
Ñ = 2N − 1 Ñ = 4N − 3

0.05 3.1431× 10−9 8.7349× 10−5 1.2860× 10−4

0.1 1.4489× 10−8 2.3549× 10−4 1.2833× 10−4

0.5 3.7478× 10−7 1.4241× 10−3 1.2616× 10−4

1 1.3944× 10−6 2.8807× 10−3 1.2341× 10−4

3 9.5523× 10−6 8.3880× 10−3 1.1236× 10−4

5 2.1485× 10−5 1.3440× 10−2 1.0182× 10−4

6 2.8337× 10−5 1.5815× 10−2 9.6886× 10−5

7.5 3.9446× 10−5 1.9208× 10−2 8.9978× 10−5

9 5.1353× 10−5 2.2414× 10−2 8.3671× 10−5

10 5.9640× 10−5 2.4457× 10−2 7.9792× 10−5

Table 4: Relative error and L∞ for Case 4.3.

t Relative error Relative error L∞ = ‖un+1 − un‖∞
Ñ = 2N − 1 Ñ = 2N − 3

0.005 7.4011× 10−7 9.2545× 10−7 3.8622× 10−3

0.01 2.4845× 10−6 3.1062× 10−6 3.5812× 10−3

0.05 2.7170× 10−5 3.3982× 10−5 1.9700× 10−3

0.1 6.2807× 10−5 7.9604× 10−5 1.1340× 10−3

0.3 2.3174× 10−4 3.2360× 10−4 3.5874× 10−4

0.5 3.6314× 10−4 5.1724× 10−4 1.8537× 10−4

0.6 4.0280× 10−4 5.7536× 10−4 1.3839× 10−4

0.75 4.3812× 10−4 6.2664× 10−4 9.0302× 10−5

0.9 4.5399× 10−4 6.4870× 10−4 5.9266× 10−5

1 4.5789× 10−4 6.5308× 10−4 4.4860× 10−5

using N = 50, ∆t = 0.1 and θ = 1
2 (the Crank-Nicolson finite difference

method). Figure 1 shows the results of the method for this case which
are like the results of [1, 2, 6, 7]. Also, Table 1 shows the relative error and
L∞ = ‖un+1−un‖∞ for this Case. As seen, the L∞ is decreased by growing
the time level, while the L∞ was significantly surged in the RBF method as
the shape parameter increased [1]. Moreover, Table 2 shows a comparison
between the FD and RBF methods for Case 4.1.

Note that the RBF method was stable for the only multiquadric function
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and a few values of its shape parameter, which has not appeared in the
method.

4.2 Case 2

In this case, we set the problem with τ = 100, ∆t = 0.01 and the other
parameter like Case 4.1. Table 3 relates some relative error and Figure
2 shows some results of this case. Similar to Case 4.1, the L∞ error has
decreased.

4.3 Case 3

As the third and last case, we put N = 100, K = 0.08, τ = 1, ∆t = 0.001
and θ = 1 for Eq. (9). Table 4 and Figure 3 present the results of the third
case.

5 Conclusion and comments

In this study, the finite difference method was applied for a mathematical
model of capillary formation in the angiogenesis tumor by discretizing of
two successive levels of time, called the θ-method. Then the stability of
the method was discussed based on the Von Neumann method which yields
the convergence according to Lax’s theorem [8]. In order to demonstrate
the correction of this stability, several numerical cases were simulated, in
which the change of the cell diffusion constant, as well as the variations
of different parameters of the numerical method were used to obtain the
approximated solution at different time levels.

References

[1] S. Abbasbandy, H.G. Roohani and I. Hashim, Numerical analysis of a
mathematical model for capillary formation in tumor angiogenesis us-
ing a mesh free method based on the radial basis function, Engineering
Analysis with Boundary Elements 36 (2012) 1811-1818.

[2] N. Gucuyenen and G. Tanoglu, Iterative operator splitting method for
capillary formation model in tumor angiogenesis problem: analysis and
application, Int. J. Numer. Meth. Biomed. Eng. 27 (2011) 1740-1750.

[3] A. Khodadadian, K. Hosseini and A. Ali Manzour-Ol-Ajdad, M. He-
dayati, R. Kalantarinejad, C. Heitzinger, Optimal design of nanowire
field-effect troponin sensors, Comput. Biol. Med. 87 (2017) 46-56.



188 A. Shahkarami, B. Ghazanfari

[4] A. Khodadadian and C. Heitzinger, A transport equation for confined
structures applied to the OprP, Gramicidin A, and KcsA channels, J.
Comput. Electron. 14(2) (2015) 524-532.

[5] H.A. Levine, S. Pamuk, B.D. Sleeman and M. Nilsen-Hamilton, Math-
ematical model of capillary formation and development in tumor an-
giogenesis: penetration into the stroma, Bull. Math. Biol. 63(5) (2001)
801-863.

[6] S. Pamuk and A. Endern, The method of lines for the numerical so-
lution of a mathematical model for capillary formation: the role of
endothelial cells in the capillary, Appl. Math. Comput. 186 (2007)
831-835.

[7] A. Saadatmandi and M. Dehghan, Numerical solution of a mathemat-
ical model for capillary formation in tumor angiogenesis via the tau
method, Commun. Numer. Math. Engng. 24 (2008) 1467-1474.

[8] G.D. Smith, Numerical solution of partial differential equations, Third
Edition, Clarendon Press, Oxford, 1985.


	1 Introduction
	2 Finite difference method
	3 Stability analysis
	4 Numerical simulations
	4.1 Case 1
	4.2 Case 2
	4.3 Case 3

	5 Conclusion and comments

