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Abstract. In this paper, we use Chebyshev polynomials to seek the numer-
ical solution of a class of multi-variable order fractional differential equa-
tion (MVODEs) that the fractional derivative is described in the Caputo-
Prabhakar sense. Using operational matrices, the original equations are
transferred to a system of algebraic equations. By solving the system of
equations, the numerical solutions are acquired that this system may be
solved numerically using an iterative algorithm. The effectiveness and con-
vergence analysis of the numerical scheme is illustrated through four nu-
merical examples.
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1 Introduction

Fractional calculus becomes a central branch of mathematical analysis and
differential equations. Differential equations with fractional order deriva-
tives have important applications in different fields of science, economics
and finance, like physics, engineering, possibly including fractal phenom-
ena, including numerical analysis and so on [3, 4, 8–11, 14–17, 23]. In this
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paper, we survey and study a new approach for solving multi variable or-
ders differential equations(MVODEs) with Prabhakar function (the order
of derivative (or integral) operator is not a constant but it is a function of
space, time or other variables)as followed:

N∑
i=1

ηi(t)D
γ
ρ,µi(t),ω,a+

Θ(t) = f(t,Θ(t)), 0 < t < 1,

Θ(0) = Θ0, (1)

where N is a positive integer number and µi(t) are bounded in the inter-
val [0, 1]. ηi(t) are known functions. Θ(t) is a continuously differentiable
function. Also the operator Dγ

ρ,µi(t),ω,a+
is a differential operator in the

sense of the Caputo-Prabhakar fractional derivatives of order µi(t) that
the Caputo-Prabhakar fractional derivatives is obtained by modifying the
Riemann-Liouville integral operator by replacing its kernel by a Prabhakar
function, that this function is defined as follows:

Eγρ,µ(z) =
1

Γ(γ)

∞∑
n=0

Γ(γ + n)

n!Γ(ρn+ µ)
zn, <(ρ),<(µ) > 0,

where, for γ = 1 we recover the two-parametric Mittag-Leffler function

Eρ,µ(z) =
∞∑
n=0

1

Γ(ρn+ µ)
zn, <(ρ),<(µ) > 0, (2)

and for γ = µ = 1 we recover the classical Mittag-Leffler function

Eρ(z) =

∞∑
n=0

1

Γ(ρn+ 1)
zn, <(ρ).

Then the Prabhakar function is a function which extends the well-known
two-parameter Mittag-Leffler function (Eρ,µ(z)) which is the most straight-
forward generalization of the classical Mittag-Leffler function Eρ(z). One
of the reasons that made us interested in the Prabhakar function is re-
lated to the description of relaxation and response in anomalous dielectrics
of Havriliak-Negami type and a model of complex susceptibility intro-
duced to keep into account the simultaneous non-locality and nonlinearity
observed in the response of disordered materials and heterogeneous sys-
tems [14–16, 26, 27]. Also there are numerous old and recent studies con-
cerned with the Prabhakar function (see, for example [7, 19, 24, 28]). It is
not easy to obtain exact solution of fractional ordinary/ partial/ integro-
differential equations with the kernel of the variable order and therefore, a
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numerical method is used to solve them [2, 12, 13]. Few research has been
done in this area for solving variable order of the differential equations using
the numerical approximation. A great number of authors have significant
contributions which deal with these types of the differential equations of
variable order. In fact, different numerical algorithms are developed for
obtaining numerical solutions of different types of MVODEs. In this field,
kernel method is used in [25, 31], Jacobi polynomials to obtain solution
of the multi-variable orders differential equations is used in [18], spectral
method is used in [6], Bernstein polynomials to obtain solution the multi-
variable orders differential equations is used in [21], finite difference method
is used in [30], an improved collocation method is applied in [5].

In this paper, we use the fifth-kind Chebyshev polynomials as basic
functions to obtain operational matrices. We transfer the original equa-
tions to a system of algebraic equations using operational matrices and
collocation method. For this purpose, in Section 2 we recall the fundamen-
tal definitions in fractional calculus and introduce the fractional derivative
with Prabhakar kernel. In Section 3, we survey the fifth-kind Chebyshev
polynomials , also in this section the operational matrix of variable order
derivative operators are discussed. In Section 4, we describes the proposed
method for solving MVODEs. In Section 5, we investigate the convergence
analysis of our proposed method. This section is followed by several illus-
trative examples in Section 6.

2 Preliminaries

In this section, we recall some definitions and lemmas of fractional integral
and differential operators which are used in the next sections.

Definition 1. [22,29] For 0 < α ≤ 1 and f ∈ L1[a, b], 0 < t < b ≤ ∞, the
left-and right-sided Riemann-Liouville fractional integrals and derivatives
of order α are defined as:

Iαa+f(t) =
1

Γ(α)

∫ t

a
f(τ)(t− τ)α−1dτ,

Iαb−f(t) =
1

Γ(α)

∫ b

t
f(τ)(τ − t)α−1dτ,

Dα
a+f(t) =

1

Γ(α)

d

dt

∫ t

a
f(τ)(t− τ)−αdτ,

Dα
b−f(t) = − 1

Γ(α)

d

dt

∫ b

t
f(τ)(τ − t)−αdτ.
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Also, for the absolutely continuous function f , the left-and right-sided Ca-
puto fractional derivatives of order α are defined as follows:

CDα
a+f(t) = I1−α

a+
d

dt
f(t) =

1

Γ(1− α)

∫ t

a
(t− τ)−α

d

dτ
f(τ)dτ,

CDα
b−f(t) = −I1−α

b−
d

dt
f(t) = − 1

Γ(1− α)

∫ b

t
(τ − t)−α d

dτ
f(τ)dτ.

Definition 2. [20] For m−1 < <(µ) ≤ m and f ∈ L1[0, b], 0 < t < b ≤ ∞,
the left-and right-sided Prabhakar fractional integrals are defined as follows:

(Eγ
ρ,µ,ω,a+

f)(t) =

∫ t

a
(t− τ)µ−1Eγρ,µ(ω(t− τ)ρ)f(τ)dτ,

(Eγ
ρ,µ,ω,b−f)(t) =

∫ b

t
(τ − t)µ−1Eγρ,µ(ω(τ − t)ρ)f(τ)dτ,

where ρ, µ, ω, γ ∈ C and Eγρ,µ is Prabhakar function(2).

Definition 3. [20] For the function f ∈ L1[0, b], the left-and right-sided
Prabhakar fractional derivatives are defined as:

(Dγ
ρ,µ,ω,a+

f)(t) =
dm

dtm
E−γ
ρ,m−µ,ω,a+f(t),

(Dγ
ρ,µ,ω,b−f)(t) = (−1)m

dm

dtm
E−γ
ρ,m−µ,ω,b−f(t),

where m − 1 < <(µ) ≤ m. For the absolutely continuous function f ,
the left-and right-sided Caputo-Prabhakar fractional derivatives are also
defined as follows:

CDγ
ρ,µ,ω,a+

f(t) = E−γ
ρ,m−µ,ω,a+

dm

dtm
f(t),

CDγ
ρ,µ,ω,b−f(t) = (−1)mE−γ

ρ,m−µ,ω,b−
dm

dtm
f(t).

Lemma 1. [22] Let ρ, µ, γ, ω, ν ∈ C with <(ρ),<(µ),<(ν) > 0. Then:∫ x

0
(x− t)µ−1Eγρ,µ(ω(x− t)ρ)tν−1dt = Γ(ν)xµ+ν−1Eγρ,µ+ν(ωxρ). (1)

2.1 Variable-order fractional calculus

In this subsection, we replace the fractional order µ with a bounded function
m − 1 < µ(t) ≤ m, m ∈ N and consider the definitions of derivative and
integral as follows:
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Definition 4. The right-sided Prabhakar fractional integrals of order µ(t)
are defined by:

(Eγ
ρ,µ(t),ω,a+

f)(t) =

∫ t

a
(t− τ)µ(t)−1Eγρ,µ(t)(ω(t− τ)ρ)f(τ)dτ, (2)

(Eγ
ρ,µ(t),ω,b−f)(t) =

∫ b

t
(τ − t)µ(t)−1Eγρ,µ(t)(ω(τ − t)ρ)f(τ)dτ, (3)

t > 0, m− 1 < µ(t) ≤ m, m ∈ N.

Definition 5. The right-sided Prabhakar fractional derivatives of order
µ(t) are defined by:

(Dγ
ρ,µ(t),ω,a+

f)(t) =
dm

dtm
E−γ
ρ,m−µ(t),ω,a+f(t),

(Dγ
ρ,µ(t),ω,b−f)(t) = (−1)m

dm

dtm
E−γ
ρ,m−µ(t),ω,b−f(t),

t > 0, m− 1 < µ(t) ≤ m, m ∈ N.

Also, for the absolutely continuous function f , the left-sided and the right-
sided Caputo-Prabhakar fractional derivatives are defined as follows:

Dγ
ρ,µ(t),ω,0+

f(t) = E−γ
ρ,m−µ(t),ω,a+

dm

dtm
f(t), (4)

Dγ
ρ,µ(t),ω,0+

f(t) = (−1)mE−γ
ρ,m−µ(t),ω,b−

dm

dtm
f(t). (5)

t > 0, m− 1 < µ(t) ≤ m, m ∈ N.

3 The fifth-kind Chebyshev polynomials

The well-known i th degree fifth-kind Chebyshev polynomials can be defined
on the interval [−1, 1] and can be determined with the following formula [1]:

χi(t) =
1
√
εi

H
−3,2,−1,1
i (t),

where

εi =

{
π

22i+1 , i even,
π(i+2)
i22i+1 , i odd,
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and

H
r,s,ν,w
i (t) =

( b i2 c−1∏
k=0

(2k + (−1)k+1 + 2)w + s

(2k + (−1)k+1 + 2b i2cν)w + r

)
Hr,s,ν,w(t),

Hr,s,ν,w
i (t) =

b i
2
c∑

j=0

(( b i2c
j

)( b i2 c−j−1∏
k=0

(2k + (−1)k+1 + 2b i2c)ν + r

(2k + (−1)k+1 + 2)w + s

)
ti−2j

)
.

χi(t) are orthonormal on [−1, 1], i.e.,∫ 1

0

t2√
t− t2

χm(t)χn(t)dt =

{
1, m = n,
0, m 6= n.

In order to obtain these polynomials on the interval [0, 1] we introduce
the change of variable t → 2t − 1 and substitute 2t − 1 to χi(t) then, the
fifth-kind Chebyshev polynomials can be defined as:

Li(t) = χi(2t− 1).

The functions Li(t) with respect to the following weight function are or-
thonormal

W(t) =
(2t− 1)2√
t− t2

, (1)

and the orthogonality of the functions Li(t) is shown as follows:∫ 1

0

(2t− 1)2√
t− t2

Lm(t)Ln(t)dt =

{
1, m = n,
0, m 6= n.

We can rewrite Li(t) as:

Li(t) =

i∑
l=0

σl,it
l,

where

σl,i =
22l+

3
2

√
π(2l)!


2
∑ i

2

k=b l+1
2
c
(−1)

i
2+k−lkδk(2k+l−1)!

(2k−l)! , i even,

1√
i(i+2)

∑ i−1
2

k=b l
2
c
(−1)

i+1
2 +k−l(2k+1)2(2k+l)!

(2k−l+1)! , i odd,

and

δk =

{
1
2 , k = 0,
1, k > 0.



A new approach for variable orders differential equations 145

We can define the shifted fifth-kind Chebyshev vector as follows:

ϕ(t) = [L0(t),L1(t), . . . ,Ln(t)]T = ATn(t), (2)

where

Tn = [1, t, t2, . . . , tn]T ,

A =


σ0,0 0 0 . . . 0
σ0,1 σ1,1 0 . . . 0
σ0,2 σ1,2 σ2,2 . . . 0

...
...

...
. . .

...
σ0,n σ1,n σ2,n . . . σn,n

 ,

and σ0,2i =
√

2
π . Also the matrix A is invertible.

4 Operational matrix of variable order derivative
operators

In this section, we obtain an approximation for the function Θ(t) in terms of
the shifted fifth-kind polynomials. First we need to find an approximation
for the Caputo-Prabhakar fractional derivative. So we can express the
function Θ(t) in the following series:

Θ(t) =
∞∑
i=0

aiLi(t). (1)

Also, we can approximate Θ(t) by the first n+ 1 terms of the shifted fifth-
kind Chebyshev polynomials as:

Θ(t) ' Θn =

n∑
i=0

aiLi(t) = ∆Tϕ(t),

where the shifted fifth-kind Chebyshev vector ϕ(t) and the shifted fifth-kind
Chebyshev coefficient vector ∆ are given by:

ϕ(t) = [L0(t),L1(t), . . . ,Ln(t)]T ,

∆ = [a0, a1, . . . , an]T .

Also, the coefficient vector ai can be determined by the inner product as [1]:

ai =

∫ 1

0

(2t− 1)2√
t− t2

Li(t)Θ(t)dt, (2)
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where ai are bounded. We derive the operational matrices of derivative
operators of order µi(t) for vector ϕ(t) as:

Dγ
ρ,µi(t),ω,0+

ϕ(t) = Dγ
ρ,µi(t),ω,0+

[
ATn

]
= ADγ

ρ,µi(t),ω,0+
[1, t, t2, . . . , tn]T .

We use relations (2), (4) and Lemma 1, we obtain:

Dγ
ρ,µi(t),ω,0+

ϕ(t) = AE−γ
ρ,1−µi(t),ω,0+

d

dt
[1, t, t2, . . . , tn]T

= A
[
0, t−µi(t)−1E−γρ,2−µi(t)(ωt

ρ), 2t−µi(t)E−γρ,3−µi(t)(ωt
ρ),

. . . , n!tn−µi(t)−2E−γρ,n−µi(t)+1(ωt
ρ)
]T

= AΨi(t)Tn,

where Ψi(t) are (n+ 1)× (n+ 1) matrices as Ψi(t) = [ψil,j ](n+1)×(n+1), and

ψil,j =

{
j!tj−µi(t)−2E−γρ,j−µi(t)+1(ωt

ρ), l = j > 0,

0, otherwise.

According to the relation (2) we have Tn(t) = A−1ϕ(t), then

Dγ
ρ,µi(t),ω,0+

ϕ(t) = AΨi(t)A
−1ϕ(t).

We rewrite AΨi(t)A
−1ϕ(t) = Ωiϕ(t), where Ωi are the operational matrices

for variable orders derivatives based on the fifth-type Chebyshev polyno-
mials.

Then by employing the suggested method on Eq.(1) with initial condi-
tion Θ(0) = Θ0, we obtain

N∑
i=1

ηi(t)D
γ
ρ,µi(t),ω,a+

∆Tϕ(t) =
N∑
i=1

ηi(t)∆
TΩiϕ(t) = f(t,∆Tϕ(t)), 0 < t < 1,

∆Tϕ(0) = Θ0. (3)

Suppose tj = j/(n+ 1), j = 1, 2, . . . , n be the collocation points and R be
the residual function which is calculated as:

R(t, a0, . . . , an) =

N∑
i=1

ηi(t)∆
TΩiϕ(t)− f(t,∆Tϕ(t)). (4)

To calculate solution of Eq.(3) we are solving below system:

R(tj , a0, . . . , an) = 0,

∆Tϕ(0) = Θ0. (5)

By solving the above system we can obtain coefficients ai and the unknown
function Θ(t) can be calculated.
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5 Error analysis

In this section, we present the convergence analysis of our proposed method
in theorems as follows.

Theorem 1. [1] Assume that a function Θ(t) ∈ L2[0, 1] with |Θ(3)(t)| ≤ L
has the expansion as (1). If we define En(t) =

∑∞
i=n+1 aiLi(t), that En(t)

be the global error. Then En can be estimated as:

|En(t)| = |Θ(t)−Θn(t)| < 3L

n
.

Theorem 2. Assume that a function Θ(t) ∈ L2[0, 1] satisfies in Theo-
rem 1 so that the function Θ(t) has a finite approximation as Θn(t) =∑n

i=0 aiLi(t) and the polynomials Li(t) are bounded on [0, 1]. Then we
have:

sup
t∈[0,1]

|Θ(t)−Θn(t)| ≤ 3L

n
+ εn ‖ ∆̃−∆ ‖2,

where εn =
n∑
i=0

√
2(i+ 2)2

π
.

Proof. Suppose that Θ̃n(t) be an approximate solution of Eq.(1), that Θ̃n(t)
is obtained as follows:

Θ̃n(t) =
n∑
i=0

ãiLi(t) = ∆̃Tϕ(t) = ∆̃TATn,

∆̃ = [ã0, ã1, . . . , ãn]T ,

and Θn(t) =
∑n

i=0 aiLi(t) = ∆TATn,∆ = [a0, a1, . . . , an]T . Then

|Θ(t)−Θn(t)| ≤ |Θ(t)− Θ̃n(t)|+ |Θ̃n(t)−Θn(t)|

= |Θ(t)− Θ̃n(t)|+ |
n∑
i=0

ãiLi(t)−
n∑
i=0

aiLi(t)|

= |Θ(t)− Θ̃n(t)|+ |
n∑
i=0

(ãi − ai)Li(t)|.

Using the Theorem 1, we have:

|Θ(t)−Θn(t)| ≤ 3L

n
+ |

n∑
i=0

(ãi − ai)Li(t)|. (1)
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Also, using Cauchy-Schwarz inequality for part two of the Eq. (1), we can
write

|
n∑
i=0

(ãi − ai)Li(t)| ≤
( n∑
i=0

|ãi − ai|2
) 1

2 ×
( n∑
i=0

|Li(t)|2
) 1

2
.

According to [1], we have

|Li(t)| ≤
√

2

π
(i+ 2) =⇒

n∑
i=0

|Li(t)|2 ≤
n∑
i=0

2

π
(i+ 2)2,

and hence ( n∑
i=0

|Li(t)|2
) 1

2 ≤
n∑
i=0

√
2(i+ 2)2

π
= εn,

Therefore, we get

|
n∑
i=0

(ãi − ai)Li(t)| ≤ εn ‖ ∆̃−∆ ‖2 . (2)

Using (1) and (2), we get

sup
t∈[0,1]

|Θ(t)−Θn(t)| ≤ 3L

n
+ εn ‖ ∆̃−∆ ‖2 .

The proof is complete.

6 Numerical examples

In this section, four numerical examples are provided to show the effec-
tiveness of the present method and compare the approximate solution
with the exact solution. In this section, the absolute error are defined
as: e(t) = |Θ(t)−∆Tϕ(t)|, t ∈ [0, 1].

Example 1. Let µ(t) = t, η1(t) = 1, Θ(0) = 0 and

f(t,Θ(t)) =
n∑
p=0

(−t)pB(t)ttp

(1− t)p+1Γ(tp+ 2)

( 2t2

tp+ 2
− t
)
, t ∈ [0, 1].

Its analytical solution is Θ(t) = t2− t. The figures of approximate solution
and its absolute error are shown in Fig. 1 that it indicates the accuracy of
the presented method.
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Figure 1: (a) The exact and the approximate solutions (b) The absolute
error (n = 5), for Example 1.

Example 2. Let µ1(t) = 1− 0.5et, η1(t) = 1, Θ(0) = 1 and

f(t,Θ(t)) = et
(

1 +

n∑
p=0

(µ1(t))
pB(µ1(t))t

µ1(t)p+1τ

(1− µ1(t))p+1Γ(µ1(t)p+ 2)

)
−Θ(t), t ∈ [0, 1],

where

τ = Hypergeometric 1F1[µ1(t)p+ 1, µ1(t)p+ 2,−t].

Its analytical solution is Θ(t) = et. The figures of approximate solution
and its absolute error are shown in Fig. 2 and absolute errors for various
n are shown in Table 1 that it improves the accuracy exponentially.
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Figure 2: (a) The exact and the approximate solutions (b) The absolute
error (n = 5), for Example 2.
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Table 1: The absolute error for various n.

t n = 3 n = 5 n = 7 n = 9

0.1 0.1665 0.3555 0.5211 0.7119
0.2 0.296 0.632 0.9264 .2656

0.3 0.3885 0.8295 1.2159 1.6611
0.4 0.444 0.948 1.3896 1.8984

0.5 0.4625 0.9875 1.4475 1.9775
0.6 0.444 0.948 1.3896 1.8984

0.7 0.3885 0.8295 1.2159 1.6611
0.8 0.296 0.632 0.9264 1.2656
0.9 0.1665 0.41712 0.5211 0.7119

Example 3. Let µ1(t) = t, µ2(t) = 1−0.5et, η1(t) = 1, η2(t) = sin t, Θ(0) =
0 and

f(t,Θ(t)) =

n∑
p=0

6(−µ1(t))pB(µ1(t))t
µ1(t)p+3

(1− µ1(t))p+1Γ(µ1(t)p+ 4)

)
,

+ 6 sin t
n∑
p=0

6(−µ2(t))pB(µ2(t))t
µ2(t)p+3

(1− µ2(t))p+1Γ(µ2(t)p+ 4)

)
,

+ t3 cos t− cos tΘ(t), t ∈ [0, 1], (1)

where the exact solution of this example is Θ(t) = t3. Figure 3 shows
comparison between approximate solution, exact solution and absolute er-
ror that this figure indicates that approximate solution obtained by the
suggested method on Eq. (1) with initial condition is more close to exact
solution. Also, The absolute errors of the presented algorithm are shown
in Table 2.

In the following example the proposed method is compared with re-
sults available in the literature [18] in order to show the performance and
accuracy of the proposed method.

Example 4. We consider the following multi-variable orders differential
equations (MVODE):

Dγ
ρ,µ(t),ω,0+

Θ(t) = − sin(t)Dγ
ρ,µ1(t),ω,0+

Θ(t)− cos tΘ(t) +
6t3−µ(t)

Γ(4− µ(t))

+
6 sin(t)t3−µ1(t)

Γ(4− µ1(t))
+ t3 cos(t), (2)
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Figure 3: (a) The exact and the approximate solutions (b) The absolute
error (n = 5), for Example 3

Table 2: The absolute error for various n.

t n = 3 n = 5 n = 7 n = 9

0.1 0.00185 0.00001 0.00579 0.00791
0.2 0.0148 0.00008 0.04632 0.06328

0.3 0.04995 0.00027 0.15633 0.21357
0.4 0.1184 0.00064 0.37056 0.50624

0.5 0.23125 0.00125 0.72375 0.98875
0.6 0.3996 0.00216 1.25064 1.70856

0.7 0.63455 0.00343 1.98597 2.71313
0.8 0.9472 0.00512 2.96448 4.04992
0.9 1.34865 0.00729 4.22091 5.76639

with the initial condition Θ(0) = Θ′(0) = 0, where, for this problem µ(t) =

2 − sin2(t) and µ1(t) = 1 − e−t3

6 . For this problem the exact solution
is Θ(t) = t3. The approximate solutions of Eq. (2) for µ(t), µ1(t) are
demonstrated in Fig. 4. The results in Table 3 express the performance
of the Caputo-Prabhakar fractional derivative in conjunction with variable
order Caputo derivative [18] in the table captions.

7 Conclusion

In this paper, a new kind of Chebyshev polynomials called Chebyshev poly-
nomials of the fifth-kind was employed for treating some types of multi
variable orders differential equations with non-local and non-singular kernel
that they have been solved using operational matrices based on the fifth-
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Figure 4: The exact and the approximate solutions (n = 5), for Example
4.

Table 3: The absolute error for various values t and n = 4.

t Caputo− Prabhakar Caputo

0.1 0.000995510109830 4.46691e− 17
0.2 0.007964080878637 1.2837e− 16

0.3 0.026878772965398 2.15106e− 16
0.4 0.063712647029093 2.91434e− 16

0.5 0.124438763728696 3.33067e− 16
0.6 0.215030183723187 3.33067e− 16

0.7 0.241459967671543 2.77556e− 16
0.8 0.309701176232740 3.33067e− 16
0.9 0.425726870065757 4.44089e− 16

kind orthonormal Chebyshev polynomials. The derivative is described in
the Caputo-Prabhakar sense. By applying collocation method, we obtained
the approximate solution. The convergence of the presented method was
discussed.
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