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Abstract. We use the cellular automaton (CA) approach to model binary
diffusion in solids. We define an asynchronous CA model and formally take
its continuum limit and show it approaches a differential equation model de-
rived in previous work (Ribera, Wetton, and Myers, 2019, arXiv:1911.07359
[cond-mat.stat-mech]) that exhibits the Kirkendall effect. The framework
allows the exploration of other state change rules based on additional phys-
ical mechanisms.
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1 Introduction

We propose a Cellular Automaton (CA) model to study binary diffusion
in solids. Taking a continuum limit leads to a differential equation model
found in the literature [9] that exhibits the Kirkendall effect, described in
more detail below. The framework allows other state change rules to be
implemented that describe additional materials science phenomena.

The Kirkendall effect is the name given to the physical phenomenon
whereby atomic diffusion occurs via a vacancy exchange mechanism instead
of a substitutional or ring mechanism. Recently the Kirkendall effect has
been used to create hollow nanostructures, which can be used in a variety
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of applications. In [1], Aldinger presents the first example of the use of the
Kirkendall effect to create hollow structures. The hollow interior can be
filled with other molecules which can then be transported and released in
a controlled manner. This leads to applications in drug delivery [2]. Na et
al. [8] present a review on nanostructrues and magnetic resonance imaging
(MRI) techniques used to analyze them. These structures have also been
proposed to enhance the rate capability and cycling stability in lithium-ion

batteries [10]. Hollow nanoparticles have also been reported to be good
catalysts [0,7]. In an attempt to understand, and so better control the
growth of hollow nanoparticles, Ribera et al. [9] rigorously derived govern-

ing equations for the substitutional binary diffusion problem. Moreover,
under sensible assumptions they reduce these governing equations in order
to provide an analytically tractable problem. As a starting point they ex-
amine the one-dimensional problem of an insulated bar. In this paper we
investigate the same problem but from the cellular automaton standpoint.
This will help to understand further the physical mechanisms behind the
Kirkendall effect.

A CA model consists of an n-th dimensional space partitioned into a
discrete subset of m-dimensional volumes, which are called cells and are
defined in a discrete time. A finite list of possible states is defined for
each cell, and each cell has one state at each time. A local neighbourhood
is defined for each cell at every time step. The state of a cell can be
changed by a state change rule, which is a rule that allows the computation
of the new state for the cell, and is dependent on other cells in the local
neighbourhood [5]. Typically, this rule is fixed, that is, it is the same rule
for all cells. It does not change over time and it is applied to all cells
simultaneously. However, this rule can be stochastic, which means that
the new states are chosen according to some probability distribution. This
rule can also be applied to each individual cell independently and so the
new state of a cell affects the calculation of states in neighbouring cells.
Chopard et al. [1] presented the first application of cellular automaton to
model diffusion on lattices. Subsequently many other CA approaches were
applied to reaction-diffusion problems, see Boon et al. [3] and Weimar [11].
To the authors’ knowledge, this type of modelling has not been applied to
coupled, nonlinear diffusion problems, which are the focus of this paper.

In the following section we present the model of Ribera et al. [9], which
will be the starting point of the cellular automaton model, presented in
Section 3. In the limit where the number of cells is large and in the right
time scale, we show formally that the CA model reduces to a special case
of binary diffusion, where one species diffuses much faster than the other.
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In Section 4 we verify the analytic predictions in a computational study,
showing that at large time and with a fast diffuser the CA model coincides
with the continuum model. We end with a short Conclusions section.

2 Continuum model for substitutional binary dif-
fusion

Consider a binary crystalline solid composed of three species: atomic species
A, atomic species B, and vacancies V. We label the fast diffuser as species
A, and the slow one B. Since each site must be in one of the three states,
it is only necessary to work with the evolution of two species to fully define
the problem.

Consider an insulated one-dimensional bar of length 2. At ¢ = 0 the
side x € [—[, 0] is made of material A (and a proportion of vacancies), and
the side x € [0,!] is made of material B (and a proportion of vacancies).
For ¢t > 0 the diffusion of species is defined by

0Xa 0 (v 0Xa\ 0 Xy

ot  Ox (DAA 8x> Oz (DAV 895)’ (1)
oxy 0 X4\ 0 OXy

ot __ax<DVA 8x>+8x<va ax)’ @

where X; are the mole fractions corresponding to the i-th species. We can
recover the fraction of B from

Xp=1-—Xa— Xy.

Note that the diffusion coefficients DX 4> Dav, Dy 4 and Dy vary nonlin-
early with X; [9]. In the limit where A diffuses much faster than B,

DY, ~TXy, Dav ~TX4,
Dya~ (T —1)Xy, Dyy ~[(T = 1) X4 +1].

where I' is a large, positive parameter. The no-flux boundary conditions
are

(3)

0Xa
ox

and the initial conditions are
{ Xaim if —1< 2<0,
0 if 0< z<1,

_0Xy

— =0, (4)
r==l Ox

r==l

[0 if —1< z<0, (5)
XB(CU’O)_{XBM if 0< z<l,
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where X 4 ini, XBini, and Xy i denote the constant initial mole fractions
of material A, B, and vacancies, respectively, and X;ini = 1 — Xy ini, for
1= A, B.

In the following section we will present the CA model and show that it
reduces to (1) and (2) in the continuum limit.

3 Cellular automaton model

In order to define the cellular automaton model for the one-dimensional
problem discussed in Section 2 we are going to define a two-dimensional
space of size N x N that is partitioned into two-dimensional 1 x 1 cells.
This would correspond to a two dimensional lattice of N x N atoms, in
which each cell corresponds to one atomic site. Thus, the list of states for
each cell in the CA model are “A atom”, “B atom”, and “vacancy V.
The grid is considered to be periodic on the top/bottom edges. The model
presented here will be asynchronous, that is, at each time step only one
cell will be picked to apply the state change rule. Since physically atomic
diffusion happens via vacancy exchange, it makes sense that the only cells
in our CA grid that change state are those situated next to a vacancy cell
and the vacancy cells themselves. For this reason, at each time step we
only pick cells that represent vacancies to apply the change of state rule.
Moreover, the choice of which vacancy cell is picked is done at random. We
define the local neighbourhood of a cell as all the cells that surround it.
Thus, each cell has eight neighbours, except the ones on the left and right
columns on the grid, which can have five or three (corners) neighbours. We
pick one of these neighbours at random and then apply the state change
rule, which is defined as follows. If the neighbour cell picked is an A cell,
we will proceed to exchange the states of the vacancy and A cell, and so
A has moved. If the neighbour cell picked is a B cell, the probability of
exchanging states with the vacancy cell is defined to be 1/I'. This will
capture the physical feature in the model of B being I' times slower than
A. Finally, if the neighbour cell picked is a vacancy, no change of states is
applied.

Our interest now is to find the continuum limit of the asynchronous
cellular automaton model we have described. Let us define the fraction of
V cells, A cells, and B cells in the whole grid as

Ny
N2’

Na
N2’

— — — NB

where N; is the number of cells of state ¢. Let us pick a square subgrid of



Cellular automaton for binary diffusion 95

size VN x v/N, and name it the (i, j) subgrid (see Figure 1). Inside it, we
define the following three functions,

e V; j, the fraction of V cells in the (i, j) subgrid;
e A; ;, the fraction of A cells in the (i, j) subgrid;
e B; ;, the fraction of B cells in the (i, j) subgrid.

All three functions above are dependent on space and time. Note that the
choice of M = v/N of the subgrid is arbitrary. We only need limy_,oo M /N =
0 in a suitable manner.

We wish to study the evolution in one time step of the fraction number
of V cells, A cells and B cells inside the (4, j) subgrid. Let fl?’ o ij, BZ j
be the fraction number of A cells, vacancies and B cells, respectively, in
the (i, ) subgrid at time step n. The aim is to compute AZ}FI, ‘Z"JH and
Bﬁl. In the next two sections we will discuss the change of A cells and V/
cells in one time step inside the (7, ;) subgrid, respectively. We will omit

the case of B cells since by conservation it can be found from A and V.

n n
(i,j +1)|subgrid

(i —1,j) subgrid '\/ (i + 1, ) subgrid

] (i, j)|subgrid 1

n (ij—1)[subgrid "

«~ VN =

Figure 1: Sketch of the subgrid set-up. In red the local neighbourhood of
a V cell is shown.

3.1 A cells

There are two factors that can affect the amount of A cells in the (i, )
subgrid in one time step: either a vacancy of the subgrid is able to exchange
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places with an A cell of a neighbouring subgrid (that adds an A cell), or a
vacancy from a neighbouring subgrid is able to exchange places with an A
cell in the (7, ) subgrid (that removes an A cell). Thus, to add one A cell
it is necessary that at the n-th time step

{1.1} a vacancy V inside the (7, j) subgrid is picked;

{1.2} said V is on one of the edges of the (i, j) subgrid,;

{1.3} the cell picked to do the exchange is an A cell and is in one of the
neighbouring (i + 1, 7), (¢ — 1,7), (4,5 + 1), (4,7 — 1) subgrids.

Similarly, to remove one A cell, it is necessary that at the n-th time step

{2.1} a vacancy V in one of the neighbouring (i + 1, 5), (¢ — 1,5), (i,5 + 1),
(i, — 1) subgrids is picked;

{2.2} said V is on one of the edges of the subgrid it is on (the one neigh-
bouring the (7, j) subgrid);

{2.3} the cell picked to do the exchange is an A cell and is in the (3, j)
subgrid.

The probabilities of the events mentioned above are obtained via stan-
dard probability theory under the assumption that A and V are uniformly
distributed in the subdomain,

P({11}) = ]]VVVV P12y = 1YY ©
({13}) *( Z+1]+AZ 1]+A13+1+A2] 1) (8)

and
P({21}) = 155 (Views + Virn g + Vi + Vi) 9)
P({2.2}) = \gvﬁ P({2.3}) = 4 ;. (10)

Now, the fraction of A cells at the next time step fl”“ is just the
fraction of A cells at the current time step A” plus the probablhty of
adding an A cell into the subgrid, P({1.1}) x P({l 2}) x P({1.3}), minus
the probability of removing an A cell into the subgrid, P({2.1}) x P({2.2})
x P({2.3}),

_ _ 1 [NV VN
n+l _ An 2, ] n
Ai’j —Ai,j—i-_”( 2‘—/><4 ) (Al+l]+Az 1]—|—A”+1+AH 1)

1 N n n VvN\ o,
N (sz (Vi1 + Vi + Vi + Vi g+1)) (N ) Az
(11)
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3.2 V cells

As in the previous case, there are two things that can affect the amount of
V cells in the (4,j) subgrid: either an A or B cell in the (¢,j) subgrid is
able to exchange places with a V' cell in one of the neighbouring subgrids
(this adds a V' cell), or a vacancy from the (i, j) subgrid is able to exchange
places with an A or B cell in one of the neighbouring subgrids (this removes
a V cell). To add one vacancy, it is necessary that at the n-th time step

{3.1} a vacancy V in one of the neighbouring (i + 1, 7), (i — 1,7), (4,5 + 1),
(i, — 1) subgrids is picked;

{3.2} said V is on one of the edges of the subgrid it is on (the one neigh-
bouring the (7, j) subgrid);

{3.3} the cell picked to do the exchange is on the (7,j) subgrid and an
exchange actually occurs. Recall that if the exchange is with an A
cell the probability of movement is 1 whereas if the exchange is with
a B cell said probability is 1/T".

Similarly, to remove a vacancy, it is necessary that at the n-th time step

{4.1} a vacancy V inside the (7, j) subgrid is picked;

{4.2} said V is on one of the edges of the (7, j) subgrid;

{4.3} the cell picked to do the exchange is on one of the neighbouring (i +
1,7), i—1,7), (i,7+1), (i, — 1) subgrids and an exchange actually
occurs.

It is assumed that the vacancy concentration is low enough so that the prob-
ability of picking a vacancy to do the exchange is negligible. Consequently
we only define the probabilities

- I'—1
P({3.3}) = 1 - Bi;——
r-1

1 _ _ _ _
P({4.3}) =1 = 2 (Bis1,j + Bio1,5 + Bijs1 + Bij1) —— (13)

(12)

This allows us to write

in+1l _ 7 .
Viij = Vi

1 N o n n n n \/N RN r-1
+N (Ngv (Vz‘—1,j+Vz‘+1,j+‘/;,j—1+‘/¢,j+1)) ( N ) (1_Bi,j T )

LNV (VN L5 P SRR M
- ( ’J) <4N) (1 — E(BHM + By + Bt Bi,j-‘rl)I‘) :
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3.3 Formal Limit N — oo

The objective of the present section is to determine whether in the limit
N — oo the CA model of the previous section reduces to the diffusion
model in equations (1)-(2). Rearranging equation (11) leads to

\/N Vznj (A + Az—i-l J + Az ,J—1 + Az ]+1)

cndl 7
Azj _AZj+N2f/ N

_ _ (15)
(Vin i Vi + V- 1+V;+1)A?,j

N

We may equate this to a standard finite difference form by choosing v N =

Az and At = NB/QV,

At ar (Vi (A Ay AR+ AT )
At Ax?

_ (16)
<V;n "’VH]"'Vg 1+Vzg+1)Ang

Ax?

Note that At is dimensionless. We match CA parameters to differential
equation parameters in the simulations in the next section.
Similarly, equation (14) may be expressed as

Vol [/n _ pn -1
Vijl—X/;,ji(V i+ Vi + Vi 1+V]+1)(1 BJF)

At Ax?
‘7;,1) (4 (B}, it B, g By 1t By J+1)%)
Ax? '

(17)

Taking the limit N — oo in equations (16) and (17), changing the
notation to A4; ; = Xa, B;; = X, Vi,; = Xy, and substituting Xp =
1— X4 — Xy gives

X
0X4 = XVV2XA XAV2Xv, (18)
ot
X
rdXv _ (= DXy VX4 + (1+ (T —1)X4) V2Xy. (19)

ot
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Finally, setting ¢t = £/I", we recover equations (1) and (2). Thus we have
formally shown that the CA model does reduce to the continuous diffusion
model.

4 Results

In this section we present the results of the CA model. For the simulations
we pick a square grid N x N, where N = 200. At the first time step, the
first 100 columns are A cells, and the remaining 100 columns are B cells.
Then we randomly distribute 2000 vacancies (equivalent to 5% of the total
number of cells) throughout the whole grid. A simulation is then run for
1.85 x 10° steps which is sufficient to allow for significant change in the
distribution of cells.

Figures 2(a), 2(c), 2(e) show the distribution of material and vacancies
when I' = 1.5, that is, the diffusion rates between A and B are similar.
Throughout the process vacancies are well distributed in the domain and, by
the time ¢ = t3, the system is close to equilibrium. Figures 2(b), 2(d), 2(f)
show the corresponding evolution when A diffuses much faster than B (I' =
10). In Figure 2(b) we see a greater motion of A to the right than the one
observed in Figure 2(a). However this also means that vacancies accumulate
on the left. In Figure 2(d) it is clear that the vacancy concentration on the
right is low, which acts to slow down the diffusion. This is clear from the
final figure, Figure 2(f), which is far from equilibrium. This may seem
counter-intuitive; A diffuses much faster here than in Figure 2(e) but it
clearly ends up moving slower. This is a result of the initial rapid movement
of A, bringing a high proportion of vacancies to the left and so hindering
further movement. A similar result was noticed in the continuum model
of [9], where a very fast diffuser ends up redistributing more slowly.

In Figure 4 we compare the concentration of vacancies given by the
CA model and that given by the continuum model in equations (1)-(2) at
different times for two values of ratio between the diffusion rates; I' = 1.5
(Figure 4(a) and 4(b)) and I' = 10 (Figure 4(c) and 4(d)). The numerical
solution of (1)-(2) is standard and defined in [9]. The CA results come
from an average of simulations. To achieve this we define

Vs
V=N, 20)
i=1

where {N{,}? is the number of vacancies at the j-th column on the n-th
time step, the superscript ¢ is used to distinguish different simulations, and
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X

(b) T =10, t = t,.

(C) F:1.5,t:t2. (d)FZIO,f:tQ.

X X

Figure 2: Resulting grid 200 x 200 for different times obtained with the
simulation of the CA model. Red denotes A atom cells. Blue denotes B
atom cells. Yellow denotes vacancy cells. 1 < to < t3.

I is the total number of CA simulations. The variable V" denotes the
average concentration of vacancies at the j-th column on the n-th time
step. The results shown in Figure 4 correspond to I = 10.
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To be able to compare the variable V]” and the numerical solution Xy
of (1)-(2) we need to find a correspondence between the discrete time in
the CA simulation and the continuous time in the PDE system. Let n be
the time step that needs to be transformed to a continuum time ¢,,. Then

(21)

where t, is the time scale defined in [0]. It is defined as t; = Aa®T'g/(el?),
where € = 2Xyini, A is a geometric factor, a is the lattice constant and
I'p is the hop frequency of species B. Finally, [ is the length of the one-
dimensional bar and it is found via the lattice site density p and the number

of cells in our CA grid,
N3 1/3
zz<> , (22)

p
which gives | = 51 nm for the case presented in Figure 4. Using the
parameters values shown in [0, Table 1], we find that ts a~ 1.05 x 10%. There
is only one issue remaining to be treated before being able to compare the
two solutions. When solving the continuum model, the initial condition for
vacancies is given by []

1+ (' = 1)Xa(,0)
X -
vi(z,0) 2 (T = )X

(23)

where Xy = Xy /e. We do this rescaling to be able to keep track of the
evolution of vacancies since this number is usually very small compared
to the concentration of species A and B. The initial condition for the CA
model corresponds to Xy,1(z,0) ~ 0.5. This means that if ng is the initial
time step in the CA model, the actual ns, that corresponds to the initial
time g is ny, = rng, where r > 1 (see Figure 3). To find this rescaling
factor 7 we minimise the least-squares error between the continuum model
and the discrete set of data anf at ny = 1.85 X 10°. For I' = 10, we find
that r = 26.171; for I' = 1.5, r = 21.528. The comparison of Vi, for
j=1,..., N and Xy (t,z), with x € [—1, 1], is now well defined.

In Figure 4 we compare results for the vacancy concentration from the
continuum model of equations (1)-(2) and the average result of 10 simula-
tions via equation (20). First, we note what was observed in the previous
figures, when I' = 1.5 the vacancy concentration is relatively constant.
When I' = 10 vacancies concentrate on the left, thus slowing the move-
ment of the fast diffuser. All figures show good agreement, even when
I' = 1.5. The most noticeable discrepancies occur at small times, near the
ends x = +1, where the continuum model indicates greater movement from
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the initial condition (Xy = 0.5). This is not surprising, continuum diffu-
sion models typically allow for motion throughout the domain even though
in reality extreme points may not be feeling any effect. Hence we expect
that for small times the CA model is more realistic, and the agreement
improves with time.

1 1
0.9 0.9
0.8 0.8
0.7 07
0.6 3

> 05F

0.4

03

0.2 0.2

01 0.1

-1 05 o 05 1 -1 05 o 05 1

1
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0.8 :
0.7
0.6

> 0.5
0.4
0.3

0.2

0.1

o o
-1 -0.5 o 05 1 -1 05 o 05 1

(c) T =10, t = 0.0574. (d) T =10, t = 0.3263.

Figure 4: Dotted line is obtained by joining the discrete normalised vacancy
average concentration V" obtained via the CA model (equation (20)). Solid
line represents the numerical solution of the continuum model described by
equations (1)-(2).

5 Conclusions

The goal of this paper was to develop a cellular automaton model to de-
scribe binary diffusion in solids. To do this we chose to employ an asyn-
chronous model and used basic rule definitions to update the cell states,
based on the physics that drive the process.

In the limit of large number of cells we showed that this CA model
reduces to a particular form of the continuum model developed in [9]. This
was verified in the Results section by comparing the CA and the continuum
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model. This opens the possibility of designing various scenarios in a very
simple fashion and then taking the limit to obtain the continuum model to
do a more accurate analysis.

An interesting result to
come out of this work is CA discrete time Continuous time
that when the system has no 4
a very fast diffuser it can s

lead, overall, to a slower dif- SsloTng = nyg,

fusion process. This occurs el

because the initial fast dif- Ty
Mg to

fusion acts to move nearly
all vacancies to one side, so
restricting further vacancy
exchange and so movement.

Figure 3: Time conversion sketch.

Obviously the CA model becomes increasingly cumbersome as the num-
ber of cells increases. For sufficiently large numbers a continuum model is
clearly preferable. However, when the number of cells is small, for example
when modelling nanoscale diffusion, CA models provide a powerful tool
which may be more accurate than the continuum models.
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