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Abstract. In this work, an initial value problem for a weakly coupled
system of two singularly perturbed ordinary differential equations with dis-
continuous source term is considered. In general, the system does not obey
the standard maximum principle. The solution to the system has initial and
interior layers that overlap and interact. To analyze the behavior of these
layers, piecewise-uniform Shishkin meshes and graded Bakhvalov meshes
are constructed. A backward finite difference scheme is considered on the
meshes and is proved to be uniformly convergent in the maximum norm.
Numerical experiments for both the Shishkin and Bakhvalov meshes are
provided in support of the theory.
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1 Introduction

Singularly perturbed initial and boundary value problems arise in various
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fields of applied mathematics and engineering. In particular, a system of
first order singularly perturbed ordinary differential equations appears in
chemical reactor theory. The presence of small singular perturbation pa-
rameter(s) leads to a multi-scale character and prevent us from obtaining
the exact solution of these problems. The solution to such problems gener-
ally exhibit initial, boundary and interior layer(s) in narrow region(s) where
the solution changes rapidly. For the past few decades, various numerical
approaches that converges uniformly with respect to the small perturba-
tion parameters have been studied in [1–3,8,9,11–14]. Nagarajan et al. [10]
suggested a numerical method to solve a coupled system of two singularly
perturbed delay differential equations with given initial conditions on an in-
terval (0, 2] and established the first-order parameter-uniform convergence.
Liu and Chen [7] developed an adaptive mesh technique with a suitable
choice of monitor function to solve the singularly perturbed initial value
problem. These studies worked with the coupling matrix A that was di-
agonally dominant with strictly positive diagonal entries and nonpositive
off-diagonal entries.

Linss and Madden [5] considered a coupled system of singularly per-
turbed reaction-diffusion equations. The discrete Green’s function tech-
nique was used to derive the parameter uniform convergence of the central
difference scheme on both the Shishkin and Bakhvalov meshes. Kumar and
Kumar [4] constructed a numerical scheme for a coupled system of singu-
larly perturbed initial value problem. The local truncation error and barrier
function technique was used to obtain the parameter uniform convergence
result. The authors considered these systems with the relaxed assump-
tions on the coupling matrix A, but with continuous source term. On the
contrary, we consider a system of two singularly perturbed ordinary differ-
ential equations having discontinuous source term with prescribed initial
condition{

(L1u)(x) := −ε1u′1(x) + a11(x)u1(x) + a12(x)u2(x) = f1(x), x ∈ Ω1 ∪ Ω2,

(L2u)(x) := −ε2u′2(x) + a21(x)u1(x) + a22(x)u2(x) = f2(x), x ∈ Ω1 ∪ Ω2,

(1)

with the initial conditions

u1(0) = X1, u2(0) = X2, (2)

where ε1, ε2 are small perturbation parameters such that 0 < ε1 ≤ ε2 ≤ 1
and it is assumed that{

a11(x) > 0, a22(x) > 0, x ∈ Ω,

max
{∥∥∥a12a11

∥∥∥,∥∥∥a21a22

∥∥∥} < θ < 1, x ∈ Ω.
(3)

Here, Ω = (0, 1), Ω = [0, 1], Ω1 = (0, δ) and Ω2 = (δ, 1) where δ ∈ Ω
and u1, u2 ∈ C0(Ω) ∩ C1(Ω1 ∪ Ω2). The functions a11(x), a12(x), a21(x)
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and a22(x) are supposed to be sufficiently smooth for all x ∈ Ω. The
source terms f1(x) and f2(x) are sufficiently smooth on Ω\{δ} and has a
discontinuity at the point x = δ. This discontinuity leads to the appearance
of the interior layers in the solution of the considered problem in addition
to the initial layers. The jump at δ in an arbitrary function Ψ is defined
as [Ψ](δ) = Ψ(δ+) − Ψ(δ−). The solution satisfies the following interface
conditions

[u1](δ) = 0, [u2](δ) = 0. (4)

Define the constant α as

α = (1− θ) min
x∈Ω
{a11(x), a22(x)}. (5)

The system of equations (1)-(2) can be represented in vector form as

Lu(x) :=

[
−ε1 0

0 −ε2

]
u′(x) + A(x)u(x) = f(x), x ∈ Ω1 ∪ Ω2, (6)

with initial condition
u(0) = X, (7)

satisfying the interface condition

[u](δ) = 0, (8)

where

Lu(x) =

[
(L1u)(x)
(L2u)(x)

]
, u(x) =

[
u1(x)
u2(x)

]
, A(x) =

[
a11(x) a12(x)
a21(x) a22(x)

]
,

f(x) =

[
f1(x)
f2(x)

]
and X =

[
X1

X2

]
.

Throughout this paper, C denotes the general positive constant that is
independent of the perturbation parameters ε1, ε2 and the mesh parameter
N , but it is not necessary that C takes same value at different places.
The norm used to study the convergence of the numerical technique is the
maximum norm defined as ‖g(x)‖D = max

x∈D
‖g(x)‖ for an arbitrary function

g(x) defined on a domain D.
The rest of the paper is organized as follows. In Section 2, the stability

result for an analytical solution is derived. A decomposition of the exact
solution into smooth and layer components is introduced and finer bounds
are obtained on their derivatives. In Section 3, the continuous problem
is discretized using a backward difference scheme on a piecewise-uniform
Shishkin mesh and graded Bakhvalov mesh. A detailed error analysis of
the scheme follows in Section 4. Finally, the numerical test problem is
presented in Section 5.
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2 Continuous problem

The standard maximum principle does not hold for the system (1)-(2) with
the given assumption (3). Therefore, the following stability result for the
scalar ordinary differential operator is required.

Lemma 1. Let y ∈ C0(Ω) ∩ C1(Ω1 ∪ Ω2) be the solution of the scalar
differential operator L̃y(x) := −µy′(x) + a(x)y(x), x ∈ Ω1 ∪ Ω2, satisfying
y(0) = A0 with a(x) ≥ β > 0. Then

‖y‖Ω ≤ max
{∥∥∥ L̃y(x)

β

∥∥∥
Ω1∪Ω2

, |y(0)|
}
.

The next theorem defines the stability result for the continuous problem
(1)-(2).

Theorem 1. The solution ui ∈ C0(Ω) ∩ C1(Ω1 ∪ Ω2) for i = 1, 2 of the
system (1)-(2) satisfies the following bounds

‖ui‖Ω ≤
2∑

k=1

(Π−1)ik max

{∥∥∥ fk
akk

∥∥∥
Ω1∪Ω2

, |uk(0)|

}
,

where Π = (κij)2×2 is an inverse monotone matrix with the diagonal entries

κii = 1 and non-diagonal entries κij = −
∥∥∥aijaii ∥∥∥.

Proof. Consider the following decomposition of the solution ui as the sum
ui = χi + ψi, where χi satisfies the following system of equations{

−εiχ′i(x) + aii(x)χi(x) = fi(x), x ∈ Ω1 ∪ Ω2,

χi(0) = Xi, [χi](δ) = 0,
(9)

and ψi satisfies
−εiψ′i(x) + aii(x)ψi(x) = −

2∑
k=1
k 6=i

aik(x)uk(x), x ∈ Ω1 ∪ Ω2,

ψi(0) = 0, [ψi](δ) = 0.

(10)

Using triangle inequality and the application of Lemma 1 gives

‖ui‖ −
2∑

k=1
k 6=i

∥∥∥aik
aii

∥∥∥‖uk‖ ≤ max
{∥∥∥ fi

aii

∥∥∥
Ω1∪Ω2

, |ui(0)|
}
, for i = 1, 2.

The inverse monotonicity of Π yields the required stability result.
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To examine the layer part, we introduce the following layer functions

Bεli (x) = e−αx/εi , Bεri (x) = e−α(x−δ)/εi , for i = 1, 2. (11)

The reduced system correspond to initial value problem (1)-(2) is given by
Au0 = f , x ∈ Ω1 ∪ Ω2. In order to analyze the numerical scheme, more
precise bounds are required. This is obtained by decomposing the exact
solution u as a sum of the smooth component p and the layer component
q , that is, u = p +q , where the smooth component p is the solution of the
following system:

Lp(x) = f (x), x ∈ Ω1 ∪ Ω2,

p(0) = A−1(0)f (0), p(δ+) = A−1(δ+)f (δ+).
(12)

and the layer component q is the solution of:

Lq(x) = 0, x ∈ Ω1 ∪ Ω2,

q(0) = u(0)− p(0), [q](δ) = −[p](δ).
(13)

Theorem 2. Let the matrix A satisfies (3). Then for i = 1, 2, the smooth
component p and its derivatives satisfy the following bounds

‖p(l)
i ‖Ω1∪Ω2 ≤ C, l = 0, 1, ‖p(2)

i ‖Ω1∪Ω2 ≤ Cε−1
i .

Proof. First we derive the result for x ∈ Ω1 = (0, δ). The bounds on pi is
an immediate consequence of Theorem 1. Therefore, there exists a constant
C such that

‖pi‖ ≤ C. (14)

Differentiating (12), we have

Lp′ :=

[
−ε1 0

0 −ε2

]
p′′ + Ap′ = f ′ −A′p, x ∈ Ω1, p′(0) = 0. (15)

Applying Theorem 1 together with (14), it is not hard to see that

‖p′i‖ ≤ C.

Further use of (15) and the estimates on pi and p′i gives ‖p(2)
i ‖ ≤ Cε

−1
i .

Following the same steps, the similar results can be obtained for x ∈ Ω2.

Theorem 3. Let the matrix A satisfies (3). Then for i = 1, 2, the layer
component q and its derivatives satisfy the following bounds

|q(l)
1 (x)| ≤ C

{
ε−l1 Bεl1 (x) + ε−l2 Bεl2 (x) : x ∈ Ω1,

ε−l1 Bεr1 (x) + ε−l2 Bεr2 (x) : x ∈ Ω2,
for l = 0, 1, (16)
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|q(l)
2 (x)| ≤ C

{
ε−l2 Bεl2 (x) : x ∈ Ω1,

ε−l2 Bεr2 (x) : x ∈ Ω2,
for l = 0, 1, (17)

|q(2)
i (x)| ≤ Cε−1

i

{
ε−1

1 Bεl1 (x) + ε−1
2 Bεl2 (x) : x ∈ Ω1,

ε−1
1 Bεr1 (x) + ε−1

2 Bεr2 (x) : x ∈ Ω2.
(18)

Proof. First we derive the result for x ∈ Ω1 = (0, δ). For i = 1, 2, apply the
following transformation qi(x) = Bεl2 (x)q̂i(x). Then the components q̂i(x)
satisfy the following system

−εiq̂′i +
(
aii − α

εi
ε2

)
q̂i = −

2∑
k=1
k 6=i

aikq̂k,

with the transformed initial condition

q̂i(0) =
ui(0)− pi(0)

Bεl2 (0)
.

Since Bεl2 (0) ≥ 1. Then we have |q̂i(0)| ≤ |ui(0) − pi(0)|. Now by the
definition of α we have(

aii(x)− α εi
ε2

)
≥ (aii(x)− α) > 0.

Applying Lemma 1, we get

‖q̂i‖ −
2∑

k=1
k 6=i

∥∥∥ aik
aii − α

∥∥∥‖q̂k‖ ≤ C, for i = 1, 2.

Then, Proposition 2.6 in [5] and the M -matrix criterion implies ‖q̂i‖ ≤ C,
that gives

|qi(x)| ≤ CBεl2 (x). (19)

Using (13) and (19), we obtain

|q′i(x)| ≤ Cε−1
i Bεl2 (x). (20)

The bounds obtained on the first component q1(x) are not sharp enough,
for this purpose, consider the first equation of the system (13)

−ε1q
′
1 + a11q1 = −a12q2,

q1(0) = u1(0)− u01(0),
(21)
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where u01 is the solution of the corresponding reduced problem. Now de-
composing q1(x) similar to (12) and (13) as the sum q1 = r1 + s1, where
r1(x) satisfy the following system

−ε1r
′
1 + a11r1 = −a12q2,

r1(0) = −a12

a11
q2(0),

(22)

and s1 satisfy the following equation

−ε1s
′
1 + a11s1 = 0,

s1(0) = q1(0)− r1(0).
(23)

Following the similar arguments used to obtain (19)-(20) with the transfor-
mation s1(x) = Bεl1 (x)ŝ1(x), we get

|s(l)
1 (x)| ≤ Cε−l1 Bεl1 (x), l = 0, 1. (24)

Using the bounds established in (19) and (24), the bounds on r1 follows
from r1 = q1 − s1

|r1(x)| ≤ CBεl2 (x). (25)

Differentiating (22), we have

− ε1r
′′
1 + a11r

′
1 = (−a12q2)′ − a′11r1, r′1(0) = 0. (26)

Using the bounds on q2, q′2 and r1, we see that

|(−a12q2)′ − a′11r1| ≤ Cε−1
2 Bεl2 (x).

Now taking the transformation r′1(x) = ε−1
2 Bεl2 (x)r̂1(x) and repeating the

similar steps used to get (19), we obtain

|r′1(x)| ≤ Cε−1
2 Bεl2 (x).

Collecting the bounds for r1(x) and s1(x), the improved bounds on the
layer component q1(x) are

|q(l)
1 (x)| ≤ C{ε−l1 Bεl1 (x) + ε−l2 Bεl2 (x)}, l = 0, 1.

Finally differentiating (13) and using (16)-(17) provides

|q(2)
i (x)| ≤ Cε−1

i {ε
−1
1 Bεl1 (x) + ε−1

2 Bεl2 (x)}.

On the similar lines the same result for x ∈ Ω2 = (δ, 1) can be derived.
This completes the bounds on the layer component.
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3 The discrete problem

In this section, piecewise-uniform Shishkin meshes and graded Bakhvalov
meshes are constructed. The backward finite difference technique is applied
to discretize the continuous problem (1).

3.1 Shishkin Meshes

A piecewise-uniform Shishkin mesh of size N on Ω is constructed as follows.
The interval Ω1 is subdivided into three subintervals [0, σεl1 ], [σεl1 , σεl2 ] and
[σεl2 , δ]. Analogously the domain Ω2 is subdivided into three subintervals
[δ, δ + σεr1 ], [δ + σεr1 , δ + σεr2 ] and [δ + σεr2 , 1]. Each of the subintervals
[0, σεl1 ], [σεl1 , σεl2 ], [σεl2 , δ], [δ, δ+ σεr1 ], [δ+ σεr1 , δ+ σεr2 ] and [δ+ σεr2 , 1]

are scaled with a uniform mesh of N6 mesh points. For convenience, we
assume that N is divisible by 3. The interior points of the mesh are given
as

ΩN = {xj : 1 ≤ j ≤ N2 − 1} ∪ {xj : N2 + 1 ≤ j ≤ N − 1} = ΩN1 ∪ ΩN2 ,

Clearly xN
2

= δ, the point of discontinuity. The mesh points of the discrete

interval are given by Ω
N

= {xj : 0 ≤ j ≤ N}. The transition parameters
in Ω are defined as

σεl2 = min
{

2δ
3 ,

ε2
α lnN

}
, σεl1 = min

{σεl2
2 , ε1α lnN

}
,

σεr2 = min
{

2(1−δ)
3 , ε2α lnN

}
, σεr1 = min

{
σεr2

2 , ε1α lnN
}
.

Note that the mesh is uniform if we choose the transition parameters as

σεl2 = 2δ
3 , σεl1 =

σεl2
2 , σεr2 = 2(1−δ)

3 and σεr1 =
σεr1

2 . The step size in each

of the six subintervals of the domain Ω
N

are given by

H1 =
6σεl1
N

, H2 =
6(σεl2 − σεl1 )

N
, H3 =

6(δ − σεl2 )

N
,

H4 =
6σεr1
N

, H5 =
6(σεr2 − σεr1 )

N
, H6 =

6(1− δ − σεr2 )

N
.

3.2 Bakhvalov Meshes

Let M : [a, b] → R be a strictly positive function. A mesh ω : a = x0 <
x1 < · · · < xN = b is said to equidistribute the monitor function M if:∫ xj

xj−1

M(s)ds =
1

N

∫ b

a
M(s)ds for j = 1, . . . ,N .
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The Bakhvalov mesh is constructed by equidistributing the following mon-
itor function

Ba(s) := max
1≤i≤2

{
1,
Mi

εi
e−αs/σiεi ,

Mi

εi
e−α(s−δ)/σiεi

}
,

where σi ≥ 1 and Mi are some positive constants.

3.3 Finite difference scheme

The mesh function U(xj) = (U1(xj), U2(xj))
T for all xj ∈ ΩN1 ∪ ΩN2 on a

piecewise-uniform Shishkin mesh Ω
N

, the initial value problem (1)-(2) is
discretized using a standard backward difference technique as follows

LNU(xj) :=

[
−ε1 0

0 −ε2

]
D−U(xj) + A(x)U(xj) = f(xj), (27)

U (x0) = X, (28)

and at the point of discontinuity, the scheme is defined as

LNU(xN
2

) :=

[
−ε1 0

0 −ε2

]
U(xN

2
) + A(xN

2
)U(xN

2
) = f(xN

2
−1), (29)

where

D−Ui(xj) =
Ui(xj)− Ui(xj−1)

xj − xj−1
for i = 1, 2.

Note that LNU(xj) = ((LN1 U )(xj), (L
N
2 U)(xj))

T with

(LNi U)(xj) := − εiD−Ui(xj) + ai1(xj)U1(xj) + ai2(xj)U2(xj),

for i = 1, 2. To prove the stability of the approximate solution, the following
lemma is needed.

Lemma 2. Let Y be the solution of the following discrete system (L̃NY )(xj) :=
−µ(D−Y )(xj) + a(xj)Y (xj), Y (x0) = A0 with a(xj) ≥ β > 0. Then

‖Y ‖
Ω
N ≤ max

{∥∥∥ L̃NY
β

∥∥∥
ΩN1 ∪Ω2

N
, |Y (x0)|

}
.

Lemma 3. Let the coupling matrix A satisfies (3). Then the solution U(xj)
for i = 1, 2 of the discrete system (27)-(29) satisfy the following bounds

‖Ui‖ΩN ≤
2∑

k=1

(Π−1)ik max
{∥∥∥ fk

akk

∥∥∥
ΩN1 ∪Ω2

N
, |Uk(x0)|

}
.
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4 Error Analysis

The error analysis for the approximate solution obtained by the backward
difference scheme (27)-(29) is carried out and the parameter-uniform con-
vergence result is derived in the end of the section.

Let R = u − U represents the error of the numerical solution for the
difference scheme (27)-(28), whereR = (R1,R2) and Ri = ui−Ui; i = 1, 2.
We introduce an operator (LNi Y )(xj) := −εi(D−Y )(xj) + aii(xj)Y (xj).
Splitting the error Ri into two parts as the sum Ri = χi + ψi Here, χi
satisfy the following system of equations

(LNi χi)(xj) := (LNi R)(xj), xj ∈ ΩN , χi(x0) = 0, [χi](xN
2

) = 0, (30)

and ψi satisfy the following system

(LNi ψi)(xj) = −
2∑

k=1
k 6=i

aik(xj)Rk(xj), xj ∈ ΩN , ψi(x0) = 0, [ψi](xN
2

) = 0.

(31)
Applying Lemma 3, we obtain

‖ψi‖ΩN ≤
2∑

k=1
k 6=i

∥∥∥aik
aii

∥∥∥‖Rk‖ΩN .
By the application of the triangle inequality, we have

‖Ri‖ΩN −
2∑

k=1
k 6=i

∥∥∥aik
aii

∥∥∥‖Rk‖ΩN ≤ ‖χi‖ΩN .
Using the inverse monotonicity of the defined matrix Π, we get

‖ui − Ui‖ΩN ≤ C‖χi‖ΩN , i = 1, 2. (32)

Since

(LNi R)(xj) = (LNi u)(xj)− (LNi U )(xj) = εi(D
−ui(xj)− u′i(xj)).

Applying Lemma 2 we obtain

‖χi‖ΩN ≤ C max
xj∈ΩN

εi|(D−ui(xj)− (u′i)(xj)|, i = 1, 2.
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Then, the Taylor expansion with an integral form of remainder and the
bounds on u′′i (x) gives

εi

∣∣∣(D− − d

dx

)
ui(xj)

∣∣∣ ≤ ∫ xj

xj−1

εi|u′′i (s)|ds

≤
∫ xj

xj−1

(
1 + ε−1

1 Bεl1 (s) + ε−1
2 Bεl2 (s)

)
ds, i = 1, 2.

Hence
‖χi||ΩN ≤ Cϑ(ΩN ), (33)

where

ϑ(ΩN ) =

∫ xj

xj−1

(
1 + ε−1

1 Bεl1 (s) + ε−1
2 Bεl2 (s)

)
ds.

Thus for a piecewise-uniform Shishkin mesh constructed in section 3.1, we
have ∫ xj

xj−1

(
1 + ε−1

1 Bεl1 (s) + ε−1
2 Bεl2 (s)

)
ds ≤ C(N−1 lnN ).

From (32) and (33), we obtain

‖ui − Ui‖ΩN ≤ C(N−1 lnN ).

For the graded Bakhvalov mesh defined in Section 3.2, we have [6]∫ xj

xj−1

(
1 + ε−1

1 Bεl1 (s) + ε−1
2 Bεl2 (s)

)
ds ≤ CN−1 for x ∈ ΩN ,

and therefore
‖ui − Ui‖ΩN ≤ CN−1.

At the point of discontinuity xN
2

= δ, the local truncation error is given

by:

(LN1 (U − u))(δ) = (LN1 U)(δ)− (LN1 u)(δ),

= f1(δ −H3) + ε1D
−u1(δ)− a11(δ)u1(δ)− a12(δ)u2(δ),

= f1(δ −H3) +
ε1

H3
(u1(δ)− u1(δ −H3))

− a11(δ)u1(δ)− a12(δ)u2(δ).

Using the bounds on u1, we obtain
‖(LN1 (U − u))(δ)‖ ≤ C(N−1 lnN ).

Similarly, we can prove that
‖(LN2 (U − u))(δ)‖ ≤ C(N−1 lnN ).

With the suitable construction of the barrier function, the following main
result can be concluded.
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Theorem 4. Let u be the solution of the continuous problem (1)-(2) and
U be the solution of discrete problem (27)-(29). Then for the Shishkin mesh

‖U − u‖
Ω
N ≤ CN−1 lnN ,

and for the Bakhvalov mesh we have

‖U − u‖ΩN ≤ CN−1.

5 Numerical experiments

In this section two text examples are presented to illustrate the theoretical
result obtained in Section 4.

Example 1. Consider the following singularly perturbed initial value prob-
lem with discontinuous source term

−ε1u
′
1(x) + (2 + x)u1(x) + (1 + x/2)u2(x) = f1(x),

−ε2u
′
2(x) + (1 + x)u1(x) + (2 + 5x)u2(x) = f2(x),

with initial conditions

u1(0) = 1, u2(0) = 3/2,

where

f1(x) =

{
1, 0 ≤ x ≤ 0.5,

0.8, 0.5 < x ≤ 1,
and f2(x) =

{
x+ 2, 0 ≤ x ≤ 0.5,

3/2, 0.5 < x ≤ 1.

Example 2. Consider the following singularly perturbed initial value prob-
lem with discontinuous source term

−ε1u
′
1(x) + (2 + x)u1(x) + u2(x) = f1(x),

−ε2u
′
2(x) + (1 + x)u1(x) + (2 + x)u2(x) = f2(x),

with initial conditions

u1(0) = 1, u2(0) = 3/2,

where

f1(x) =

{
0.2, 0 ≤ x ≤ 0.5,

x+ 2, 0.5 < x ≤ 1,
and f2(x) =

{
ex, 0 ≤ x ≤ 0.5,

1, 0.5 < x ≤ 1.
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By the definition of α in (5), set α = 0.4 for Example 1 and α = 0.6
for Example 2. Take σ = 1 and Mi = σ/α. Due to the fact that the
exact solution of the considered problem is not known, the maximum nodal
errors and the order of convergence are computed using the double mesh
principle defined in [13]. For this, an approximate solution UNi is calculated

on the mesh xj ∈ Ω
N

along with the approximate solution U2N
i on the

mesh Ω
N

consisting of 2N mesh intervals, that is, x2j = xj , j = 0, . . . ,N
and x2j+1 = (xj + xj+1)/2, j = 0, . . . ,N . For the different values of the
perturbation parameters ε1, ε2 and the mesh parameter N , we calculate
the estimate

RNε1,ε2 = ‖U2N
i − UNi ‖ΩN ,

and

RN = max
Tε
{RNε1,ε2},

where the small perturbation parameters takes the values in the set

Tε = {(ε1, ε2) : ε2 = 20, 2−2, . . . , 2−30, ε1 = ε2, 2
−2ε2, . . . , 2

−40}.

Further the numerical convergence rate for Shishkin Mesh is defined as

DN =
lnRN − lnR2N

ln(2 lnN )− ln(ln(2N ))
,

and for Bakhvalov mesh, it is given by

DN =
lnRN − lnR2N

ln 2
.

The uniform error estimateRN and the uniform rate of convergenceDN are
described in Table 1 and Table 2 for Example 1 and Example 2, respectively.
From Table 1 and Table 2, it is observed that the applied difference scheme
gives an almost first order of convergence for a piecewise-uniform Shishkin
mesh and the first order of convergence on a graded Bakhvalov mesh. Figure
1 and Figure 2 describe the presence of initial layer at point x = 0 and the
interior layer to the right hand side of the point of discontinuity x = δ
for some particular values of ε1, ε2 and N for Example 1 and Example 2,
respectively.
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Figure 1: The appearance of initial layer at x = 0 and the interior layer
to the right hand side of the point of discontinuity x = δ with ε1 = 2−6,
ε2 = 2−4 and N = 384.
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Figure 2: The appearance of initial layer at x = 0 and the interior layer
to the right hand side of the point of discontinuity x = δ with ε1 = 2−8,
ε2 = 2−6 and N = 192.
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Table 1: The errors RN and the convergence rate DN

Shishkin Mesh Bakhvalov Mesh
N RN DN RN DN

96 5.69E-02 0.74 1.73E-02 0.94
192 3.78E-02 0.84 9.04E-03 0.97
384 2.34E-02 0.89 4.62E-03 0.98
768 1.39E-02 0.94 2.34E-03 0.99
1536 7.99E-02 0.96 1.18E-03 1.00
3072 4.46E-02 - 5.89E-04 -

Table 2: The errors RN and the convergence rate DN

Shishkin Mesh Bakhvalov Mesh
N RN DN RN DN

96 8.85E-02 0.63 3.43E-02 0.88
192 6.26E-02 0.80 1.86E-02 1.16
384 3.98E-02 0.86 8.31E-03 0.84
768 2.41E-02 0.92 4.63E-03 1.06
1536 1.40E-02 0.95 2.21E-03 0.90
3072 7.86E-03 - 1.19E-03 -
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