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Abstract. Here, three new nonlinear conjugate gradient (NCG) methods
are proposed, based on a modified secant equation introduced in (IMA. J.
Num. Anal. 11 (1991) 325-332) and optimal Dai-Liao (DL) parameters
(Appl. Math. Optim. 43 (2001) 87-101). Firstly, an extended conjugacy
condition is obtained, which leads to a new DL parameter. Next, to set
this parameter, we use three approaches such that the search directions be
close to some descent or quasi-newton directions. Global convergence of the
proposed methods for uniformly convex functions and general functions is
proved. Numerical experiments are done on a set of test functions of the
CUTEr collection and the results of these NCGs are compared with some
well-known methods.
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1 Introduction

Unconstrained optimization problems arised in many applications in science
and engineering [23]. The general form of these problems are as follows :

min
x∈Rn

f(x), (1)
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where f : Rn → R is a smooth nonlinear function and its gradient is avail-
able. The iterative algorithms for solving the unconstrained optimization
problems construct a sequence of solutions as {xk}, with an initial point
x0 ∈ Rn, by following recursive formula :

xk+1 = xk + sk, k = 0, 1, 2, . . . , (2)

where sk is called step at k-th iteration. For line search (LS) methods
the step at the k−th iteration is computed as sk = αkdk, where dk is the
search direction and αk is the step length along this direction. General
form of the search direction is dk = −Hkgk, where gk = ∇f(xk) and Hk

is the matrix of search direction with dimension n × n. The structure of
this matrix is vital for the appropriate search direction [23], which should
be descent or sufficient descent. The step length αk usually is chosen to
satisfy certain line search conditions [30], as inexact line search. Among
them, the so-called Wolfe conditions [30], have attracted special attention
in the convergence analyse and the implementations of conjugate gradient
(CG) methods, requiring:

f(xk + αkdk)− f(xk) ≤ δαkgTk dk, (3)

g(xk + αkdk)
Tdk ≥ σgTk dk, (4)

where 0 < δ < σ < 1. These conditions guaranteed that sTk yk > 0, where
yk = gk+1 − gk.

Among LS methods the CG methods are characterized by low memory
requirements and strong global convergence properties [9], which makes
them popular for engineers and mathematicians engaged in solving large-
scale problems. These methods, using eqn (2), lead to a sequence of the
approximate solutions as {xk} with the following recursive formula for their
search directions:

d0 = −g0, dk+1 = −gk+1 + βkdk, k = 0, 1, 2, . . . , (5)

where βk is a scalar called the CG (update) parameter.
Different choices for the CG parameters in Eq. (5), lead to different CG

methods based on different conjugacy conditions. In early CG methods, the
conjugacy condition is based on the convex quadratic function and the ex-
act line search, which is dTi Hdj = 0, ∀i 6= j, where H is the Hessian of the
objective function. These methods lead to the classic or linear CG meth-
ods such as Fletcher-Reeves (FR) [13], Hestenes-Stiefel (HS) [19], Polak-
Ribiere-Polyak (PRP) [25, 26] and Dai-Yuan (DY) [11]. All of them have
the same performance for classic CG methods, but have different global
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convergence properties and numerical performances for general nonlinear
objective functions or inexact line search. For a complete overview of classic
methods, their categorization and global convergence properties, see [18].
Furthermore, for general nonlinear functions under exact line search all of
them satisfy the conjugacy condition as yTk dk+1 = 0 .

Along with classic CG methods, there are three approaches in defin-
ing CG parameter, βk, which lead to new nonlinear CG (NCG) methods
in literature. In the first approach, which is called descent approach, the
directions in classic CGs are approached or converted to a descent or suf-
ficient descent directions. For example Zhang et al. [39], construct some
descent classic CG direction as three term CG methods with sufficient de-
scent directions. As special case, they proposed a three term HS, TTHS,
with following search direction [39]:

dTTHSk+1 = −gk+1 + βHSk dk − θk+1yk, (6)

where

βHSk =
gTk+1yk

dTk yk
, θk+1 =

gTk+1dk

dTk yk
. (7)

It is also obvious that if exact line search is applied, then θk+1 = 0, and the
above method is reduced to the classic HS method. By replacing the HS
method with other linear CG methods, some new descent methods, such as
TTPR and TTFR can be achieved (see [39]). An attractive feature of these
methods is that the search directions satisfy the sufficient descent condi-
tion, i.e. dTk gk = −‖gk‖2, which is independent of line search procedure.
Also, Babaie-Kafaki and Ghanbari [39] used a descent approach for a hy-
bridization of HS and DY methods, named HCG, based on solving a least-
square problem of minimizing the distance between the search directions
of the HCG method and a three term CG method proposed by Zhang et
al. [39], which possesses the sufficient descent property.

In the second approach, the search directions in NCGs are achieved by
extended conjugacy conditions. For example, Perry [24] incorporated the
secant equation [23,29] to conjugacy condition and proposed a method with
new extended conjugacy condition, which is yTk sk+1 = −sTk gk+1. Next, the
search direction defined as follows:

dPk+1 = −gk+1 + βPk dk = −QPk+1gk+1, (8)

where QPk+1 is the direction matrix, as a nonsymmetric matrix which ap-
proximate the inverse Hessian of the objective function at current iteration,
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and βPk is the Perry CG parameter, which are defined as follows:

βPk =
gTk+1yk

dTk yk
−
gTk+1sk

dTk yk
, QPk+1 = I −

sky
T
k

yTk sk
+
sks

T
k

yTk sk
. (9)

Note that using Wolfe conditions, Eqs. (3)-(4), we have sTk yk > 0, so the
matrix QPk+1 in (9) is well-defined. In Perry approach, the direction matrix,

QPk+1, is not symmetric and also doesn’t satisfied the secant equation [28].
To overcome these defects, Shanno [28] combined the Perry method and
memoryless BFGS method [23], as the most famous QN method, to intro-
duce a new matrix direction as follows :

QSk+1 = I −
sky

T
k + yks

T
k

sTk yk
+ (1 +

yTk yk

sTk yk
)
sks

T
k

sTk yk
. (10)

In 2001, Dai and Liao [10] using an extended Perry conjugacy condition
by a parameter, which is yTk sk+1 = −tsTk gk+1, introduced the new NCG
method by following direction:

dDLk+1 = −gk+1 + βDLk dk = −QDLk+1gk+1, (11)

where

βDLk =
gTk+1yk

dTk yk
− t

gTk+1sk

dTk yk
, QDLk+1 = I −

sky
T
k

sTk yk
+ t

sks
T
k

sTk yk
, (12)

where t is a nonnegative scalar and called the DL parameter. Note that if
t = 0, then βDLk reduces to βHSk , Eq. (7), and if t = 1, then βDLk reduces to
βPk , Eq. (9). Since the setting of the DL parameter is an open problem in
NCG methods [22], many efforts have been made by researchers to adjust
it. For example, in descent approach based on an eigenvalue study, the
authors in [3] proposed a descent family of DL method, namely, DDL. The
search direction in DDL method is as follows [3]:

dDDLk+1 = −(I +
sky

T
k

sTk yk
− tp,qk

sks
T
k

sTk yk
)gk+1, (13)

where tp,qk is DL parameter as follows:

tp,qk = p
‖yk‖2

sTk yk
− q

sTk yk
‖sk‖2

, (14)

where p and q are nonnegative parameters, which p < 1
4 and q ≥ 1

4 . For
more information about setting of the DL parameter, see [1, 2, 5, 6, 37].
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For global convergence properties of general objective functions, the
authors in [10] considered the a truncated form of the DL method, with an
extended CG parameter, namely βDL+k , and following direction:

dDL+k+1 = −gk+1 + βDL+k dk

= −gk+1 +

(
max{

gTk+1yk

dTk yk
, 0} − t

gTk+1sk

dTk sk

)
dk, (15)

In the third approach of determining the NCG parameter, the second
order information is applied in the sense of the QN aspects. It means that
the QN or Newton search directions used to approximate of search direction.
For example as a descent CG method, independent to type of line search,
Hager and Zhang (HZ) [17] introduced the following CG parameter:

βHZk =
gTk+1yk

dTk yk
− 2
‖yk‖2

dTk yk

gTk+1dk

dTk yk
, (16)

This method can be viewed as an adaptive version of the DL parameter

corresponding to t = 2‖yk‖
2

sTk yk
in Eq. (12), where ‖.‖ denotes the Euclidean

norm. Another adaptive DL parameter is based on scaled memoryless
BFGS, suggested by Dai and Kou (DK) [8], as follows:

βDKk (τk) =
gTk+1yk

dTk yk
− (τk +

‖yk‖2

sTk yk
−
sTk yk
‖sk‖2

)
gTk+1sk

dTk yk
, (17)

in which τk is a parameter corresponding to the scaling factor in the scaled
memoryless BFGS method.

All three above approaches for determining NCG parameter can be ap-
plied by variation of conjugacy conditions with modified secant equations.
For example, based on modified BFGS, MBFGS, method in [20], Zhang
and Zhou [38], introduced the modified TTHS method (see Eq. (6)), called
MTTHS, as follows :

dMTTHS
k+1 = −gk+1 + βMHS

k dk − θMk zk, (18)

where

βMHS
k =

gTk+1zk

dTk zk
, θMk =

gTk+1dk

dTk zk
, (19)

and

zk , yk + c‖gk‖rsk, (20)
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where r ≥ 0 and c > 0 are some constant. In Eq. (20), zk plays an impor-
tant role in the global convergence of the MBFGS method for nonconvex
function [38]. This idea motivated us to apply a modified secant equation
for combining the three mentioned approaches in setting the new NCG pa-
rameters based on some optimal DL parameters. In other word, firstly, by
introducing new conjugacy condition, we parametrize the search direction
and next to specify the DL parameter two descent and QN approaches are
used.

The remainder of this paper is organized as follows. In Section 2, we
propose a new extended conjugacy condition based on a new modified se-
cant equation, proposed in [31], and DL approach, Eq. (11). Then we
discuss three methods to setting the DL parameter by descent and QN
search direction approaches. In the first method, we use the MTTHS de-
scent method, Eqs. (18)-(19). In second method, we try to match the
direction matrix of the CG method to the Shanno QN direction matrix,
QSk+1 given by (10). In third method, we use the condition number of the
search matrix direction, similar to [3] for DL method, to descent the search
direction. Afterwards, in Section 3, we discuss the global convergence of
the proposed methods. In Section 4, we numerically compare our methods
with the DK and DDL methods and report comparative testing results.
Finally, we make conclusions in Section 5.

2 New nonlinear conjugate gradient methods

Using modified secant equations are common in CG methods to define new
conjugacy conditions by DL approach, for example see [14,15,20,31–33,35,
36, 38]. However, as far as we know, modified secant equations have not
been manipulated in the DL parameter. Thus for the purpose of setting the
DL parameter in a more accurate fashion, we introduce new NCG methods,
based on a modified secant equation, proposed by Yuan [31]. Therefore, in
this section, we first define a new extended modified conjugacy condition
for NCG methods, and then propose three methods for approximating the
optimal NCG parameters.

2.1 New conjugate condition

As a disadvantage, only the gradient information is used in the standard
secant equation, and the value of the function does not play any role in
it. To resolve this issue, based on Taylor expansion and quadratic inter-
pretation of the objective function, Yuan [31] proposed a modified secant
equation, which then studied by Wei et al. [32, 33] and Li et al. [34]. This
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equation is as follows :

Bk+1sk = yk, yk = yk +Akuk, (21)

where Bk+1 is an approximation of the Hessian matrix of the objective
function, uk ∈ Rn is a vector that satisfy sTk uk 6= 0 and Ak = θk

sTk uk
where

θk is as follows:

θk = 2(fk − fk+1) + (gk − gk+1)
T sk. (22)

It is remarkable that for a quadratic objective function f , we have θk = 0
for every k ≥ 0, and so the modified secant equation in Eq. (21), convert
to the standard secant equation [23]. According to (21), similar to DL
conjugate condition [10], the new extended conjugacy condition is presented
as follows:

dTk+1yk = −tDLgTk+1sk, (23)

where tDL is called DL (update) parameter and the Eq. (23) is named DL
conjugate condition. Using CG direction in (5) and the conjugacy condition
in (23), we have the following CG parameter:

βDLk =
gTk+1yk

dTk yk
− tDL

gTk+1sk

dTk yk
, (24)

By replacing the (24) in (5) and rearranging the vectors, we have the fol-
lowing new search direction :

dDLk+1 = −QDLk+1gk+1 = −(I +
sky

T
k

sTk yk
− tDL

sks
T
k

sTk yk
)gk+1. (25)

The associate CG method is called DL. Now, similar to DL parameter, the
setting of the DL parameter is an important factor. In following, we use
two approaches with three methods to set it.

2.2 Setting the DL parameter

To set the DL parameter, we apply three methods based on two approaches,
descent and QN directions. In the first and third methods the descent
approach and in second method, the QN approach are applied .
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2.2.1 Descent method

Using descent directions in LS approaches is an important issue to conver-
gence analysis. Since the DL search directions, Eq. (25), may not satisfy
the descent condition, so with two approaches, we try to satisfy the descent
condition. In the first approach, similar to [7] for DL method, to close
the DL search direction to the MTTHS direction in (18)-(19), consider the
following subproblem:

tDL∗k = argmin‖dDLk+1 − dMTTHS
k+1 ‖, (26)

where ‖.‖ is the Euclidean norm. By taking simple algebraic calculations,
we get the DL parameter as follows:

tDLk =
1

a2
(a1 − a3 +

a4
‖dk‖2

dTk zk), (27)

where

a1 =
gTk+1yk

dTk yk
, a2 =

gTk+1sk

dTk yk
,

a3 =
gTk+1zk

dTk zk
, a4 =

gTk+1dk

dTk zk
,

where zk and yk are defined in Eqs. (20) and (21), respectively. Note that
from Wolfe conditions, Eqs. (3)-(4), we have sTk yk > 0, and so dTk zk > 0
and dTk yk > 0. Therefore, the fractional expressions in Eq. (27) are well-
defined. After some simplification, the Eq. (27) can be written as follows:

tDLk = −
yTk gk+1

sTk gk+1
. (28)

To ensure the well-definiteness of the DL parameter in Eq. (28), we set an
adaptive version of it as follows :

tDL∗k =

{
tDLk , |sTk gk+1| > ε,
1, otherwise,

(29)

with a enough small positive constant ε. So, by replacing (29) in (25), we
get a new nonlinear DL direction as follows :

dNDL−1k+1 = −gk+1 + (
gTk+1yk

dTk yk
− tDL∗k

gTk+1sk

dTk yk
)dk, (30)

The NCG method based on the search direction dNDL−1k+1 in Eq. (30), called
“NDL− 1” method.
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2.2.2 QN method

To access the CG direction matrices to approximate the inverse Hessian
matrix, similar to [24, 28] for the quasi-newton methods, we improve the
efficiency of CG method. For this purpose, we try to approach the matrix
direction of theDLmethod, QDLk+1, in Eq. (25), to the Shanno quasi-Newton

search direction matrix, QSk+1, Eq. (10). Therefore, consider the following
subproblem:

tDL∗k = argmin‖QDLk+1 −QSk+1‖F , (31)

where ‖.‖F is Frobenius norm. Using the property tr(AAT ) = ‖A‖2F and
after some algebraic calculations, we have

tDL∗k = 1 +
yTk yk
sTk yk

−
sTk yk
‖sk‖2

. (32)

Note that using Wolfe conditions, we have sTk yk > 0 and the DL parameter
in Eq. (32), is well-defined. By replacing (32) in (25), we get another new
DL direction as follows:

dNDL−2k+1 = −gk+1 + (
gTk+1yk

dTk yk
− tDL∗k

gTk+1sk

dTk yk
)dk, (33)

where tDL∗k is defined in Eq. (32). The NCG method based on dNDL−2k+1 in
Eq. (33), called “NDL− 2” method.

2.2.3 Eigenvalue approach

In the third method, similar to DL method in [3], we apply a descent
approach in Section 2.2.1, using an eigenvalue study of the DL direction
matrix. Therefore, using Eqs. (13)-(14), with replacing the vector yk with
yk in Eq. (21), we have the following search direction:

dNDL−3k+1 = −(I +
dTk yk
dTk yk

− tDL∗(p,q)k

dTk sk

dTk yk
)gk+1 = −QDDLk+1 gk+1, (34)

where p and q are nonnegative parameters, which p < 1
4 and q ≥ 1

4 (see [3]),

and t
DL∗(p,q)
k is as follows:

t
DL∗(p,q)
k = p

‖yk‖2

sTk yk
− q

sTk yk
‖sk‖2

. (35)

By Wolfe conditions we have sTk yk > 0, and so the Eq. (35), is well-defined.
The NCG method with the DL parameter in (35) called “NDL− 3”.
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3 Convergence analysis

In this section, we discuss the global convergence of our NCG methods,
consist of “NDL − i”, i = 1, 2, 3. In our analysis, we need to make the
following basic assumptions on the objective function, commonly used in
the convergence analysis of the CG methods [9].

Assumption (A):
We assume that the objective function f is strongly convex and ∇f is
Lipschitz continuous on the level set

S = {x ∈ Rn : f(x) ≤ f(x0)} (36)

That is, there exists constants µ > 0 and L such that

(∇f(x)−∇f(y))T (x− y) ≥ µ‖x− y‖2 , ∀x, y ∈ S (37)

and

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ , ∀x, y ∈ S (38)

Note that these assumptions implies that there exists a positive constant
Γ such that for all x ∈ S ; ‖∇f(x)‖ ≤ Γ.

Lemma 1. [29] Suppose that the Assumption (A) holds. Consider any
CG method in the form of (2) and (5) in which for all k ≥ 0, the search
direction dk is a descent direction and the step length αk is determined to
satisfy the Wolfe conditions, (3)-(4). If∑

k≥0

1

‖dk‖2
=∞, (39)

then the method converges in the sense that

lim inf
k→∞

‖gk‖ = 0. (40)

Theorem 1. Suppose that the Assumption (A) holds for the objective func-
tion f in (1). Consider a CG method in the form of (2) and (5) with the
CG direction defined by (30), “NDL− 1” method, in which the step length
αk is computed such that the Wolfe conditions (3)-(4) are satisfied. If the
objective function f is uniformly convex on S, then the method converges in
the sense that (40) holds.
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Proof. The uniform convexity of the differentiable function f ensures that
there exists a positive constant µ such that (see Theorem 1.3.16 of [29])

yTk sk ≥ µ‖sk‖2. (41)

Note that similar inequality can be proved by replacing yk with yk. There-
fore, there exists a positive constant µ, such that:

yTk sk ≥ µ‖sk‖2. (42)

Also from the second equation of the Wolf conditions, Eq. (3), we have:

gTk+1dk ≥ σgTk dk. (43)

On the other hand, from (21) we have :

‖yk‖ ≤ ‖yk‖+ ‖Akuk‖ = ‖yk‖+ ‖wk‖, (44)

where wk = Akuk and Ak is defined in (21). Now we show that ‖yk‖ ≤
L1‖sk‖, where L1 > 0 is a constant. For this purpose, first of all, using
Taylor expansion of θk in Eq. (22), we have:

|θk| < M‖sk‖2. (45)

Then, considering the Eq. (21), we have two cases for wk [20]: wk = θksk
‖sk‖2

or wk = θkyk
sTk yk

, which θk is defined in (22). In the first case, from Eqs. (38),

(44) and (45), we get:

‖yk‖ ≤ ‖yk‖+
|θk|‖sk‖
‖sk‖2

= (L+M)‖sk‖ = M1‖sk‖, (46)

where M1 = L+M . In the second case, from (38), (41) and (45) we have:

‖yk‖ ≤ ‖yk‖+
ML‖sk‖3

µ‖sk‖2
≤ L(1 +

M

µ
)‖sk‖ = M2‖sk‖, (47)

where M2 = L(1 + M
µ ). Now, by defining L1 = max {M1,M2}, we have:

‖yk‖ ≤ L1‖sk‖. (48)

Next we can show that ‖zk‖ ≤ L2‖sk‖, where zk is defined in (20). From
the Eqs. (20) and (38), we have :

‖zk‖ = ‖yk + c‖gk‖rsk‖ ≤ ‖yk‖+ c‖gk‖r‖sk‖ ≤ L‖sk‖+ c‖gk‖r‖sk‖
≤ (L+ cΓr)‖Sk‖ = L2‖sk‖, (49)
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where L2 = L+ cΓr. Moreover, from (41) and (20) we have:

sTk zk = sTk (yk + c‖gk‖rsk) = sTk yk + c‖gk‖r‖sk‖2

≥ (µ+ c‖gk‖r)‖sk‖2 ≥ µ‖sk‖2, (50)

Which implies that sTk zk ≥ µ‖sk‖2. Hence from this inequality and Eqs.
(42), (48), (49), (50), (3) and Cauchy-Shwartz inequality we have :

|tDL∗k | =
dTk yk
gTk+1sk

(
gTk+1yk

dTk yk
+
gTk+1zk

sTk zk
+
gTk+1dk

‖dk‖2

)

≤ ‖sk‖‖yk‖
σ‖gk+1‖‖sk‖

(
‖gk+1‖‖yk‖
µ‖sk‖2

+
‖gk+1‖‖zk‖
µ‖sk‖2

+
‖gk+1‖‖sk‖
‖sk‖2

)
≤ L1

σ

(
L1

µ
+
L2

µ
+ 1

)
. (51)

That is tDL∗k is bounded for uniformly convex objective function. So, if we
use the Wolfe conditions, (3)-(4), similar to Theorem (2.1) in [3], the search
directions are bounded away, which with Lemma 1 complete the proof.

Theorem 2. Suppose that the Assumption (A) holds for the objective func-
tion f in (1). Consider a CG method in the form of (2) and (5) with the
CG direction defined by (33), “NDL− 2” method, in which the step length
αk is computed such that the Wolfe conditions (3)-(4) are satisfied. If the
objective function f is uniformly convex on S, then the method converges in
the sense that (40) holds.

Proof. Considering the Assumption (A) and the assumptions of Theorem

1, from Eqs. (37), (42), (46), (48) and definition of tDL∗k in Eq. (32), we
have:

|tDL∗k | = |1 +
yTk yk
sTk yk

−
sTk yk
‖sk‖2

| ≤ 1 +
‖yk‖2

|sTk yk|
+
|sTk yk|
‖sk‖2

≤ 1 +
L2
1‖sk‖2

‖sk‖2
+
‖sk‖‖yk‖
‖sk‖2

= 1 + L1 + L2
1. (52)

So, similar to Theorem 1, the search directions are bounded away and the
proof is complete.

Theorem 3. Suppose that the Assumption (A) holds for the objective func-
tion f in (1). Consider a CG method in the form of (2) and (5) with the
CG direction defined by (30), “NDL− 3” method, in which the step length
αk is computed such that the Wolfe conditions (3)-(4) are satisfied. If the
objective function f is uniformly convex on S, then the method converges in
the sense that (40) holds .
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Proof. Considering the Assumption (A) and the assumptions of Theorem

1, from Eqs. (37), (42), (46), (48) and definition of t
DL∗(p,q)
k , Eq. (35),

where p < 1
4 and q ≥ 1

4 , we have :

|tDL∗(p,q)k | =|p
‖y2k‖
sTk yk

− q
sTk yk
‖s2k‖

| ≤ p
‖y2k‖
|sTk yk|

+ q
|sTk yk|
‖s2k‖

≤ pL
2
1

µ̄
+ qµ̄,

So, similar to Theorem 3, the “NDL− 3” method is convergent.

Remark 1. For general objective functions, similar to the truncated CG
parameter in [10], for DL method, which employed the Powell’s nonnegative
restriction on the CG parameter [27], “DL+” method, we can use new

truncated parameters, tDL+k . Now, using the Theorem 3.6 in [3], for descent
search directions, the global convergence properties is satisfied.

4 Numerical Experiments

Here, we present some numerical results, obtained by applying a MATLAB
8.8.0.1 (R2013a) implementation of the proposed NCG methods, “NDL−
i”, i = 1, 2, 3. The numerical results are compared with the DDL [3] with

parameters p = 0.2 and q = 0.9, and DK [8] with parameter τk =
sTk yk
‖sk‖2

.

The implementations were performed on a computer, Intel(R) Core (TM)
A10-8700P CPU 3.20 Gigahertz 64-bit desktop with 8 Gigabyte RAM. Our
experiments have been done on the test problems of unconstrained opti-
mization problems of CUTEr collection [16]. The names and dimensions
of these problems are presented in Table 1. The dimensions of the test
problems range from 2 to 1000 variables.

For ensuring the descent property, we restarted the algorithm with Pow-
ell Restart [29], which is |gTk gk+1| < 0.2‖gk+1‖ . In all the methods, we used
the effective approximate Wolfe conditions described in (3)-(4) with param-
eters σ = 0.9 and ρ = 10−4. The same stop condition is considered for all
methods which is ‖gk‖∞ ≤ 10−6 and the maximum number of iterations is
limited to 1000.

The comparing data contain the number of iterations, CPU time and
the number of evaluations for function, nf , and gradient, ng as nf +3ng [3].
To approximately assess the performance of different algorithms, we use the
performance profile introduced by Dolan and More [12]. As shown in Figure
1, with respect to the number of iteration, the “NDL−2” method is the best
among all methods and “NDL− 3” method is competitive with the DDL
method. In addition, Figure 2 shows that with respect to the number of
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Table 1: The test problems.
Name Dim Name Dim Name Dim

AKIVA 2 DIXMAANH 3000 LIARWHD 5000
ALLINITU 4 DIXMAANI 3000 LOGHAIRY 2
ARGLINA 200 DIXMAANJ 3000 MANCINO 100
ARGLINB 200 DIXMAANK 3000 MARATOSB 2
ARGLINC 200 DIXMAANL 3000 MEXHAT 2
ARWHEAD 5000 DIXMAANM 15 NONCVXU2 5000
BARD 3 DIXMAANN 15 NONCVXUN 5000
BDQRTIC 5000 DIXMAANO 15 NONDIA 5000
BEALE 2 DIXMAANP 15 NONDQUAR 5000
BEALE 2 DIXON3DQ 10000 OSBORNEA 5
BIGGS6 6 DJTL 2 PALMER1C 8
BOX 10000 DQDRTIC 5000 PALMER2C 8
BOX3 3 DQRTIC 5000 PALMER3C 8
BRKMCC 2 EDENSCH 2000 PALMER4C 8
BROWNAL 200 EG2 1000 PALMER5C 6
BROWNDEN 4 ENGVAL1 5000 PALMER6C 8
BROYDN7D 5000 ENGVAL2 3 PALMER6C 8
BRYBND 5000 ERRINROS 50 PALMER8C 8
CHAINWOO 4000 ERRINRSM 50 HIMMELBF 4
CHNROSNB 50 EXPFIT 2 HIMMELBG 2
CHNRSNBM 50 EXTROSNB 1000 HIMMELBH 2
CLIFF 2 FLETBV3M 5000 POWELLSG 5000
CLIFF 2 FLETCHBV 5000 POWER 10000
CUBE 2 FLETCHCR 1000 QUARTC 5000
CURLY10 10000 FMINSRF2 5625 ROSENBR 2
CURLY20 10000 FMINSURF 5625 SINEVAL 2
CURLY30 10000 FREUROTH 5000 SISSER 2
DECONVU 63 GENHUMPS 5000 SPARSINE 5000
DENSCHNA 2 GENROSE 500 SPARSQUR 10000
DENSCHNB 2 GULF 3 SPMSRTLS 4999
DENSCHNC 2 HAIRY 2 SROSENBR 5000
DENSCHND 3 HATFLDD 3 SSCOSINE 10
DENSCHNE 3 HATFLDE 3 TESTQUAD 5000
DENSCHNF 2 HATFLDFL 3 TOINTGOR 50
DIXMAANC 3000 HEART6LS 6 TOINTPSP 50
DIXMAANA 3000 HEART8LS 8 TOINTQOR 50
DIXMAANB 3000 HELIX 3 TQUARTIC 5000
DIXMAANC 3000 HILBERTA 2 TRIDIA 5000
DIXMAAND 3000 HILBERTB 10 VARDIM 20
DIXMAANE 3000 HIMMELBB 2 WOODS 4000
DIXMAANF 3000 JENSMP 2 YFITU 3
DIXMAANG 3000 KOWOSB 4 ZANGWIL2 2

iteration, the “NDL−2” is the best methods. Also, the “NDL−1” method
is competitive with DK method. Moreover, from Figure 3, “NDL−2” and
“NDL− 3” methods, are the best methods.
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Figure 1: Performance profiles based on the number of iteration for
“NDL− i”, i = 1, 2, 3, DDL and DK methods.

On the whole, Figures 1-3, show that the “NDL − 2” method outper-
forms all methods, contains “NDL− 1”, “NDL− 3”, DDL and DK, with
respect to all criterias.

5 Conclusion

The DL approach has been used to provide a new conjugacy condition
using the modified secant equation [31]. To adjust the parameter of the
new conjugacy condition, DL parameter, two approaches are used. The
convergence analysis is presented for uniformly convex and general nonlin-
ear functions. The comparison of the new NCGs with some well-known
methods, shows that “NDL − 2” method is the best in the all iteration
criterias.
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