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Abstract. In this paper, we propose a numerical method to solve the ellip-
tic stochastic partial differential equations (SPDEs) obtained by Gaussian
noises using an element free Galerkin method based on stabilized inter-
polating moving least square shape functions. The error estimates of the
method is presented. The method is tested via several problems. The nu-
merical results show the usefulness and accuracy of the new method.
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1 Introduction

Many natural phenomena and physical applications are modeled by stochas-
tic partial differential equations (SPDEs) [1, 3].

The numerical solution of SPDEs is becoming a fast-growing research
area. Many authors try to solve SPDEs through various methods. The
Finite element method is a technique for solving SPDEs [2,6], and the Finite
difference method is another way, see [2,11,35,36]. The authors of [19] tried
to solve SPDEs by the method of Wiener chaos expansions. The spectral
Galerkin method [39], the stochastic spectral collocation method [22] and
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the Itô Taylor expansions method [20] are other numerical tools that were
discussed for solving SPDEs.

Meshless methods are powerful numerical tools that have been applied
for solving many problems in engineering and applied mathematics. These
methods do not require a mesh to discretize the domain of the problem
under consideration and the approximate solution is constructed entirely
based on a set of scattered nodes.

Some authors have used mesh-free methods to solve SPDEs. Fasshauer
et al. tried kernel-based collocation method [10, 17, 18], also Dehghan and
Shirzadi used radial basis functions and dual reciprocity method [13–16].

Lancaster presented the moving least-squares (MLS) approximation to
study surface fitting [23]. The advantage of the MLS approximation is to
obtain the shape function in meshless methods with higher order continuity
and consistency by employing the basis functions with lower order and
choosing a suitable weight function. The shape function obtained with the
MLS approximation, can achieve a very precise solution [34].

Based on the MLS approximation, Belytschko et al. proposed the
element-free Galerkin (EFG) method [4]. Cheng carried out an error esti-
mation and convergence analysis of the finite point method and the EFG
method based on the MLS approximation [8, 9]. Mukherjee made an im-
provement on the MLS approximation in order to deal with boundary con-
ditions conveniently in the EFG method [29]. Cheng proposed an improved
moving least-squares approximation by orthogonalizing the basis functions
in the MLS approximation, and based on it Cheng put forward a boundary
element-free method [7, 26].

Since the shape function of the MLS approximation does not have the
properties of the Kronecker Delta function, the meshless method based on
it must use other methods, such as the penalty function method and La-
grange multiplier, to impose essential boundary conditions, which makes
the weak form of the problem to be solved more complicated and the com-
putational efficiency lower as a result. Therefore, it is important to study
the interpolating moving least-squares method which has the properties of
the Kronecker Delta function.

Based on the MLS approximation, Lancaster proposed the interpolat-
ing moving least-squares (IMLS) method [23]. Compare with the IMLS
method, the shape function of the MLS approximation is much simpler.
By using the IMLS method, Kaljević presented the improved EFG method
in which the essential boundary condition can be applied directly [21]. Ren
et al. proposed an improved IMLS method, and based on it the interpo-
lating element-free Galerkin (IEFG) method and the improved boundary
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element-free method are presented [30–33]. In Refs. [27, 28], Mirzaei et
al. developed a shifted and scaled polynomial basis function to stabilize
the MLS approximation. In Ref. [28], the relationship between the condi-
tion numbers and the determinants of the moment matrix in the MLS and
those in the stabilized MLS is presented and proved. Besides, in Ref. [27]
it was proved that, using the new basis, the minimum eigenvalue of the
corresponding moment matrix is bounded independent of the fill distance,
which means that the stabilized MLS approximation is theoretically stable.
Xiaolin Li developed a stabilized IMLS method. Theoretical analysis shows
that both the determinant and the condition number of the moment matrix
in the stabilized IMLS method are invariable with respect to the separa-
tion distance. Thus, the stabilized IMLS method prevents the instability
occurrence [25].

In this paper we try to use the stabilized IMLS based element free
Galerkin method to solve elliptic SPDEs.

2 Interpolating moving least-squares method

Let X = {x1,x2, . . . ,xN} be a set of all nodes in the bounded domain
D ⊂ Rn where N is the number of nodes. The parameter ρI denotes the
radius of the domain of influence of xI , and ‖ · ‖ denotes the Euclidean
norm. The domain of influence of xI is defined by DI = {x : ‖x − xI‖ ≤
ρI , x ∈ D}. Let ρ = maxxI∈X {ρI}. For a given point x ∈ D , define the
index set τx = {I| ‖x− xI | ≤ ρI ,x ∈ X}.

Let u(x) be the function of the field variable defined in D . The approx-
imation function of u(x) is denoted by uh(x). In order to let the approx-
imation uh(x) in the IMLS method satisfy the interpolating property, we
define a singular weight function, i.e.,

w(x,xI) = w(x− xI) =

{
‖x−xIρI

‖−α, ‖x− xI‖ ≤ ρI ,
0, otherwise,

(1)

where the parameter α is an even positive integer.

Define the inner product and the corresponding norm at x

〈f, g〉x =
∑
I∈τx

w(x,xI)f(xI)g(xI), ∀f, g ∈ C0(D),

‖f‖x =

[∑
I∈τx

w(x,xI)f
2(xI)

] 1
2

,
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where the subscript x denotes a point in D .
Let p0(x) ≡ 1, p1(x), . . . , pm̄(x) be given basis functions, where m̄ + 1

denotes the number of the basis functions. Let us define

p̃0(x; x̄) =
1[∑

I∈τx w(x,xI)
] 1
2

, (2)

where x̄ is the point in the domain of influence of x.
Then we can generate new basis functions orthogonal to p̃0(x; x̄) as

p̃i(x, x̄) = pi(x̄)− Spi(x), i = 1, 2, . . . , m̄.

where Spi is a linear operator defined as

Spi(x) =
∑
I∈τx

v(x,xI)pi(xI),

and

v(x,xI) =
w(x,xI)∑

J∈τx w(x,xJ)
.

The function v(x,xI) has the following properties [23].

Lemma 1. If the weight function of (1) is used, then v(x,xI) ∈ C∞(D̄),

i) v(xI ,xJ) = δIJ , ∀I, J ∈ τx,

ii)
∑

I∈τx v(x,xI) = 1, ∀x ∈ τx,

iii) 0 ≤ v(x,xI) ≤ 1, ∀x ∈ D , v(x,xI) = 0⇔ (x = xJ , J 6= I),

iv) ∂v(xI ,xJ )
∂x = 0, ∀I, J ∈ τx.

Lancaster and Salkauskas [23] defined a local approximation, i.e.,

uh(x, x̄) = p̃0(x; x̄)a0(x) +
m̄∑
i=1

p̃i(x; x̄)ai(x),

where ai(x), i = 1, 2, . . . , m̄, are the unknown coefficients of basis functions.
Then define the weighted discrete L2 norm as

J(x) =
∑
I∈τx

w(x,xI)
[
uh(x,xI)− uI

]2
, (3)

where w(x,xI), as shown in (1), is a weight function with compact support,
xI for I ∈ τx are the nodes with domains of influence that cover the point
x, and uI = u(xI).
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By minimizing the weighted discrete L2 norm of (3) we have

〈u(·)− uh(x, ·), p̃0〉x = 0, (4)

〈u(·)− uh(x, ·), p̃i〉x = 0, i = 1, 2, . . . , m̄. (5)

In terms of the orthogonality, Eqs. (4) and (5) can be rewritten as

a0(x) = 〈u, p̃0〉x,

a0(x)〈p̃0, p̃i〉x +

m̄∑
i=1

ai(x)〈p̃i, p̃j〉x = 〈u, p̃j〉x, j = 1, 2, . . . , m̄. (6)

According to (2) and the definition of inner product, we have

p̃0(x, x̄)a0(x) =
1[∑

I∈τx w(x,xI)
] 1
2

〈u, p̃0〉x =
∑
I∈τx

v(x,xI)uI = Su.

Then (6) reduces to

m̄∑
i=1

ai(x)〈p̃i, p̃j〉x = 〈u− Su, p̃j〉x, j = 1, 2, . . . , m̄. (7)

Lemma 2. If the weight function of (1) is used, for all x ∈ D ,

〈Su, p̃i〉x = 0, i = 1, 2, . . . , m̄.

Proof. For the proof see [38].

According to lemma 2, Eq. (7) can be simplified as

m̄∑
i=1

ai(x)〈p̃i, p̃j〉x = 〈u, p̃j〉x, j = 1, 2, . . . , m̄. (8)

Eq. (8) is simpler than Eq. (7), and can be rewritten as

A(x)a(x) = Fw(x)u,

where

aT (x) = (a1(x), a2(x) . . . , am̄(x)),

uT = (u1, u2, . . . , uN ),

A(x) = Fw(x)FT (x),
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F(x) =


p̃1(x;x1) p̃1(x;x2) . . . p̃1(x;xN )
p̃2(x;x1) p̃2(x;x2) . . . p̃2(x;xN )

...
...

. . .
...

p̃m̄(x;x1) p̃m̄(x;x2) . . . p̃m̄(x;xN )

 ,
and Fw(x) = ω̄kJ(x)m̄×N is a m̄×N matrix, and

ω̄kJ(x) =


w(x,xJ)p̃k(x;xJ), x 6= xJ ,

∑
I∈τx,I 6=J

w(xJ ,xI) [pk(xJ)− pk(xI)] , x = xJ .

Then we can obtain
a(x) = A−1(x)Fw(x)u.

Then the local approximation function can be obtained as

uh(x, x̄) = Su+
m̄∑
i=1

ai(x)p̃i(x; x̄).

Thus the global interpolating approximation function of u(x) can be ob-
tained as

uh(x) = Su+

m̄∑
i=1

ai(x)gi(x) ≡ Φ(x)u =

N∑
I=1

φI(x)u(xI), (9)

where Φ(x) is a matrix of shape functions,

Φ(x) = (φ1(x), φ2(x), . . . , φN (x)) = vT + pT (x)A−1(x)Fw(x), (10)

where
vT = (v(x,x1), v(x,x2), . . . , v(x,xN )),

pT (x) = (g1(x), g2(x), . . . , gm̄(x)),

gi(x) = pi(x)− Spi(x).

Then the first partial derivatives of the shape functions of the IMLS method
can be obtained as

φ,i(x) = vT,i + pT,i (x)A−1(x)Fw(x) (11)

+ pT (x)A−1(x)Fw,i(x) + pT (x)A−1
,i (x)Fw(x),

where
Fw(x) = ω̄kJ,i(x)m̄×N ,
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ω̄kJ,i(x) =


w,i(x,xJ)p̃k(x;xJ) + w(x,xJ)p̃k,i(x;xJ)(x), x 6= xJ ,∑
I∈τx,I 6=J

w,i (x,xI) [pk (xJ)− pk (xI)] , x = xJ ,

A−1
,i (x) = −A−1(x)A,i(x)A−1(x),

and the notation “,i” is the first derivative with respect to the i’s element
of x.

Eq. (10) is the shape function of the IMLS method.

3 The stabilized interpolating moving least square
method

A disadvantage of the IMLS method is bad-conditioning of the moment
matrix A when the fill-distance is tend to zero. when the condition num-
ber of the moment matrix is tend to zero, it reduces the accuracy of the
method. for overcoming this difficulty Xiaolin Li and Qingqing Wang pro-
posed Stabilized IMLS method [25].

Let X = {x1,x2, . . . ,xN} be a set of all nodes in the bounded domain
D ⊂ Rn where N is the number of nodes. The fill distance is defined as

hX,D = sup
x∈D

min
1≤j≤N

‖x− xj‖2,

and the separation distance is defined as

qx =
1

2
min
i 6=j
‖x− xj‖2.

X is said to be quasi-uniform with respect to a positive constant C if

qx ≤ hX,D ≤ Cqx. (12)

Assumption 1. Assume that the data site X used in this paper satisfies
the quasi-uniform condition (12) with the same quasi-uniform constant C.

Assumption 2. For any x ∈ D , assume that the matrix A is invertible.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Then for the mo-
ment matrix A(x) in the IMLS method, there exists a number Cd(x, n,m)
independent of qx such that the determinant of A(x) is

det(A(x)) = Cd(x, n,m)qx
2
∑m
j=1 j , ∀x ∈ D ,
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In addition, there is a constant h0 > 0, for any qx ≤ h0 , we have a number
Cc(x, n,m) independent of qx such that the condition number of A(x) in
the L2 norm is

cond(A(x)) = Cc(x, n,m)q−2m̂
x ∀x ∈ D .

Proof. for the proof see [25].

Remark 1. From Theorem 1 we can observe that

det(A(x)) 7→ 0 and cond(A(x)) 7→ ∞ as qx 7→ 0.

These results indicate that, for qx small enough, the moment matrix
A(x) in the IMLS method becomes poorly conditioned, and the accuracy
of computing the coefficient vector a(x) and thus the shape function φi(x)
decreases. Since the condition number increases with the degree of ill-
conditioning, we can finally conclude that the stability of the IMLS method
decreases as the separation distance qx decreases.

To improve the stability of the IMLS method, the following basis func-
tions are used in the stabilized algorithm of the IMLS method,

ps (x) , [ps0 (x) ,ps1 (x) , . . . ,psm (x)]T = p

(
x− xe

qx

)
,x ∈ D ,

where xe is fixed and depends on the evaluation point to be considered. If
x is the evaluation point, the best result will be obtained if we finally set
xe = x. In all what follow we will set xe = x for the evaluation point x.
For example, in a one-dimensional domain (x ∈ R)

ps (x) =

[
1,
x− xe

qx
,
(x− xe)2

q2
x

, . . . ,
(x− xe)m̂

qm̂x

]T
,

whereas in a two-dimensional domain (x = (x1, x2)T ∈ R2),

ps (x) =


[
1, x1−x1

e

qx
, x2−x2

e

qx

]T
, m̂ = 1,[

1, x1−x1
e

qx
, x2−x2

e

qx
, (x1−x1

e)2

q2x
, (x1−x1

e)(x2−x2
e)

q2x
, (x2−x2

e)2

q2x

]T
, m̂ = 2.

If we use the new basis ps (x) the moment matrix of the stabilized IMLS
method is As and the stabilized IMLS shape function is

Φs(x) = (φs1(x), φs2(x), . . . , φsN (x)) = (vs)T +(Ps)T (x) (As)−1 (x)Fsw (x) .
(13)
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Theorem 2. Suppose that assumptions 1 and 2 hold. Then for the moment
matrix As in the stabilized IMLS method, there exist numbers Csd(x, n,m)
and Csc (x, n,m) independent of qx such that

det(As(x)) = Csd(x, n,m), ∀x ∈ D ,

cond(As(x)) = Csc (x, n,m), ∀x ∈ D .

Proof. for the proof see [25].

Remark 2. From theorem 2 we can observe that both the determinant and
the condition number of the moment matrix As(x) in the stabilized algo-
rithm are invariable with respect to the separation distance qx. Therefore,
the stabilized IMLS (SIMLS) method has better stability and convergence
than the original IMLS method.

4 Spectral approximations and error estimates

From [5] we have the following error estimate for the spectral approximation
of the elliptic SPDE

−∆u(x, ξ) = f(u(x, ξ)) + ẆQ(x, ξ) x ∈ D , ξ ∈ Ω, (14)

u(x, ξ) = ū(x, ξ), x ∈ ∂D , ξ ∈ Ω, (15)

where (Ω,F ,P) is a probability space and D ⊆ Rd be a bounded domain
with regular boundary ∂D , f : R→ R is a Lipschitz continuous function,
and ẆQ is a class of centered Gaussian noises with covariance operator Q.

For r ∈ N, we use (Hr, ‖.‖r) to denote the usual Sobolev space

Hr :=

v : ‖v‖Hr :=

∑
|k|≤r

‖Dkv‖2
 1

2

<∞

 .

When r = 0, H0 := H is the space of square integrable functions on D ,
whose inner product and norm are denoted by (., .) and ‖.‖, respectively.
We also use H1

0 to denote the subspace of H1 whose elements vanish on ∂D .
For s ∈ R, we use (Ḣs, ‖.‖s) to denote the interpolation space

Ḣs :=

v : ‖v‖s :=

∑
k∈N+

λsk(v, ϕk)
2

 1
2

<∞

 ,

where {(λk, ϕk)}k∈N+ is an eigensystem of the negative Dirichlet Laplacian.



478 K. Izadpanah, A. Mesforush, A. Nazemi

Recall that an H-valued random field u is said to be a solution of SPDE
(14) if

u = A−1f(u) +A−1ẆQ, (16)

where A−1 = (−∆)−1 is the inverse of negative Dirichlet Laplacian.
The centered Gaussian noise ẆQ is uniquely determined by its covari-

ance operator Q. Assume that Q has {(σk, ψk)}∞k=1 ass its eigensystem,
i.e.,

Qψm = σmψm, m ∈ N+,

where {ψk}∞k=1 form a complete orthonormal basis in H. Then we have the
following expansion for the infinite dimensional noise ẆQ:

ẆQ(ω) =
∞∑
m=1

Q
1
2ψmηm(ω), ω ∈ Ω, (17)

where {ηm}∞m=1 are independent and normal random variables [12].
Consider the following assumptions:

Assumption 3. f is Lipschitz continuous, i.e.,

‖f‖Lip := sup
u,v∈R,u6=v

|f(u)− f(v)|
|u− v|

<∞.

We further assume that the Lipschitz constant ‖f‖Lip is smaller than the
positive constant γ in the Poincaré inequality:

‖∇v‖2 ≥ γ‖v‖2, ∀v ∈ H1
0.

We remark that the well-posedness of (14) is also valid for general as-
sumptions on f possibly depending on the spatial variable which is proposed
in [6], i.e., there exist two positive constants L1 < γ and L2 such that for
any x ∈ D and any u, v ∈ R,

(f(x, u)− f(x, v), u− v) ≥ −L1|u− v|2

and
|f(x, u)− f(x, v)| ≤ L2(1 + |u− v|).

In that case, all the convergence rates halve.

Assumption 4. There exists a parameter β ∈ [0, 2] such that

‖A
β−2
2 ‖L02 <∞,

where L0
2 := HS(Q

1
2 (H),H) denotes the space of Hilbert-Schmidt operators

from Q
1
2 (H) to H and ‖.‖L02 denotes the corresponding norm.
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Let PN : H → VN = span{ϕm}Nm=1 be the projection operator from H
to VN such that (PNu, v) = (u, v) for any u ∈ H, v ∈ VN , and let uN be the
solution of the SPDE with the noise term in (16) replaced by its spectral
projection:

uN = A−1f(uN ) +A−1PNẆQ, N ∈ N+. (18)

Theorem 3. Let p ≥ 1 and Assumptions 3 and 4 hold. Then SPDE (14)
possesses a unique solution u ∈ Lp(Ω;Hβ).

Proof. for the proof see [5].

Theorem 4. Let P ≥ 1 and Assumptions 3 and 4 hold and u and uN , N ∈
N+ be the solutions of (16) and (18), respectively. Then uN ∈ Lp(Ω; Ḣ2)
and there exist a constant C independent of N such that

E [‖uN‖p2] ≤ Cλ
(2−β)p

2
N (1 + ‖A

β−2
2 ‖pL02). (19)

where E[.] is the expected value. Assume furthermore that f has bounded
derivatives up to order r − 1 with r ≥ 2, with its first derivative being
bounded by γ, then uN ∈ Lp(Ω; Ḣr+1) and

E
[
‖uN‖pr+1

]
≤ Cλ

(r+1−β)p
2

N (1 + ‖A
β−2
2 ‖pL02). (20)

Moreover,

(E [‖u− uN‖p])
1
p ≤ Cλ−

β
2

N+1(1 + ‖A
β−2
2 ‖pL02). (21)

Proof. for the proof see [5].

5 Error estimates of element free Galerkin method
for stochastic elliptic equations

Let

Vρ = {v|v ∈ Span{φI}, v = 0 on ∂D},

where φI is the shape function of element free Galerkin method. The
variational problem of (18) is to find a uN ∈ H1 such that

a(uN , v) = (f, v) + (PNẆQ, v) ∀v ∈ H1
0, (22)
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where

a(u, v) =

∫
D
∇u×∇vdD +

∫
D
uvdD ,

(f, v) =

∫
D
fvdD ,

(PNẆQ, v) =

∫
D
PNẆQvdD .

We can prove that the bilinear form a(·, ·) on Sobolev space H1
0 is bounded

and coercive that is there exist constants ᾱ > 0, M̄ <∞ such that

|a(u, v)| ≤ M̄‖u‖H1‖v‖H1 ∀u, v ∈ H1
0, (23)

a(u, v) ≥ ᾱ‖v‖2H1 ∀v ∈ H1
0. (24)

The IEFG method according to (14) is to find uρN ∈ Vρ such that

a(uρN , v) = (f, v) + (PNẆQ, v) ∀v ∈ Vρ. (25)

Theorem 5. Suppose that uN , u
ρ
N be the solutions of variational problem

(22) and IEFG method (25) respectively, then there exist

i) a(uN − uρN , v) = 0 ∀v ∈ Vρ,

ii) a(uN − uρN , uN − u
ρ
N ) = infv∈Vρ a(uN − v, uN − v),

iii) ‖uN − uρN‖H1 ≤ C infv∈Vρ ‖uN − v‖H1 .

Proof. By subtracting (22) and (25) for all v ∈ Vρ we have

a(uN − uρN , v) = a(uN , v)− a(uρN , v) = 0

Let us define the energy norm ‖u‖E =
√
a(u, u). Then we have

‖uN − uρN‖
2
E = a(uN − uρN , uN − u

ρ
N )

= a(uN − uρN , uN − v) + a(uN − uρN , v − u
ρ
N )

= a(uN − uρN , uN − v) (v − uρN ∈ Vρ)
≤ ‖uN − uρN‖E‖uN − v‖E . (Schwarz’ inequality)

If ‖uN − uρN‖E 6= 0, we can divide by it to obtain ‖uN − uρN‖E ≤ ‖uN − v‖E ,
for any v ∈ Vρ. If ‖uN − uρN‖E = 0, this inequality is trivial. Taking the
infimum over v ∈ Vρ yields

‖uN − uρN‖E ≤ inf
v∈Vρ
‖uN − v‖E .
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Since v ∈ Vρ, we have

inf
v∈Vρ
‖uN − v‖E ≤ ‖uN − uρN‖E .

Therefore,
‖uN − uρN‖E = inf

v∈Vρ
‖uN − v‖E ,

i.e.,
a(uN − uρN , uN − u

ρ
N ) = inf

v∈Vρ
a(uN − v, uN − v).

For the third case we have

ᾱ‖uN − uρN‖
2
H1 ≤ a(uN − uρN , uN − u

ρ
N ) by (24)

= a(uN − uρN , uN − v) + a(uN − uρN , v − u
ρ
N )

= a(uN − uρN , uN − v) (v − uρN ∈ Vρ)
≤ M̄‖uN − uρN‖H1‖uN − v‖H1 by (23).

Therefore,

‖uN − uρN‖H1 ≤
M̄

ᾱ
‖uN − v‖H1 .

By taking the infimum over all v ∈ Vρ we have

‖uN − uρN‖H1 ≤
M̄

ᾱ
inf
v∈Vρ
‖uN − v‖H1 .

This completes the proof.

We define the interpolation operator of the IMLS method as

Iu = Su+
m∑
i=1

ai(x)gi(x) = ΦTu.

Form [24,37] we have if u ∈ Hm+1, then there exist bounded function C ′k(x)
and constant Ck such that

∂|k|

∂k1∂k2 . . . ∂kn
ΦI(x) = C ′k(x)ρ−|k|x ,

‖Iu− u‖Hk ≤ Ckρm+1−|k|‖u‖Hm+1 , (26)

where k = (k1, k2, . . . , kn), 0 ≤ |k| ≤ m.
Let ‖uN − uρN‖2E = a(uN − uρN , uN − u

ρ
N ) then the following error esti-

mates of the energy and H1 norms can be obtained.
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Theorem 6. Suppose that u ∈ Hm+1 and uN , u
ρ
N be the solutions of the

problem (22) and (25) respectively, then there exist C1 and C2 which are
independent with the parameter ρ such that

‖uN − uρN‖E ≤ C1ρ
m‖u‖Hm+1 ,

‖uN − uρN‖H1 ≤ C2ρ
m‖u‖Hm+1 .

Proof. From Theorem 5 and (26) we have

‖uN − uρN‖E = a(uN − uρN , uN − u
ρ
N )

= inf
v∈Vρ

a(uN − v, uN − v)

≤ a(uN − IuN , uN − IuN )

≤ M̄‖uN − IuN‖2H1 ≤ C1ρ
2m‖uN‖2Hm+1 ,

‖uN − uρN‖H1 ≤ C inf
v∈Vρ
‖uN − v‖H1

≤ C‖uN − IuN‖H1

≤ C2ρ
m‖uN‖Hm+1 .

Theorem 7. Suppose that u ∈ Hm+1. Let uN , u
ρ
N be the solutions of the

problem (22) and (25), respectively, then there exist a constant C which is
independent of the parameter ρ such that

‖uN − uρN‖L2 ≤ Cρm+1‖uN‖Hm+1 .

Proof. For all g ∈ L2, let ϕ ∈ H1
0 ∩H2 be the solutions of

a(ϕ, v) = (g, v) ∀v ∈ H1
0,

then we have following estimates,

‖ϕ‖H2 ≤ ‖g‖L2 . (27)

Let v = uN − uρN then we have

a(ϕ, uN − uρN ) = (g, uN − uρN ), (28)

for arbitrary vρ ∈ Vρ from Theorem 5 we have

a(vρ, uN − uρN ) = 0. (29)
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It follows from (28) and (29) that

a(ϕ− vρ, uN − uρN ) = (g, uN − uρN ). (30)

Let vρ = Iϕ and g = uN − uρN then there exist

‖uN − uρN‖
2
L2 = (uN − uρN , uN − u

ρ
N )

= a(ϕ− Iϕ, uN − uρN ) by (30)

≤ M̄‖ϕ− Iϕ‖H1‖uN − uρN‖H1 by (23)

≤ M̄C1ρ‖ϕ‖H2C2ρ
m‖uN‖Hm+1 . by (26) and theorem 6

(31)

From (27) and (31), we have

‖uN − uρN‖L2 ≤ Cρm+1‖uN‖Hm+1 .

Then this theorem is proved.

Theorem 8. Let p ≥ 1 and assumption 3 and 4 hold, and uN , u
ρ
N be

the solutions of (22) and (25) respectively. Then there exist a constant C
independent of ρ and λN such that

(
E‖uN − uρN‖

p
) 1
p ≤ Cρ2λ

2−β
2

N

(
1 + ‖A

β−2
2 ‖L02

)
. (32)

Assume furthermore that f has bounded derivatives up to order m − 1 for
some m ≥ 2, with its first derivative being bounded by γ then

(
E‖uN − uρN‖

p
) 1
p ≤ Cρm+1λ

m+1−β
2

N

(
1 + ‖A

β−2
2 ‖L02

)
. (33)

Proof. We have from Theorem 8 that

‖uN − uρN‖L2 ≤ Cρ2‖uN‖H2 (34)

and

‖uN − uρN‖L2 ≤ Cρm+1‖uN‖Hm+1 (35)

Then by (19) and (34) one can see that (32) is true. Also by (20) and (35)
we can see that (33) is valid.
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6 The stabilized IMLS based EFG method for
stochastic elliptic equations

In this section, the element free Galerkin method based on the SIMLS
method will be presented for stochastic elliptic equations. The advantage
of the IEFG method is that the essential boundary conditions can be applied
directly and easily.

Consider the following stochastic elliptic equations

−∇2u(x) + bu(x) = g(x) + ẆQ(x) ∀x ∈ D , (36)

with boundary conditions of the Dirichlet type, i.e.,

u(x) = ū(x) ∀x ∈ ∂D , (37)

where u(x) is an unknown function, g ∈ L2(D) is a Lipschitz continuous
function, b is a positive constant, ū is known and ẆQ is a class of Gaussian
noises with mean zero and covariance operator Q.

The Galerkin weak form of (36) and (37) is∫
D
δ(∇u)T · ∇udD+b

∫
D
δuT ·udD =

∫
D
δuT · g(x)dD+

∫
D
δuT · ẆQ(x)dD .

(38)
From the SIMLS method, the unknown function u(x) at arbitrary point

x can be expressed as

u(x) ≈ uh(x) = Φs(x)u =
N∑
I=1

φsI(x)uI , (39)

where N is the number of nodes whose compact support domains cover the
point x.

Substituting (39) into (38) yields∫
D
δuT (BBT )udD + b

∫
D
δuT (Φs)T (x) · Φs(x)udD =∫

D
δuT (Φs)T (x) · g(x)dD +

∫
D
δuT (Φs)T (x) · ẆQ(x)dD .

where
BT =

[
∇φs1 (x) ∇φs2 (x) · · · ∇φsN (x)

]
,

Because the nodal test function δu is arbitrary, the final discretized
equation is obtained as

Ku = F, (40)
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where

KIJ =

∫
D
∇φsI · ∇φsJdD + b

∫
D
φsI · φsJdD , (41)

FI =

∫
D

Φs
I(x) · g(x)dD +

∫
D

Φs
I(x) · ẆQ(x)dD . (42)

The matrix K is an invertible matrix since,

K =

∫
D

(∇φs)T · ∇φsdD + b

∫
D

(φs)T · φsdD ,

and for an arbitrary vector z we have,

zTKz = zT
(∫

D
(∇φs)T · ∇φsdD + b

∫
D

(φs)T · φsdD

)
z

=

∫
D
zT (∇φs)T · ∇φszdD + b

∫
D
zT (φs)T · φszdD

=

∫
D

(∇φsz)T · ∇φszdD + b

∫
D

(φsz)T · φszdD

=

∫
D
‖∇φsz‖22dD + b

∫
D
‖φsz‖22dD ,

then due to positiveness of constant b we have zTKz > 0, thus the matrix
K is positive definite and also invertible. Therefore the solution of (40)
exists and is unique.

Although the weight function is singular at nodes, the shape functions
of the SIMLS method are not singular at any point. The integration in
the meshless method based on the SIMLS method can be obtained by the
general Gauss quadrature. Since the shape function of the SIMLS method
satisfies the property of the Kronecker δ function, the essential boundary
conditions can be applied directly into (40), and then we can obtain the
numerical solutions at nodes.

Thus the stabilized IMLS based EFG method is presented for stochastic
elliptic equations.

Algorithm 1. This algorithm computes the solution of (36) by the pre-
sented method for arbitrary points in the domain of the solution.

i) Determine scattered points.

ii) Compute φi and ∇φi, i = 1, 2, . . . , N for scattered points by equation
(13).
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iii) Assemble matrices K,F via equations (41) and (42).

iv) Enforce boundary conditions into the system (40).

v) Solving the modified system Ku = F .

vi) Compute the solution in arbitrary points via equation (9).

7 Numerical results

Before we start with our numerical experiments, let us briefly explain how
we approximate the noise present in the above stochastic partial differential
equation. From (17) we can write

ẆQ(x, ω) =

∞∑
j=1

σ
1
2
j ψj(x)ηj(ω), x ∈ D , ω ∈ Ω,

Then we have∫
D

Φs
I(x) · ẆQ(x, ω)dD =

∞∑
j=1

σ
1
2
j ηj(ω)

∫
D

Φs
I(x) · ψj(x)dD .

One can approximate the above expansion with∫
D

Φs
I(x) · ẆQ(x, ω)dD ≈

J∑
j=1

σ
1
2
j ηj(ω)

∫
D

Φs
I(x) · ψj(x)dD .

For the below numerical experiments, we will consider two kinds of
noise: a Gaussian noise with covariance operator Q = I and a correlated
one. For correlated noise we choose Q = Λ−s with s ∈ R, where Λ = −∇2.

Let Eu and Dev(u) denote the mean solution and the standard devi-
ation, respectively. For evaluation of Eu and Dev(u) we used the Monte-
Carlo method:

E(u) ≈ 1

m

m∑
k=1

û(wk), Dev(u) ≈

√√√√ 1

m

m∑
l=1

(
û(wl)−

1

m

m∑
k=1

û(wk)

)2

.

(43)
Consider (36) and (37). Since EẆQ = 0, it is easy to check that Eu is

the exact solution of the related deterministic problem i.e.,{
−∇2Eu(x) + bEu(x) = g(x), ∀x ∈ D ,

Eu(x) = ū(x), ∀x ∈ ∂D .
(44)
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Table 1: Errors estimate values using presented method for Example 1.

qx L∞ − error RMS − error

0.25 1.5198e-03 9.2583e-04
0.125 1.0052e-03 7.0809e-04
0.0625 7.4290e-04 4.6395e-04
0.0313 1.5356e-04 7.6647e-05

To see the convergence of the proposed scheme we also employ the
following errors:

L∞− error = ‖Eu−E(u)‖∞, RMS− error =
1√
N
‖Eu− E(u)‖2 . (45)

Note that Eu is the solution in the absence of Gaussian noise, i.e. the
related deterministic solution of (44), but E(u), that is appeared in (45) is
the mean solution that was defined in (43).

In the forthcoming examples we show that E(u) approaches to Eu
by increasing the number of nodes. In the following examples, we as-
sume boundary condition and function g calculated from the exact so-
lution in the absence of Gaussian noise. in the following test problems,
qx = max1≤i≤N min1≤j≤N,j 6=i‖xi − xj‖2.

Example 1. Consider the one-dimensional version of (36) with b = 0 on
D = [0, 1]. We choose m̂ = 1 and Q = Λ−1. The exact solution of this
example is ū = sin(πx) in the absence of the Gaussian noise. The error
estimate obtained for this problem are reported in Table 1.

We can see in Table 1 and the Log-Error figure in Fig. 1 that the
presented method in this paper is convergent. Also the approximation of
the mean solution, absolute error and the standard deviation value of this
example are shown in Fig. 1.

Example 2. As another example of the one-dimensional problem suppose
that ū = (1 − x2) is the solution of (36) in the absence of Gaussian noise
on D = [0, 1]. We also assume that b = 1, choose m̂ = 3 and Q = Λ−1/2.

Table 2 and the Log-Error figure in Fig. 2 shows the presented method
is convergent. Also the approximation of the mean solution, absolute error
and the standard deviation value of this example are shown in Fig. 2.

Example 3. Consider (36) on D = [−1, 1]. Suppose, b = 1 and the exact
mean solution of this problem is ū = (1 − x2) cos(πx). We choose m̂ = 4
and Q = I.
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Figure 1: The mean solution, absolute error, standard deviation and the
Log-Error for Example 1 with qx = 0.0313.

Table 2: Errors estimate values using presented method for Example 2.

qx L∞ − error RMS − error

0.25 5.5810e-03 3.6095e-03
0.125 1.6822e-03 9.1262e-04
0.0625 6.7063e-04 3.8281e-04
0.0313 3.8489e-04 2.1324e-04

Table 3: Errors estimate values using presented method for Example 3.

qx L∞ − error RMS − error

0.5 1.5318e-01 1.0271e-01
0.25 4.4953e-02 2.9091e-02
0.125 3.9099e-03 2.2389e-03
0.0625 1.1241e-03 5.3623e-04
0.0313 2.6423e-04 1.2292e-04
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Figure 2: The mean solution, absolute error, standard deviation and the
Log-Error for Example 2 with qx = 0.0313.

Table 4: Errors estimate values using presented method for Example 4.

qx L∞ − error RMS − error

0.5 5.1970e-02 1.7323e-02
0.25 9.2556e-03 3.6959e-03
0.125 6.1659e-04 2.9699e-04
0.0625 1.8609e-04 8.1140e-05

Table 5: Errors estimate values using presented method for Example 5.

qx L∞ − error RMS − error

0.5 1.9470e-02 6.4901e-03
0.25 6.6476e-03 3.7409e-03
0.125 1.9912e-03 6.4659e-04
0.0625 4.1162e-04 2.0494e-04
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Figure 3: The mean solution, absolute error, standard deviation and the
Log-Error for Example 3 with qx = 0.0313.

The convergence of the method is shown in Table 3 and the Log-Error
figure in Fig. 3. Also the approximation of the mean solution, absolute
error and the standard deviation value of this example are shown in Fig.
3.

Example 4. Consider the two-dimensional version of (36) on D = [0, 1]×
[0, 1]. Suppose b = 0 then the exact mean solution of this problem is
ū = sin(πx) sin(πy). We choose m̂ = 1 and Q = Λ−1.

The convergence of this method can be seen in Table 4 and the Log-
Error in Fig. 5. Also the approximation of the mean solution, absolute
error and the standard deviation value of this example are shown in Fig.
4.

Example 5. Consider the two-dimensional version of (36) on D = [−1, 1]×
[−1, 1]. Suppose, b = 0 and the exact solution of this problem in the absence
of Gaussian noise is ū = (1−x2)(1+y2). We choose m̂ = 1 and Q = Λ−1/2.
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Figure 4: The mean solution, absolute error and standard deviation for
Example 4 with qx = 0.0625.
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Figure 5: The Log-Error for Example 4.
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Figure 6: The mean solution, absolute error and standard deviation for
example 5 with qx = 0.0625

Table 5 and Log-Error figure in Fig. 7 shows the presented method
in this paper is convergent. Also the approximation of the mean solution,
absolute error and the standard deviation value of this example are shown
in Fig. 6.

8 Conclusion

A stabilized interpolating moving least square based element free Galerkin
method have been proposed for the numerical solution of the linear elliptic
stochastic partial differential equations (SPDEs). The numerical method
employ scattered nodes in the domain and approximate the solution using
stabilized IMLS and compute integrals numerically. The numerical simula-
tions show the accuracy of the proposed method. An advantage of the pro-
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Figure 7: The Log-Error for Example 5.

posed method for solving elliptic SPDEs (even though for the deterministic
problems) is that the IMLS method does not require mesh to discretize the
domain of the problem and the approximate solution is constructed based
on a set of nodes. Another advantage of the proposed method is interpolat-
ing property of IMLS shape functions that we can apply essential boundary
conditions directly.
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