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Abstract. The main purpose of this work is to give a generalization of the
Subspace Iteration Method to compute the largest eigenvalues and their
corresponding eigenvectors of the matrix pencil A−λB. An effective single
shift procedure is given. Several numerical experiments are presented to
illustrate the effectiveness of the proposed methods.
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1 Introduction

In this paper we discuss the numerical solution of the generalized eigen-
value problem (matrix pencil) A− λB, where A,B ∈ Rn×n. The roots of
det(A− λB) are called generalized eigenvalues associated to matrix pencil
A− λB. The most popular method for computing generalized eigenvalues
is certainly the so-called QZ method; see e.g [5, 8]. First, we introduce a
Generalized Power Method (GPM) that computes the largest (in magni-
tude) generalized eigenvalue of the matrix pencil A − λB [3]. This prob-
lem encompasses a wide variety of applications that have been extensively
studied in many different research areas [1]. Thereafter, we suppose that B
is nonsingular and may be ill-conditioned. The naive approach consists in
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transforming matrix pencil A−λB to a standard eigenproblem B−1Av = λv
is then prohibited. A Generalized Subspace Iteration Method (GSIM) is
given to compute a part of largest (in magnitude) generalized eigenvalues.
A Generalized Francis-QR based method is also developed to compute the
generalized Schur decomposition of the matrix pair (A,B). We show that
at each step of the proposed method, the Hessenberg/Triangular structure
is preserved. A theoretical study of the Generalized Francis-QR method is
also followed.

This paper is organized as follows. In Section 2, we give some defi-
nitions and properties and we briefly recall the well-known QZ method.
The generalization of the Francis’s QR method is presented in Section 3.
Section 4 is dedicated to a generalization of the so called power method
to compute the largest (in magnitude) generalized eigenvalue, and to intro-
duce a shift-invert strategy. In Section 5, GSIM, which is a block version
of GPM is presented. In Section 6 , the numerical test are performed to
compare the proposed approaches with Matlab based function.

2 Definitions and properties

We start with the definition of generalized eigenvalues and eigenvectors,
for more details, see [5]. For A,B ∈ Cn×n, the generalized eigenvalues of
A− λB are elements of the set λ(A,B) defined by

λ(A,B) = {z ∈ C : det(A− zB) = 0}.

If λ ∈ λ(A,B) and 0 6= x ∈ Cn satisfy

Ax = λBx, (1)

then x is an eigenvector of A−λB. Note that generalized eigenvalue prob-
lem (1) has n eigenvalues if and only if rank(B) = n [5].

Definition 1. A matrix pencil A − λB is regular if there exists λ ∈ Cn

such that det(A− λB) 6= 0 . We also say that the pair (A,B) is regular.

The most popular method for solving the generalized eigenvalue prob-
lem is the QZ algorithm, which is known in the literature as a numerically
backward stable method [5, 8]. Recall that the QZ algorithm was devel-
oped by Moler and Stewart in [8] and has undergone some changes in recent
years by Ward [9,10], Kaufman [6], Dackland and Kǎgström [2]. We recall
the main result by the following theorem from [8].
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Theorem 1 (Generalized Real Schur Decomposition). If A and B are in
Rn×n, then there exist orthogonal matrices Q and Z such that QTAZ is
upper quasi-triangular and QTBZ is upper triangular.

The purpose of the QZ algorithm is to compute the generalized real
Schur decomposition of the pair (A,B), i.e., to compute two orthogonal
matrices Q and Z such that S = QTAZ is quasi-upper triangular with
1 × 1 and 2 × 2 blocks on the diagonal, while the matrix T = QTBZ
is upper triangular. The algorithm proceeds in two stages. In the first
one by applying a unitary equivalence transformations from the left and
right, A is reduced to upper Hessenberg form and B is reduced to up-
per triangular form (See Algorithm 1). The second stage is a double shift
QR-Francis method implicitly applied to AB−1. This step generates a se-
quence of orthogonally equivalent matrix pairs (A0, B0)← (A,B), (A1, B1),
(A2, B2), . . . that converge to quasi-triangular/upper triangular equivalent
matrix pair (A∞, B∞). The Implicit Q Theorem given below is the funda-
mental tool used at the implicit QR factorization step of the QZ method.
For more details see [8].

Theorem 2 (Implicit Q Theorem). Suppose Q = [q1, . . . , qn] and V =
[v1, . . . , vn] are orthogonal matrices with the property that the matrices
QTAQ = H and V TAV = G are each upper Hessenberg where A ∈ Rn×n.
If H is unreduced and q1 = v1, then qi = ±vi and |hi,i−1| = |gi,i−1| for
i = 1, 2, . . . , n.

The following algorithm reduces the matrix pair (A,B) to the Hessen-
berg/Triangular matrix pair (Ā, B̄). This algorithm uses Givens rotations:
for scalars a and b we compute c = cos θ and s = sin θ so that[

c s
−s c

] [
a
b

]
=

[
r
0

]
, r ∈ R.

Algorithm 1. Hessenberg/Triangular Reduction [8]
Input: A and B in Rn×n,
Output: A an upper Hessenberg matrix and B an upper triangular matrix.
1. B = QR ( Householder QR), A = QTA, B = QTB.
2. for j = 1 : n− 2

for i = n : −1 : j + 2
[c, s] = givens(A(i− 1, j), A(i, j));

A(i− 1 : i, j : n) =

[
c s
−s c

]T
A(i− 1 : i, j : n);
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B(i− 1 : i, j : n) =

[
c s
−s c

]T
B(i− 1 : i, j : n);

[c, s] = givens(−B(i, i), B(i, i− 1));

B(1 : i, i− 1 : i) = B(1 : i, i− 1 : i)

[
c s
−s c

]
;

A(1 : n, i− 1 : i) = A(1 : n, i− 1 : i)

[
c s
−s c

]
;

end
end

3 The generalized Francis QR

We will present a generalized version of the Francis QR method (GFQR)
to compute eigenvalues of the problem A− λB, where A and B are square
matrices and B is nonsingular. We first reduce the pair (A,B) to Hessen-
berg/triangular form by using Algorithm 1. At each step k, we implicitly

compute the QR factorization of B(k−1)−1A(k−1). Note that neither the
inverse of the matrix B(k−1) nor the matrix product are explicitly com-
puted. In fact this method seeks to construct the Schur decomposition of
the matrix pair (A,B) (Theorem 1).

3.1 Generalized Francis QR method

Algorithm 2.
Input: A,B ∈ Rn×n

Output: Generalized Schur decomposition of matrix pair (A,B) (Theorem 1)
1. Reduce the pair (A,B) to Hessenberg/Triangular form by applying the Algo-
rithm 1.
2. Set A(0) = A, B(0) = B, Q = I, Z = I and k = 0
3. while A(k) is not quasi-triangular do

(a) k = k + 1
(b) Compute A(k−1) = PR (QR-factorization)
(c) Compute PTB(k−1) = NU (RQ-factorization)
(d) Set A(k) = RUT , and B(k) = N
(e) Q←− PTQ and Z ←− ZU

End
4. return Q, Z, T = A(∞) and S = B(∞)

To take advantage of the Hessenberg/Triangular structure of the matrix
pair (A,B), we use only Givens rotations in steps (b), (c), (d) and (e) of
Algorithm 2. This leads us to Algorithm 3, that preserves the Hessen-
berg/Triangular structure at each step k. It is mathematically equivalent
to Algorithm 2.
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Algorithm 3.
Input: A,B ∈ Rn×n

Output: Generalized Schur decomposition of matrix pair (A,B) (Theorem 1)
1. Reduce the pair (A,B) to Hessenberg/Triangular form by applying the Algo-
rithm 1.
2. Set A(0) = A, B(0) = B, Q = I, Z = I and k = 0
3. while A(k) is not quasi-triangular do

k = k + 1
for i = 1 : n− 1
• Compute the Givens rotation Gi,i+1 plane that
annihilate component A(k−1)(i, i+ 1),
A(k−1) ←− Gi,i+1A

(k−1); B(k−1) ←− Gi,i+1B
(k−1);

and Q←− QGT
i,i+1;

• Compute the Givens rotation Pi,i+1 plane to restore
B(k−1)’s triangularity;
B(k−1) ←− B(k−1)PT

i,i+1; Z ←− ZPT
i,i+1;

if i > 1
A(k−1) ←− A(k−1)PT

i−1,i;
Endif
Endfor

End
A(k−1) ←− A(k−1)PT

n−1,n;

4. return Q, Z, T = A(∞) and S = B(∞).

Let us now describe the method that we use in practice. To show
this, we consider n = 5. At each step k, we compute Givens rotations to

annihilate the element A
(k−1)
2,1 ,

A(k−1) ← G2,1A
(k−1) =


× × × × ×
0 × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×

 ;

B(k−1) ← G2,1B
(k−1) =


× × × × ×
× × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 0 ×

 ,

the nonzero entry arising in the (2,1) position in B(k−1) can be zeroed by
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multiplying with an appropriate Givens rotation P T
1,2,

B(k−1) ← B(k−1)P T
1,2 =


× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 0 ×

 ,

we again multiply by Givens rotations to do zeroing (3, 2) position of A(k−1),

A(k−1) ← G3,2A
(k−1) =


× × × × ×
0 × × × ×
0 0 × × ×
0 0 × × ×
0 0 0 × ×

 ;

B(k−1) ← G3,2B
(k−1) =


× × × × ×
0 × × × ×
0 × × × ×
0 0 0 × ×
0 0 0 0 ×

 ,

the Givens rotations P T
2,3 is determined to restore B(k−1)’s triangularity.

We also multiply the matrix A(k−1) by rotation P T
1,2

B(k−1) ← B(k−1)P T
2,3 =


× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 0 ×

 ;

A(k−1) ← A(k−1)P T
1,2 =


× × × × ×
× × × × ×
0 0 × × ×
0 0 × × ×
0 0 0 × ×

 ;

Zeros are similarly introduced into the (4, 3) and (5, 4) positions in
A(k−1) , and preserving the triangularity of B(k−1)

A(k−1) ← G4,3A
(k−1) =


× × × × ×
× × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 × ×

 ;
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B(k−1) ← G4,3B
(k−1) =


× × × × ×
0 × × × ×
0 0 × × ×
0 0 × × ×
0 0 0 0 ×

 ,

B(k−1) ← B(k−1)P T
3,4 =


× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 0 ×

 ;

A(k−1) ← A(k−1)P T
2,3 =


× × × × ×
× × × × ×
0 × × × ×
0 0 0 × ×
0 0 0 × ×

 ;

A(k−1) ← G5,4A
(k−1) =


× × × × ×
× × × × ×
0 × × × ×
0 0 0 × ×
0 0 0 0 ×

 ;

B(k−1) ← G5,4B
(k−1) =


× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 × ×

 ,

B(k−1) ← B(k−1)P T
4,5 =


× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 0 ×

 ;

A(k−1) ← A(k−1)P T
3,4 =


× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 0 ×

 ,



344 A.H. Bentibib, A. Kanber, K. Lachhab

A(k−1) ← A(k−1)P T
4,5 =


× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×

 .

A(k) and B(k) are obtained by the last update of A(k−1) and B(k−1), respec-
tively, Q and Z are computed as Q = P T

1,2P
T
2,3 · · ·P T

4,5; Z = GT
1,2G

T
2,3 · · ·GT

4,5.

Note that the obtained matrices A(k) and B(k) are upper Hessenberg and
upper triangular, respectively.

Proposition 1. Algorithm 3 preserves the Hessenberg/Triangular structure
at each step k.

3.2 Convergence theory of the algorithm

The Generalized Francis QR algorithm applied to a matrix pair (A,B) is
formally equivalent to applying implicitly the QR algorithm to B−1A. In-
deed, we have

A(k−1) = PR, P TB(k−1) = NU.

Then
B(k−1)−1A(k−1) = B(k−1)−1(PR),

and

B(k−1)−1A(k−1) = UTN−1P T (PR),

= UT (N−1R),

which is nothing but the QR factorization of B(k−1)−1A(k−1). By setting
A(k) = RUT and B(k) = N , we find the QR-Francis iteration

B(k)−1A(k) = (N−1R)UT .

4 Generalized power method

In this section we give a generalization of the so-called power pethod to
compute the generalized eigenvalues of the matrix pair (A,B), where A
and B are square matrices [11]. This method computes the largest (in
magnitude) eigenvalue of generalized eigenproblem. We use both QR and
RQ factorizations at the normalization step.
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Description: We first reduce the pair (A,B) to Hessenberg/triangular
form by using Algorithm 1. At each step k of Generalized Power Method
(GPM), we implicitly normalize vector B−1Av(k−1) by using only Givens
rotations, neither the inverse of the matrix B nor the matrix product are
explicitly computed. We set y(k) = Av(k−1) and we compute (n−1) Givens
rotations to obtain

G1,2G2,3 · · ·Gn−2,n−1Gn−1,ny
(k) = αke1,

where Gi−1,i represents the Givens rotation in the (ei−1, ei) plane that
annihilate the component i of y(k). When multiplying y(k) by the rotation
Gi−1,i (from i = n by −1 to i = 2) to annihilate the i-th component
of y(k), the triangularity of B is destroyed by a nonzero (i, i − 1) sub-
diagonal element. We restore the triangularity of B by Givens rotation
QT

i,i−1 right-side multiplication. We set Q(k) = QT
n,n−1Q

T
n−1,n−2 · · ·QT

2,1

and v(k) = Q(k)e1, where e1 is the first element of the canonical basis. Let
us describe the k-th step when n = 4. We first initialize Q(k) with n-by-n

identity matrix. The Givens rotation G3,4 is introduced to zero y
(k)
4

y(k) ← G3,4y
(k) =


×
×
×
0

 and B ← G3,4B =


× × × ×
0 × × ×
0 0 × ×
0 0 × ×

 .

The nonzero entry arising in the (4, 3) position of B can be zeroed by mul-
tiplying with an appropriate Givens rotation QT

4,3,

B ← BQT
4,3 =


× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

 and update Q(k) ← Q(k)QT
4,3.

The third component of y(k) is zeroed by using Givens rotation G2,3

y(k) ← G2,3y
(k) =


×
×
0
0

 and B ← G2,3B =


× × × ×
0 × × ×
0 × × ×
0 0 0 ×

 .

We multiply again by Givens rotation to restore B ’s triangularity,

B ← BQT
3,2 =


× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

 and update Q(k) ← Q(k)QT
3,2.
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Similarly, the Givens rotations G1,2 can be used to zero the 2nd position
of y(k). And the upper triangularity structure of B can be restored by
multiplying it from the right by QT

2,1.

y(k) ← G1,2y
(k) =


×
0
0
0

 , B ← G1,2B =


× × × ×
× × × ×
0 0 × ×
0 0 0 ×

 ,

B ← BQT
2,1 =


× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

 , andQ(k) ← Q(k)QT
2,1.

Note that two Givens rotations are required for j-th component y(k),
j > 1, that is zeroed one to do the zeroing and the other to restore B’s
triangularity. If G(k) = G2,1G3,2 · · ·Gn−1,n−2Gn,n−1, then G(k)BQ(k) =
R(k). is upper triangular and is obtained by the last update of B. We finally
obtain v(k) = Q(k)e1, which is the normalized vector of B−1Av(k−1). We
summarize the above method in the following algorithm.

Algorithm 4.
Input : A ∈ Rn×n, B ∈ Rn×n, a tolerance tol and itermax.

Output : The largest generalized eigenvalue of problem Av − λBv = 0.

1. Reduce the pair (A,B) to Hessenberg/Triangular form by applying Algorithm

1.

2. Initialization : k := 0; v(0) =v and y = Av;

3. While err > tol and k ≤ itermax do

k = k + 1; G = Q = I;

for i = n : −1 : 2

• Compute the Givens rotations Gi−1,i that annihilate component y(i);
y ← Gi−1,iy; B ← Gi−1,iB;

• Compute the Givens rotations Qi,i−1 that annihilate component B(i, i− 1);

B ← BQT
i,i−1; Q = QQT

i,i−1;

Endfor

w = y(1)
B1,1

QT e1; λ = v(k−1)
T
w;

v(k)=QT e1; y ← Av(k) and err = norm(v(k) − v(k−1));
EndWhile

4. The largest generalized eigenvalue is λmax = λ.
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4.1 Shift inverse generalized power method

In this section we present a Shift Inverse Generalized Power Method
(SIGPM) that can be used for computing the closest generalized eigen-
value to σ, where σ is called a shift [7]. The idea is to implicitly apply the
power method to (B−1A− σI)−1. The method has the ability to converge
to any desired eigenvalue starting from a fairly good approximation. We
first reduce the pair (A,B) to Hessenberg/triangular form by applying Al-
gorithm 1 and we compute the RQ-factorization of the Hessenberg matrix
(A−σB) by using n−1 Givens rotations. We use the same technique used
in GPM given above. At each step k, we compute and normalize implicitly
the vector (B−1A − σI)−1v(k−1) = (A − σB)−1Bv(k−1) = QTR−1Bv(k−1).
Here, neither the inverse of the matrix (A − σB) nor the matrix product
are explicitly computed. By setting y(k) = Bv(k−1) and using appropriate
Givens rotations, we compute the orthogonal matrix H(k) to obtain

H(k)y(k) = αke1.

H(k) is the product of (n− 1) Givens rotations; i.e.,

H(k) := H1,2H2,3 · · ·Hn−2,n−1Hn−1,n.

Then, we obtain,

(B−1A− σI)−1v(k−1) = (A− σB)−1Bv(k−1).

Let (A− σB) = RQ be the RQ-factorization of (A− σB), then

(B−1A− σI)−1v(k−1) = QTR−1H(k)TH(k)y(k),

= αkQ
T (H(k)R)−1e1,

= αkQ
T (H(k)R)−1e1.

Again, we compute the RQ-factorization, H(k)R = R(k)G(k), using n − 1

Givens rotations, G(k)T = GT
n,n−1G

T
n−1,n−2 · · ·GT

2,1. Then

(B−1A− σI)−1v(k−1) = αk(R(k)G(k))−1e1,

= αkQ
TG(k)T (R(k))−1e1,

=
αk

r
(k)
1,1

QTG(k)T e1,

v(k) = QTG(k)T e1, is the normalized vector of (B−1A−σI)−1v(k−1). Note
that H(k) and the RQ-factorization of H(k)R are computed simultaneously.
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Indeed, when multiplying R by the Givens rotation Hi−1,i, the triangularity
of R can be restored by right multiplication with Givens rotation GT

i,i−1.
Let us describe the method for the case n = 4. First, a Givens rotation

H3,4 is introduced to zero y
(k)
4 ,

y(k) ← H3,4y
(k) =


×
×
×
0

 and R(k) ← H3,4R =


× × × ×
0 × × ×
0 0 × ×
0 0 × ×

 .

The nonzero entry arising in the (4, 3) position of R(k) can be zeroed by
right multiplying with an appropriate Givens rotation GT

4,3,

R(k) ← R(k)GT
4,3 =


× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

 .

We introduce zero in the 3-th position of y(k) by using Givens rotation H2,3

y(k) ← H2,3y
(k) =


×
×
0
0

 ,

and

R(k) ← H2,3R
(k) =


× × × ×
0 × × ×
0 × × ×
0 0 0 ×

 .

We again multiply by Givens rotations to do zeroing (3, 2) position of R(k),

R(k) ← R(k)GT
3,2 =


× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

 .

Zeros are similarly introduced into the 2-nd position of y(k) and preserving
the R(k)’s triangularity

y(k) ← H1,2y
(k) =


×
0
0
0

 , R(k) ← H1,2R
(k) =


× × × ×
× × × ×
0 0 × ×
0 0 0 ×

 ,
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and

R(k) ← R(k)GT
2,1 =


× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

 .

We summarize the above method in following algorithm.

Algorithm 5.
Input : A ∈ Rn×n, B ∈ Rn×n, a tolerance tol, itermax and a shift σ.

Output : The closest generalized eigenvalue to the shift σ.

1. Reduce the pair (A,B) to Hessenberg/triangular form by applying Algorithm

1.

2. Initialization : k := 0; v(0) =v and y = Bv;

3. Compute RQ factorization A− σB = RQ ;

4. While err > tol and k ≤ itermax do

k = k + 1; G =QT ;

for i = n : −1 : 2

• Compute the Givens rotation Hi−1,i that annihilate component y(i);
y ← Hi−1,iy; R← Hi−1,iR;

• Compute the Givens rotation Gi,i−1 that annihilate component R(i, i− 1);

R← RQT
i,i−1; G = GGT

i,i−1;

Endfor

w = y(1)
R1,1

Ge1; v
(k) = Ge1; y ← Bv(k) and

err = norm(v(k) − v(k−1));
EndWhile

5. The closest generalized eigenvalue to the shift σ is given by λmax=
1

µ
+ σ,

where µ =v(k−1)Tw.

5 Generalized subspace iteration method

In this section we introduce the block version of GPM called the Generalized
Subspace Iteration Method (GSIM) for computing the s-largest generalized
eigenvalues of a square pencil (A,B). The idea is based on the technique
of Algorithm 4 and using the block-vector instead of single vector [2] . It is
also based on the QR factorization and RQ factorization. We first reduce
the pair (A,B) to Hessenberg/triangular form by using Algorithm 1. In
the following, at each step k, we do implicitly a QR factorisation of the n-
by-s matrix B−1AV (k−1) = Q(k)R(k) by only using Givens rotations. We
recall that neither the inverse of the matrix B nor the matrix product are
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explicitly computed. The generalized subspace iteration method applied to
a matrix pair (A,B) is nothing but the subspace iteration method implicitly
applying to B−1A. Let us describe the case n = 4 and s = 2. At step k,
we first initialize Q(k) by n-by-n identity matrix. Set Y (k) = AV (k−1) and
apply a Givens rotation G3,4 to zeroed the (4, 1) position of Y (k)

Y (k) ← G3,4Y
(k) =


× ×
× ×
× ×
0 ×

 ; B ← G3,4B =


× × × ×
0 × × ×
0 0 × ×
0 0 × ×

 .

The nonzero entry arising in the (4, 3) position of B can be zeroed by
right-multiplication with an appropriate Givens rotation QT

4,3,

B ← BQT
4,3 =


× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

 and update Q(k) ← Q(k)QT
4,3.

We again applied a Givens rotation G2,3 to zero element (3, 1) of Y (k)

Y (k) ← G2,3Y
(k) =


× ×
× ×
0 ×
0 ×

 ; B ← G2,3B =


× × × ×
0 × × ×
0 × × ×
0 0 0 ×

 .

The nonzero entry arising in the (3, 2) position of B can be zeroed by
right-multiplication with an appropriate Givens rotation QT

3,2,

B ← BQT
3,2 =


× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

 and update Q(k) ← Q(k)QT
3,2.

Givens rotation G1,2 to zero element (2, 1) of Y (k)

Y (k) ← G1,2Y
(k) =


× ×
0 ×
0 ×
0 ×

 ; B ← G1,2B =


× × × ×
× × × ×
0 0 × ×
0 0 0 ×

 .
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The nonzero entry arising in the (2, 1) position of B can be zeroed by
right-multiplication with an appropriate Givens rotation QT

2,1,

B ← BQT
2,1 =


× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

 and update Q(k) ← Q(k)QT
2,1.

Now dealing with the second column of the matrix Y (k). We first give
rotation G3,4 to zero element (4, 2) of Y (k)

Y (k) ← G3,4Y
(k) =


× ×
0 ×
0 ×
0 0

 ; B ← G3,4B =


× × × ×
0 × × ×
0 0 × ×
0 0 × ×

 .

The nonzero entry arising in the (4, 3) position of B can be zeroed by
right-multiplication with an appropriate Givens rotation QT

4,3,

B ← BQT
4,3 =


× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

 and update Q(k) ← Q(k)QT
4,3.

Givens rotation G2,3 is given to zero element (3, 2) of Y (k)

Y (k) ← G2,3Y
(k) =


× ×
0 ×
0 0
0 0

 ; B ← G2,3B =


× × × ×
0 × × ×
0 × × ×
0 0 0 ×

 .

The nonzero entry arising in the (3, 2) position of B can be zeroed by
right-multiplication with an appropriate Givens rotation QT

3,2,

B ← BQT
3,2 =


× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

 and update Q(k) ← Q(k)QT
3,2.

We finally obtain V (k) = Q(k)In×s the normalized block vector of
B−1AV (k−1), where, In×s are the s-th first columns of n-by-n identity ma-
trix. The above process is repeated until obtaining convergence and it is
summarize in the following algorithm.
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Algorithm 6.
Input : A ∈ Rn×n, B ∈ Rn×n, a tolerance tol, itermax and a number s.

Output: The s largest generalized eigenvalues of the pair (A,B).

1. Reduce the pair (A,B) to Hessenberg/Triangular form by applying Algorithm

1.

2. Initialization : k := 0; V (0) ∈ Rn×s; Z = AV (0).

3. While err > tol and k ≤ itermax do

k = k + 1; G = Q = I.

For j = 1 : s

y = Z(:, j);

For i = n : −1 : j + 1

• Compute the Givens rotation Gi−1,i that annihilate component yi;

y ← Gi−1,iy;Z ← Gi−1,iZ;

B ← Gi−1,iB;

• Compute the Givens rotation Qi,i−1 that annihilate component B(i, i− 1);

B ← BQT
i,i−1; Q = QQT

i,i−1;

Endi

Endj

V (k) ← Q(:, 1 : s); Z = AV (k);

err = norm(V (k) − V (k−1));

EndWhile

5. The s largest generalized eigenvalues are
Z(i, i)

B(i, i)
, i = 1, ..., s.

6 Numerical examples

In this section we compare the numerical results obtained by GPM algo-
rithm, GSIM algorithm and eig function of Matlab in terms of the relative
error. All of the reported experiments were performed on a 32-bit 2.4 GHz
Intel Core Duo Processor and 2 GB RAM on 2013a Matlab version.

Example 1. We compared and tested the numerical results obtained by
Algorithm 4 with Matlab eig function for different sizes. For the first
test we take a 500 by 500 real matrix pencil (A,B), where the condition
number of B−1A is 8.8274.1024. Table 1 gives the largest eigenvalue of the
pair (A,B) computed by Algorithm 4 and the one computed by Matlab
eig function, and Table 2 presents the relative errors of both methods.
For the second test we take a 1000 by 1000 real matrix pencil (A,B),
where the condition number of B−1A is 1.3462.1033. The exact and the
computed largest eigenvalues of the pair (A,B) are given in Table 3. The
corresponding relative errors are given in Table 4.
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Table 1: Eigenvalue calculated by each method (n = 500).

Exact GPM Matlab eig

7.0313e− 01 7.0318e− 01 7.0328e− 01

Table 2: Relative errors occurred when computing the eigenvalues (n =
500).

GPM Matlab eig

8.4711e− 05 2.2436e− 04

Table 3: Eigenvalue calculated by each method (n = 1000).

Exact GPM Matlab eig

6.1875 6.1875 6.1873

Table 4: Relative errors occurred when computing the eigenvalues (n =
1000).

GPM Matlab eig

6.3348e− 06 3.0734e− 05

Example 2. In this example we give two tests that compare the numerical
results obtained by GSIM (Algorithm 6) and Matlab eig function for
different sizes. Figure 1 presents the relative errors obtained for n = 200
and s = 5. In Figure 2, we plot the relative errors for n = 1000 and s = 4.

7 Conclusion

We have presented a generalization of the subspace iteration method (GSIM)
to compute the s-largest (in magnitude) generalized eigenvalues of the ma-
trix pencil A − λB. The special case when s = 1 is presented (GPM).
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Figure 1: Relative errors of Matlab eig function and GSIM.

Figure 2: Relative error of Matlab eig function and GSIM.

A generalization of the well-known Francis-QR method to compute the
generalized Schur decomposition of the matrix pair (A,B) is also given.
The method is presented in such a way that it preserves the Hessen-
berg/Triangular structure at each step. In all the proposed methods, nei-
ther the inverse of the matrix B nor matrix product are effectively com-
puted.
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