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Abstract. Global approaches make troubles and deficiencies for solving
singularly perturbed problems. In this work, a local kernel-based method
is applied for solving singularly perturbed parabolic problems. The kernels
are constructed by the Newton basis functions (NBFs) on stencils selected
as thin regions of the domain of problem that leads to increasing accuracy
with less computational costs. In addition, position of nodes may affect
significantly on accuracy of the method, therefore, the adaptive residual
subsampling algorithm is used to locate optimal position of nodes. Finally,
some problems are solved by the proposed method and the accuracy and
efficiency of the method is compared with results of some other methods.
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1 Introduction

Singularly perturbed differential equations are problems with having a
small positive parameter, ε, in the highest derivative terms. Reformula-
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tion physical variables into dimensionless variables triggers these problems.
We cosider the nonlinear singularly perturbed parabolic equation of the
general form

ut = εuxx + F (x, t, u, ux), (x, t) ∈ (0, 1)× (0, T ), (1)

with the initial condition

u(x, 0) = u0(x), x ∈ (0, 1), (2)

and the boundary conditions

u(0, t) = h1(t), u(1, t) = h2(t), t ∈ (0, T ), (3)

where the function F is sufficiently smooth and ∂F
∂u and ∂F

∂ux
exist. We also

consider the following singularly perturbed convection-diffusion problem

ut − εuxx + a(x)ux + b(x)u = f(x, t), (x, t) ∈ (0, 1)× (0, T ), (4)

with the initial and boundary conditions (2)-(3). Many issues are modeled
by these equations in various branches of science and engineering such as
fluid dynamics, chemical kinetics, robotics, control theory, convective heat
transport problem, financial modeling and turbulence model [11,22,24,29].

The solution of these problems often exhibits a thin transition layer,
called a boundary layer, at one or both ends. Within the boundary layer
regions the magnitude of the first derivative of the solution can be signif-
icantly larger compared to the size of the solution derivatives outside the
boudary layers and it causes the solution varies rapidly in the boundary
layer, while away from the layer, the solution behaves smoothly and varies
gradually [15]. In these problems high accuracy can not be obtained un-
less an appropriate method is employed. It has been well established [4]
that the classical numerical approaches, such as the centred finite differ-
ence method and the upwind finite difference operator on uniform mesh, to
solve these problems have many deficiencies, especially in pointwise global
approaches and can not be hoped to construct a layer resolving with us-
ing a uniform mesh. In [20] and [21] new two-level implicit variable mesh
schemes have been developed for the solution of nonlinear parabolic equa-
tions. In [35], Yzbasi and Sahin suggest a collocation method by using the
truncated Bessel series and constructing the matrix operations in a global
approach. In [7] numerical approximations are generated using a classical
finite difference operator on a piecewise uniform Shishkin mesh. In [6] the
domain is divided by using a piecewise uniform adaptive mesh in the spatial
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direction. The domain decomposition method is applied in [34] by divid-
ing the original domain of the problem into three overlapping subdomains
and discretizing the problem by the backward Euler scheme in the time
direction.

In this study, we use a local kernel-based method with an adaptive
algorithm to solve singularly perturbed problems. The kernel-based meth-
ods have been applied in many papers for solving various problems, see,
e.g. [8, 9, 16–19, 26, 36]. The representations of kernel-based approximants
in terms of the standard basis of translated kernels are notoriously unstable.
A more useful basis, so-called Newton basis, is offered in [23]. The Newton
basis turns out to be orthonomal in the reproducing native Hilbert space,
and it is complete, if infinitely many data locations are reasonably chosen.
A timesaving calculation of Newton basis arising from a pivoted Cholesky
factorization has been introduced in [25]. In this study, expansion in terms
of the Newton basis functions (NBFs), as a spatial interpolation, is used
to obtain a system of ODEs from the time-dependent PDEs. In this local
scheme, using overlapping small sub-domains of the whole domain [1, 12],
produces sparse operational matrices and consequently less computer stor-
ages are needed and computational cost significantly reduces. In addition,
in order to increase the accuracy of the method, we employ the adaptive
residual subsampling algorithm [3] to optimize location of nodes by gener-
ating non-uniform adapted mesh, specially in boundary layers and regions
with rapid variation. In this adaptive method an interpolant is computed
for the set of points and then based on interpolation residuals, some points
can be added to or removed from the set of points to sample a finer nodes
set.

This paper is structured as follows. In Section 2, the kernels spanned by
the NBFs are constructed and used for approximating the spatial deriva-
tives needed in the paper. In Section 3 the method implementation is pro-
vided. The adaptive residual subsampling algorithm is explained in Section
4. In Section 5, the numerical results and their comprison with the results
of some other methods are given. Finally, a brief conclusion is given in the
last section.

2 Method description

Let Ω be a nonempty set. A function K : Ω × Ω → R is called a positive
definite kernel on Ω, that is

∑n
i,j=1K(yi, yj)ξiξj ≥ 0 for any finite set of

points {y1, ..., yn} ∈ Ω and any real numbers ξ1, ..., ξn. Let K : Ω×Ω→ R
be a symmetric positive definite kernel on Ω. This means that for all finite



322 H. Rafieayanzadeh, M. Mohammadi, E. Babolian

sets {xi ∈ Ω, i = 1, ..., n} the kernel matrix A = [K(xi, xj)]i,j=1,...,n is
symmetric and positive definite. These kernels are reproducing in “native”
Hilbert space NK = span{K(x, ·) |x ∈ Ω} of functions on Ω in the sense

〈f,K(x, ·)〉NK
= f(x) for all x ∈ Ω, f ∈ NK .

The most important examples are the Whittle-Matern kernels
rm−d/2Km−d/2(r), r = ‖x − y‖, x, y ∈ Rd, reproducing in the Sobolev

space Wm
2 (Rd) for m > d/2, where Kν is the modified Bessel function of

the second kind [32]. For scattered nodes {xi ∈ Ω, i = 1, ..., N} the trans-
lates Kj(x) = K(x, xj) are the trial functions. The Newton basis functions
(NBFs) {Nk(x)}nk=1 can be expressed by

Nk(x) =

n∑
j=1

K(x, xj)cjk, k = 1, ..., n, (5)

where K(x, xj) must be a positive definite kernel like some kinds of radial
basis functions (RBFs) such as Gaussian (GA), Inverse Multiquadric (IMQ)

and Mattern Sobolov (MS), repectively given by φ(r) = exp(− r2

2α2 ) , φ(r) =

(1+ r2

α2 )−
1
2 and φ(r) = ( rα)νKν( rα), where Kν is the modified Bessel function

of second kind and r = ‖x − xj‖2. In addition, there is a free parameter
α in the RBFs called the shape parameter which can change the accuracy
and the condition number of the interpolation matix.

Considering N = [Nj(xi)]i,j=1,...,n , A = [K(xi, xj)]i,j=1,...n and C =
[cjk]j,k=1,...,n in (5) gives N = A · C. It has been proved [25] that the
Cholesky decomposition A = L · LT with a nonsingular lower triangular
matrix L leads to the Newton basis

N(x) = T (x) · C, (6)

with
N = L, C = (LT )−1, (7)

where N(x) = [N1(x) · · ·Nn(x)] , T (x) = [K(x, x1) · · ·K(x, xn)]. The
condition number of the collocation matrix corresponding to the NBFs
is smaller than the one corresponding to translated kernels which leads to
more stability rather than using the translated kernels.

For using the NBFs in a local method, a local set of points is needed.
For this purpose a set of pionts X = {xi ∈ Ω, i = 1, ..., n} consists of
discrete pionts is considered. In order to construct a local domain, the
center xi ∈ X and its m− 1 nearest neighboring points are considered as a
stencil Ωi = {xik}mk=1 and the NBFs N i

1, ..., N
i
m corresponding to the stencil
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are obtained by (6). Now, a solution function u(x, t) can be approximated
by NBFs on the local domain in the form

ui(x, t) =
m∑
k=1

N i
k(x) αik(t). (8)

Substituting xi ∈ Ωi in (8) results in

ui(xi, t) = N i · αi, xi ∈ Ωi, (9)

where, N i = [N i
1(xi) · · ·N i

m(xi)] and αi = [αi1(t) · · ·αim(t)]T is an unknown
vector. For obtaining the unknown vector αi, putting the points {xik}mk=1

in (8) leads to the linear system

U i = Ni · αi,

where U i = [ui(xi1, t) · · ·ui(xim, t)]T , and Ni = [N i
k(x

i
p)]k,p=1,...,m. Therefore

αi = (Ni)
−1 · U i. (10)

Consequently (9) and (10) result in

ui(xi, t) = N i · (Ni)
−1 · U i. (11)

Moreover, the spatial partial derivatives are needed to be implemented.
The s-th order spatial partial derivatives are in the following form

∂s

∂xs
ui(xi, t) = N i

(s) · (N
i)
−1 · U i, s = 1, 2, ... (12)

where N i
(s) = [ ∂

s

∂xsN
i
1(xi) · · · ∂

s

∂xsN
i
m(xi)] that is clearly calculated by differ-

entiation of (6). Considering Bi
(s) = N i

(s) · (N
i)
−1

, (12) results

∂s

∂xs
ui(xi, t) = Bi

(s) · U
i. (13)

3 Implementation

Consider the set of pointsX = {xi, i = 1, ..., n} on [0, 1] whichXI = {xi, i =
1, ..., n − 2} in (0, 1) is the set of interior points and XB = {xn−1, xn} =
{0, 1} is the set of boundary points. Substituting xi ∈ XI in (1) leads to
system of equations

uit(xi, t) = εuixx(xi, t)+F
(
xi, t, u

i(xi, t), u
i
x(xi, t)

)
, i = 1, ..., n−2. (14)
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By substituting (13) in (14), we have

uit(xi, t) = εBi
(2)U

i + F
(
xi, t, u(xi, t), B

i
(1)U

i
)
, i = 1, ..., n− 2. (15)

To attain an explicit matrix form for system of equations (15) and to change
the local derivative matrices into global matrices, a (n−2)-by-n matrix D(s)

according to derivatives appeared in (14) is defined as follows

D(s)(i, Ii) = Bi
(s), (16)

where Ii is a vector contains the indices of center xi and its m− 1 nearest
neighboring points in its related stencil. The local property of the sten-
cils leads to sparsity of D(s) which in turn decrease computational cost.
Applying (16) for (15) leads to

U ′I = εD(2) · UI + F
(
xi, t, UI , D(1) · UI

)
, (17)

where U ′I = [uit(x1, t) · · ·uit(xn−2, t)]T and UI = [ui(x1, t) · · ·ui(xn−2, t)]T .
Similarly, substituting xi ∈ XI in the convection-diffusion equation (4) and
using (13) and (16) give the following matrix form

U ′I = εD(2) · UI −A. ∗D(1) · UI −B. ∗ UI + F, (18)

where A = [a(x1) · · · a(xn−2)]
T , B = [b(x1) · · · b(xn−2)]T , F = [f(x1, t) · · ·

f(xn−2, t)]
T and .∗ denotes the pointwise product between two matrices or

vectors. The boundary conditions (3) are of the following vector form

UB = H, (19)

where UB = [Un−1 Un]T = [u(0, t) u(1, t)]T and H = [h1(t) h2(t)]
T . In

addition, the initial condition (2) gives

U(0) = U0, (20)

where U(0) = [u(x1, 0) · · ·u(xn, 0)]T and U0 = [u0(x1) · · ·u0(xn)]T . Finally,
Eqs. (17) and (19) or Eqs. (18)-(19) lead to systems of ODEs with the
initial condition (20) that can be solved by an appropriate ODE solver uses
automatically a reasonable time-stepping and detects stiffness of the ODE
system.

4 Adaptive algorithm

The kernel functions are constructed by using a set of center points which
can set anywhere of the given domain independently and also positions of
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the center points make influence on approximation quality and stability
of interpolation [31]. Since kernel-based methods are completely meshfree,
some adaptive algorithms [13, 14] for finding optimal set of point may be
devised. For example, in problems with rapid variations in given domain,
such as boundary layers, steep gradients and corners, adaptive methods
may be preferred over fixed grid methods. In order to achieve accuracy
and stability, adaptive methods select optimal centers by moving, adding
or removing points.

In adaptive residual subsampling algorithm, some points may be added
or removed by using computed residuals [3]. In this section, we describe the
adaptive residual subsampling algorithm for the local kernel-based method
which spatial trial space is spanned by the NBFs.

Implementation of the adaptive residual subsampling technique for time-
dependent PDEs is to alternate time stepping with adaptation. First, initial
center points {xi, i = 1, ..., n} are generated using n equally spaced points
in the given domain. Then, using NBF interpolation at center points and
initial condition of the PDE, unknown coefficients vector α = [α1 · · ·αn]T

is calculated from the linear system

Nα = U0,

where, N = [Nj(xi)]i,j=1,...,n is the NBF matrix, U0 = [u0(x1) · · ·u0(xn)]T

and u0(x) is the initial condition function of the PDE. Now, the set {yi =
1
2(xi+1−xi), i = 1, ..., n−1} is considered halfway between the center points.
The residuals vector r is calculated by

r = |Nyα− Uy0 |,

where, Ny is the NBF matrix for the points {yi}n−1i=1 , which is calculated by
(6)-(7), Uy0 = [u0(y1) · · ·u0(yn−1)]T , and r = [r1 · · · rn−1]T . Points at which
the residual exceeds a threshold θr are to become center points, and center
points that lie between two points whose error is below a smaller threshold
θc are removed. This means, if ri > θr, then yi will be added to set of
center points, and if ri < θc and ri+1 < θc, then xi+1 will be removed. This
process is called coarse–refine (coarse for removing center points and refine
for adding new points). Therefore, a new set of center points is given and
the coarse–refine process is repeated while any new point can not be added.
After ending coarse–refine processes, a new set of center points is obtained.
These new center points are used to advance the discrete solution up to a
predetermined time t = τ by using the local method, which was described in
the previous sections. τ must be large enough to avoid excessive adaptation
steps, while keeping it small enough that the adaptation can keep up with
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emerging or changing features in the solution. So the solution is obtained
at the time t = τ . Now residual subsampling algorithm is applied by using
the solution at this time level as a new initial state for further time. This
process continues to achieve t = T .

5 Numerical results

In this section, to verify the described method, the numerical results of
our scheme for several singularly perturbed ploblems, of the general form
(1) and also convection-diffusion problems (4), with different values of the
singular perturbation parameter ε are represented. In some cases the exact
solution does not exist and the pointwise error is calculated. The pointwise
error is defined by

enε (xi) = |un(xi)− u2n(xi)|,

and the maximum pointwise error is given by

Enε = max
i

(enε (xi)),

where un and u2n are the approximation solutions resulted by n and 2n
points, respectively. Also, in some cases which the exact solution exists,
the following well-known maximum absolute error (MAE) and root mean
square error (RMSE) are used:

max
i
|u(xi)− un(xi)|,

and √√√√ 1

n

n∑
i=1

(
u(xi)− un(xi)

)2
,

where u is the exact solution. In the following examples, the MS and IMQ
RBFs are taken for constructing the NBFs and τ = 0.01.

Example 1. Consider the following problem [7]

ut = εuxx − (1 + x+ t)u+ 43x3t2(1− x)3, (x, t) ∈ (0, 1)× (0, T ], (21)

with the boundary conditions

u(0, t) = u(1, t) = t3, (22)

and the initial condition

u(x, 0) =
(
4x(1− x)

)3
. (23)
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Figure 1: Solution of Example 1 for ε = 2−20 at T = 1.

The computed solution of Eqs. (21)-(23) for ε = 2−20 and using MS RBFs
with the shape parameter 1, thresholds θr = 10−2 and θc = 10−5 at T = 1
is displayed in Figure 1. As seen in Figure 1, there are boundary layers
near x = 0 and x = 1. Because of using the adaptive method the number
of nodes starts with 30 and finally grows to 46 at T = 1 and as shown in
Figure 2 due to the adaptive method, number of nodes increases near the
boundary layers that leads to more accuracy of the method. In Table 1 the
maximum pointwise errors E30

ε for different values of ε is shown.

Table 1: The maximum pointwise error E30
ε for Example 1.

ε = 20 ε = 2−1 ε = 2−2 ε = 2−3 ε = 2−4 ε = 2−5 ε = 2−6

1.16e-02 1.74e-02 2.41e-02 2.98e-02 3.56e-2 5.50e-02 8.25e-02

ε = 2−7 ε = 2−8 ε = 2−9 ε = 2−10 ε = 2−11 ε = 2−12 ε = 2−13

9.03e-02 9.25e-02 5.57e-02 3.29e-02 1.79e0-2 1.72e-02 7.30e-03

ε = 2−14 ε = 2−15 ε = 2−16 ε = 2−17 ε = 2−18 ε = 2−19 ε = 2−20

6.40e-03 6.48e-04 6.42e-04 7.55e-04 9.50e-04 3.09e-04 7.43e-04
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Figure 2: Adaption of nodes for solution of Example 1.

Example 2. Consider the following equation [28]

ut = εuxx − (ux)2 + u2 + f(x, t), (x, t) ∈ (0, 1)× (0, T ], (24)

with the boundary conditions

u(0, t) = u(1, t) = 0, (25)

and the initial condition

u(x, 0) = ε sin(πx) cos(πx), (26)

where f(x, t) is given by the exact solution

u(x, t) = εe−ε
2t sin(πx) cos(πx).

The MAE and RMSE for computed solution of the Eqs. (24)-(26) are given
in Table 2 for different values of ε and various number of points n at T = 1
by using IMQ RBF, which shows accuracy of the method for small values
of ε. Moreover, the results are reported at T = 3 in Table 3 which shows
the method remain accurate with increasing time. For more clarity the
absolute errors of the solutin for ε = 10−2 and different values of n at
T = 1 and T = 3 are displayed in Figures 3-6.
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Figure 3: Absolute error for solution of Example 2 with n = 8, (left) at
T = 1, (right) at T = 3.

Figure 4: Absolute error for solution of Example 2 with n = 16, (left) at
T = 1, (right) at T = 3.

Example 3. Consider the following problem

ut = εuxx− (2−x2)ux−xu+10t2e−tx(1−x), (x, t) ∈ [0, 1]× [0, T ], (27)

with the boundary conditions

u(0, t) = u(1, t) = 0, (28)

and the initial condition
u(x, 0) = 0. (29)

There is not an exact solution for this problem. In [35], the Eqs. (27)-
(29) have been solved by the Bessel collocation method and the maximum
pointwise error Enε compared with some other methods. In Table 4, the
maximum pointwise errors Enε of the Eqs. (27)-(29) for various values of
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Figure 5: Absolute error for solution of Example 2 with n = 32, (left) at
T = 1, (right) at T = 3.

Figure 6: Absolute error for solution of Example 2 with n = 64, (left) at
T = 1, (right) at T = 3.

the perturbation parameter ε at T = 1 are reported by applying the peresnt
method and using the MS RBF with the shape parameter 1, and compared
with results of [35].

Example 4. Consider the following problem with a singular coefficient

ut = εuxx −
1

x
uux − u2 + f(x, t), (x, t) ∈ (0, 1)× (0, T ),

with the boundary conditions

u(0, t) = u(1, t) = 0,

and the initial condition

u(x, 0) = 0,
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Table 2: The MAE and RMSE for Example 2 at T = 1.

ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6

n
8 MAE 5.257e-05 2.185e-07 2.420e-09 2.319e-11 2.216e-13

RMSE 1.9719e-05 1.0907e-07 1.5208e-09 1.0942e-11 1.0464e-13

16 MAE 1.978e-06 9.278e-08 6.714e-10 6.644e-12 6.266e-14
RMSE 1.8926e-06 6.4810e-08 1.9080e-10 2.0566e-12 1.9390e-14

32 MAE 2.333e-06 3.790e-08 7.868e-11 9.254e-13 8.322e-15
RMSE 1.5020e-06 4.0278e-09 1.7985e-11 2.1147e-13 1.9283e-15

64 MAE 7.269e-09 3.177e-10 1.539e-11 9.228e-14 9.471e-16
RMSE 4.7335e-09 7.8427e-11 1.0885e-11 4.1699e-14 4.1840e-16

Table 3: The MAE and RMSE for solution of Example 2 at T = 3.

ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6

n
8 MAE 1.099e-04 6.281e-07 7.551e-09 7.268e-11 6.904e-13

RMSE 4.5892e-05 3.0234e-07 4.7093e-09 3.4289e-11 3.2807e-13

16 MAE 1.319e-05 2.136e-07 1.875e-09 2.076e-11 1.964e-13
RMSE 6.2391e-06 9.9790e-08 5.7850e-10 6.4258e-12 6.0775e-14

32 MAE 5.105e-06 3.790e-08 2.142e-10 2.858e-12 2.640e-14
RMSE 3.2171e-06 6.7590e-09 4.9474e-11 6.5295e-13 6.0365e-15

64 MAE 9.983e-09 3.608e-10 2.586e-10 2.715e-13 2.951e-15
RMSE 6.1701e-09 1.3077e-10 4.4739e-11 1.2981e-13 1.3107e-15

where f(x, t) is given by the exact solution

u(x, t) = tx(1− x).

This problem is solved by the present method for various values of ε and
different number of points n by using IMQ RBF at T = 1. The muximum
pointwise errors Enε are computed for each case and compared with results
of the Sinc collocation method [28] and are given in Table 5. The results
show that errors decrease while n increases.



332 H. Rafieayanzadeh, M. Mohammadi, E. Babolian

Table 4: Comparison of the maximum pointwise error Enε for Example 3
at T = 1.

n→ 3 4 16 32

Present method Present method
ε ↓
2−2 1.7606e-05 1.1500e-05 4.3164e-06 3.6481e-06
2−4 7.0420e-05 4.5998e-05 1.0852e-05 9.5800e-06
2−6 2.8158e-04 1.8392e-04 4.3407e-05 3.8318e-05
2−8 9.3327e-04 8.3034e-04 1.7360e-04 1.5324e-04
2−10 9.1980e-04 5.3611e-04 6.9403e-04 6.1240e-04
2−12 7.3757e-04 9.2937e-05 4.6151e-05 1.1725e-05
2−14 7.3757e-04 1.0170e-05 3.6481e-05 4.3164e-06

n→ 3 4 16 32

Euler implicit Piecewise-analytical
ε ↓ method [2] method [27]

2−2 1.1249e-2 6.3202e-3 2.6e-3 9.922e-4
2−4 1.6783e-2 8.1043e-3 1.15e-2 5.1e-3
2−6 3.090e-2 1.5221e-2 2.25e-2 1.67e-2
2−8 3.5742e-2 1.9347e-2 1.52e-2 1.44e-2
2−10 3.6717e-2 2.0475e-2 1.33e-2 7.9e-3
2−12 3.6931e-2 2.0732e-2 1.4e-2 6.7e-3
2−14 3.6982e-2 2.0794e-2 1.41e-2 6.9e-3

n→ 3 4 16 32

Bessel collocation B-spline collocation method
ε ↓ method [35] with Shishkin mesh [10]

2−2 1.7917e-2 1.0909e-3 5.5489e-3 1.4220e-3
2−4 2.4545e-2 1.1414e-2 4.9629e-3 2.8234e-3
2−6 4.2727e-2 1.1875e-2 3.7566e-3 1.2640e-3
2−8 5.1250e-2 2.9091e-2 1.2536e-2 2.6440e-3
2−10 5.3750e-2 3.2500e-2 1.6606e-2 5.3053e-3
2−12 5.5000e-2 3.3333e-2 1.7491e-2 6.3301e-3
2−14 5.6250e-2 3.4545e-2 1.7860e-2 6.4345e-3

6 Conclusion

In this paper, a local kernel-based method was studied to solve singularly
perturbed parabolic problems and successfully applied for some numeri-
cal examples. In this method, kernels were constructed by spanning the
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Table 5: The maximum pointwise errors Enε for Example 4 at T = 1.

n→ 4 8 4 8

Present method Sinc collocation
ε ↓ method [28]

10−2 7.3070e-04 5.7647e-05 6.53e-04 1.51e-04
10−3 5.6685e-04 1.8079e-06 1.79e-04 1.37e-05
10−4 9.3726e-05 1.2870e-05 2.03e-04 6.13e-05
10−5 7.3819e-04 6.5612e-05 9.12e-04 3.11e-05
10−6 6.6060e-05 6.6060e-05 1.65e-03 3.13e-04

n→ 16 32 16 32

Present method Sinc collocation
ε ↓ method [28]

10−2 2.2888e-05 3.0124e-07 1.12e-05 4.65e-07
10−3 9.5467e-06 5.1231e-07 3.44e-06 5.96e-07
10−4 5.4929e-06 7.3578e-07 9.67e-06 7.62e-07
10−5 5.6034e-07 8.1148e-07 8.48e-06 1.34e-06
10−6 6.9021e-06 9.3689e-07 7.81e-05 8.51e-06

Newton basis Functions on stencils which led to low computational costs.
Moreover, in order to optimize nodes, specially in boudary layers, the adap-
tive residual subsampling algorithm was employed which in turn gave more
accurate results.
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