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Abstract. In this article, we shall establish sufficient conditions for the
existence of mild solutions for second order semilinear integro-differential
evolution equations in Fréchet spaces C(R+, E), where E is an Banach
space. Our approach is based on the concept of a measure of noncom-
pactness and Tykhonoff fixed point theorem. For illustration we give an
example.
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1 Introduction

The objective of the present work is to give an alternative approach to the
existence of mild solutions for the following second order evolution equation

∂2

∂t2
x(t)−A(t)x(t) = f

(
t, x(t),

∫ t

0
u(t, s, x(s))ds

)
, t ≥ 0,

∂x

∂t
(0) = x0 ∈ E,

x(0) = x̃0 ∈ E,

(1)
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where A(t) : Dt ⊂ E → E is the infinitesimal generator of a compact
analytic semigroup of uniformly bounded linear operators U(t, s)0≤s≤t and
f : R+ × E → E is a given function.

Many mathematical models of phenomena occurring in engineering in-
volve semilinear integro-differential equation. Moreover, this type of equa-
tions have received a lot of attention in recent years [9, 20]. Useful for the
study of abstract second order equations is the existence of an evolution
system U(t, s) for the homogenous equation

x′′(t) = A(t)x(t), t ≥ 0.

The are several techniques to prove the existence of U(t, s) (see Kozak [12]).
The study of evolution initial value problems with local or nonlocal condi-
tions have applications in problems in physics and other areas of applied
mathematics. Several authors have investigated the problem of nonlocal
initial conditions for different classes of abstract differential equations in
Banach spaces, for example, we refer the reader to [8, 10, 14, 15, 17, 21, 22]
and the references therein. In this paper we prove a theorem on the exis-
tence of mild solutions for the equation (1) on the space of all continuous
functions on R+. As several existence results obtained by several authors
(see [2–5,11,17–19]) in the field of abstract differential equations in Banach
spaces, we derive some sufficient conditions for the existence of solutions of
second order semilinear functional evolution equations.

The considerations of this paper are based on the notion of measure of
noncompactness in the Fréchet spaces of functions continuous on R+ and
Tykhonoff fixed point theorem. Moreover, an application is provided to
illustrate the results of this work.

2 Preliminary tools

In what follows, E will represent a Banach space with norm ‖.‖. Denote by
C(R+, E) the space of continuous functions x : R+ → E. Let In = [0, n],
n ∈ N. The space C(R+, E) is the locally convex space of continuous
functions from R+ into R with the metric

d(x, y) = sup

{
2−n

‖x− y‖n
1 + ‖x− y‖n

: n ∈ N
}
,

where
‖x‖n := sup {|x(t)| : t ∈ In} .

The convergence in C(R+, E) is the uniform convergence in the compact
intervals, i.e., xj converge to x in C(R+, E) if and only if ‖xj−x‖n converge
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to 0 in (C(In), ‖.‖n), ∀n ∈ N. By Arzela-Ascoli theorem, a set M ⊂
C(R+, E) is compact if and only if for each n ∈ N, M is a compact set in
the Banach space (C(In), ‖.‖n), see [13].

Next, we present some basic facts concerning measure of noncompact-
ness in C(R+, E) (see [1, 11, 16]). Let θ be the zero element of E. Denote
by B(x, r) the closed ball centred at x with radius r and by Br the ball
B(θ, r). If X is a nonempty subset of E we denote by X, Conv(X) the
closure and convex closure of X, respectively. Finally, let us denote by
ME the family of all nonempty and bounded subsets of E and by NE its
subfamily consisting of all relatively compact sets. Following [1] we accept
the following definition of the concept of a measure of noncompactness.

Definition 1. [1] A function µ : ME → R+ is said to be a measure of
noncompactness in E if it satisfies the following conditions:

1. The family ker µ = {X ∈ME : µ(X) = 0} is nonempty and ker µ ⊂
NE .

2. X ⊂ Y ⇒ µ(X) ≤ µ(Y ).

3. µ(X) = µ(ConvX) = µ(X).

4. µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1].

5. If (Xn) is a sequence of nonempty, bounded, closed subsets of C(R+, E)
such that Xn+1 ⊂ Xn for n = 1, 2, . . . and limn→∞ µ(Xn) = 0 then
the set X∞ =

⋂∞
n=1Xn is nonempty.

Next, we consider the measure of noncompactness in C(R+, E) defined
in [11,16,19] as follows. Let

Mr = {X ⊂ C(R+, E) : X 6= ∅ and ‖x(t)‖ ≤ r(t) for x ∈ X and t ≥ 0},

where r : R+ → (0,∞) is a fixed function and let Nr be the family of
all relatively compact subsets of Mr. Fix X ∈ MC(R+,E) and a positive

number T > 0. For x ∈ X and ε > 0, denote by wT (x, ε) the modulus of
continuity of the function x on the interval [0, T ], i.e.,

wT (x, ε) = sup{‖x(t)− x(s)‖ : t, s ∈ [0, T ], |t− s| ≤ ε}.

Further, let us put

wT (X, ε) = sup
{
wT (x, ε) : x ∈ X

}
,

wT0 (X) = lim
ε→0

wT (X, ε).
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Now, let µ be a regular measure of noncompactness in E and let

µT (X) = sup{µ(X(t)) : t ∈ [0, T ]}. (2)

Let us take a function R : R+ → (0,∞) such that R(t) ≥ r(t) for t ≥ 0.
Define the mapping γR on the family Mr by

γR(X) = sup
{ 1

R(t)

(
wT0 (X) + µT (X)

)
: T ≥ 0

}
. (3)

The properties of γR is given by the following theorem

Theorem 1. [19] The mapping γR :Mr → R+ satisfies the conditions

(1) The family kerγR = {X ∈Mr : γR(X) = 0} = Nr.

(2) γR(Conv(X)) = γR(X).

(3) If (Xn) is a sequence of closed sets from Mr such that

Xn+1 ⊂ Xn, n = 0, 1, ...,

and if lim
n→∞

γR(Xn) = 0, then the intersection X∞ =
∞⋂
n=1

Xn is nonempty.

Let d be the metric associated with the norm ‖.‖ in E and X ⊂ E be a
bounded subset. By d(x,X), we denote the distance between point x and
the set X.

Definition 2. Let X,Y ⊂ E be two nonempty and bounded sets. The
number

dH(X,Y ) = max
{

sup
x∈X

d(x, Y ), sup
y∈Y

d(y, Y )
}
,

is called the Hausdorff distance between A and B.

Lemma 1. [1] If µ is a regular measure of noncompactness, then

|µ(X)− µ(Y )| ≤ µ(B(θ, 1))dH(X,Y ),

for any bounded subsets X,Y of E, dH is the Hausdorff distance between
X and Y.

The following lemmas borrowed from [1,19] will be needed in the proof
of our existence result of solution of (1) .
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Lemma 2. [19] If all functions belonging to X are equicontinuous on
compact subsets of R+, then

µ
(∫ t

0
X(s)ds

)
≤
∫ t

0
µ(X(s))ds.

Lemma 3. [11] (Cauchy’s formula) If f : R+ → R is a continuous func-
tion then∫ t

a

∫ s1

a
...

∫ sn

a
f(sn+1)dsn+1dsn...ds1 =

1

n!

∫ t

a
f(s)(t−s)nds for each t ≥ a.

Our consideration are based on following Tichonov fixed point theorem.

Theorem 2. [6] Let K be a closed convex subset of locally convex Haus-
dorff space E. Assume that F : K → K is continuous and that F (K) is
relatively compact in E. Then F has at least one fixed point in K.

In what follows we give some definitions of concept of evolution operator
when developed by Kozak [12].

Definition 3. [7] A two parameters family of bounded linear operators
U(t, s) (0 ≤ s ≤ t), on E is called an evolution system if the following
conditions are satisfied

1. U(s, s) = I, U(t, r)U(r, s) = U(t, s), for 0 ≤ s ≤ r ≤ t,

2. (t, s) 7→ U(t, s) is strongly continuous for 0 ≤ s ≤ t.

Definition 4. A family U of bounded operators U(t; s) : E → E such that
for (t, s) ∈ 4 := {(t, s) ∈ R+ × R+ : s ≤ t}, is called an evolution operator
of the equation (1) if the following conditions hold:

1. For any x ∈ E the map (t, s)→ U(t, s)x is continuously differentiable
and

(a) for any t ≥ 0, U(t, t) = 0,

(b) for all (t, s) ∈ 4 and for any x ∈ E we have
∂

∂t
U(t, s)x|t=s = x

and
∂

∂s
U(t, s)x|t=s = −x

2. For all (t, s) ∈ 4, if x ∈ D(A(t)), then
∂

∂s
U(t, s)x ∈ D(A(t)), the

map (t, s)→ U(t, s)x is of class C2 and
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(a)
∂2

∂t2
U(t, s)x = A(t)U(t, s)x,

(b)
∂2

∂s2
U(t, s)x = U(t, s)A(s)x,

(c)
∂2

∂t∂s
U(t, s)x|t=s = 0.

3. For all (t, s) ∈ 4, then
∂

∂s
U(t, s)x ∈ D(A(t)), there exist

∂3

∂t2∂s
U(t, s)x,

∂3

∂s2∂t
U(t, s)x and

(a)
∂3

∂t2∂s
U(t, s)x = A(t)

∂

∂t
U(t, s)x. Moreover the map (t, s) 7→

A(t)
∂

∂t
U(t, s)x is continuous,

(b)
∂3

∂s2∂t
U(t, s)x =

∂

∂t
U(t, s)A(s)x.

Definition 5. A continuous function x : R+ → E is said to be a mild
solution of (1) if x satisfies to

x(t) = − ∂

∂s
U(t, 0)x0 + U(t, 0)x̃0

+

∫ t

0
U(t, s)f

(
s, x(s),

∫ s

0
u(s, τ, x(τ))dτ

)
ds. (4)

In what follows, we define operators F, S : C(R+, E) → C(R+, E) by
the formulas

(Sx)(t) = f
(
t, x(t),

∫ t

0
u(t, s, x(s))ds

)
,

(Fx)(t) = − ∂

∂s
U(t, 0)x0 + U(t, 0)x̃0 +

∫ t

0
U(t, s)(Sx)(s)ds.

3 Existence of mild solutions

In this section by using the usual technique of measure of noncompactness
and its application in differential equations in Banach space (see [11]), we
give an existence result for the problem (1). The following hypotheses well
be needed in the sequel.

(HA) There are two constants M ≥ 1 and M̃ ≥ 0 such that

‖U(t, s)‖B(E) ≤M and

∥∥∥∥ ∂∂sU(t, s)

∥∥∥∥
B(E)

≤ M̃ for (t, s) ∈ 4.
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(Hf ) (i) (t, x, y) 7→ f(t, x, y) satisfies the Carathodory condition, i.e.
f(., x, y) is measurable for (x, y) ∈ E ×E and f(t, ., .) is contin-
uous for a.e. t ∈ R+

(ii) m : R+ → R+ such that

‖f(t, x, y)‖ ≤ m(t)
(
‖x‖+ ‖y‖

)
for a.e. t ≥ 0 and all x, y ∈ E.

(iii) There exists a locally integrable function h1 : R+ → R+ such
that for any nonempty sets X,Y containing continuous functions
x, y : R+ → E respectively which are uniformly bounded on
compact subintervals of R+ , the inequality

χ
(
f([0, t]×X×Y

)
≤ h1(t) sup

{
χ(X(s))+χ(Y (s)) : 0 ≤ s ≤ t

}
hold for a.e t ∈ R+.

(Hu) (i) u(t, s, x) : R+ × R+ × E → E is continuous on R+ × R+ × E.

(ii) q : R+ 7→ R+ such that m(t) max
(

1, q(t)
)
∈ L1

loc(R+), nonde-

creasing and ∥∥∥∥∫ t

0
u(t, s, x(s))ds

∥∥∥∥ ≤ q(t)φ(‖x(t)‖),

where φ : R+ → (0,∞) is continuous and increasing with φ(0) =
0.

(iii) There exists h2 : R+ × R+ → R+ such that t 7→
∫ t
0 h2(t, s)ds is

essentially bounded function on compact intervals of R+ and

χ(

∫ t

0
u(t, s,X(s))ds) ≤ h2(t)χ(X)

for a.e. (t, s) ∈ R+ × R+ and all bounded subset X of E.

Remark 1. If the functions f and u are compact, or satisfies Lipschitz-type
condition, then conditions Hf (iii) and Hu(iii) are not necessary.

The precise definition of the function p(t) used in our considerations
will be given further on. For our further purposes we will also need the
important following lemma.

Theorem 3. Let E be a separable Banach space. Assume that the assump-
tions (HA), (Hf ) and (Hu) are satisfied. If there exists r0 such that

M̃‖x0‖+M‖x̃0‖+M(r0 + φ(r0)) sup
t≥0

∫ t

0
m(s) max(1, q(s))ds ≤ r0,

then for x0, x̃0 ∈ E, the Eq. (1) has at least one mild solution x in
C(R+, E).
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Proof. Consider the operator F defined by formula

(Fx)(t) = −∂U
∂s

(t, 0)x0 + U(t, 0)x̃0

+

∫ t

0
U(t, s)f

(
s, x(s),

∫ s

0
u(s, τ, x(τ))dτ

)
ds, t ≥ 0. (5)

Let r0 be a number satisfying assumption of Theorem 3 and define the
set Br0 ⊂ C(R+, E) by Br0 = {x ∈ C(R+, E) : ‖x‖ ≤ r0} . For x ∈ Br0 ,
applying assumptions Hf (i) and Hu(ii) we have

‖(Fx)(t)‖ ≤
∥∥∥∥−∂U∂s (t, 0)x0 + U(t, 0)x̃0

∥∥∥∥
+

∥∥∥∥∫ t

0
U(t, s)f(s, x(s),

∫ s

0
u(s, τ, x(τ))dτ)ds

∥∥∥∥
≤
∥∥∥∥−∂U∂s (t, 0)x0 + U(t, 0)x̃0

∥∥∥∥
+

∫ t

0
‖U(t, s)‖‖f(s, x(s),

∫ s

0
u(s, τ, x(τ))dτ)‖ds

≤ M̃‖x̃0‖+M‖x0‖+M

∫ t

0
m(s)

[
‖x(s)‖+ q(s)φ(‖x(s)‖)

]
ds

≤ M̃‖x̃0‖+M‖x0‖+

∫ t

0
Mm(s) max(1, q(s))

(
r0 + φ(r0)

)
ds

≤ r0. (6)

From the estimate (6), we deduce that F transforms Br0 into itself. In what
follows we will estimate the modulus of continuity of the function Fx. To
do this let us fix x ∈ C(R+, E) such that ‖x(t)‖ ≤ r0. Fix an arbitrary
T ≥ 0 and ε ≥ 0 and let t1, t2 ∈ [0, T ] such that |t1−t2| ≤ ε. Without loss of
generality, we may assume that t1 ≤ t2. Then, in view of our assumptions
we get:

‖(Fx)(t2)− (Fx)(t1)‖

≤
∥∥∥(U(t2, 0)− U(t1, 0)

)
x̃0

∥∥∥+
∥∥∥(∂U

∂s
(t1, 0)− ∂U

∂s
(t2, 0)

)
x0

∥∥∥
+
(
r0 + φ(r0)

)∫ t2

t1

‖U(t2, s)‖m(s) max(1, q(s))ds

+
(
r0 + φ(r0)

)∫ t1

0
‖(U(t2, 0)− U(t1, 0)‖m(s) max(1, q(s))ds
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≤ wT1 (U(., 0), ε)‖x̃0‖+ wT2 (U(., 0), ε)‖x0‖

+νT (U, ε)
(
r0 + φ(r0)

)∫ t1

0
m(s) max(1, q(s))ds

+M
(
r0 + φ(r0)

)∫ t2

t1

m(s) max(1, q(s))ds. (7)

Putting

∆T (U, ε) = wT1 (U(., 0), ε)‖x̃0‖+ wT2 (U(., 0), ε)‖x0‖

+νT (U, ε)
(
r0 + φ(r0)

)∫ t1

0
m(s) max(1, q(s))ds

+M
(
r0 + φ(r0)

)∫ t2

t1

m(s) max(1, q(s))ds.

where

wT1 (U, ε) = sup{‖U(t2, 0)− U(t1, 0)‖ : t1, t2 ∈ [0, T ], |t1 − t2| ≤ ε},

wT2 (U, ε) = sup{‖∂U
∂s

(t2, 0)− ∂U

∂s
(t1, 0)‖ : t1, t2 ∈ [0, T ], |t1 − t2| ≤ ε},

νT (U, ε) = sup{‖U(t2, s)− U(t1, s)‖ : 0 ≤ t1 ≤ t2 ≤ T, |t2 − t1| ≤ ε}.

Then, we have

‖(Fx)(t2)− (Fx)(t1)‖ ≤ ∆T (U, ε), for x such that ‖x(t)‖ ≤ r0. (8)

Under assumptions, we have lim
ε→0

∆T (U, ε) = 0. Next, define the subset

Ω =
{
x ∈ C(R+, E) : ‖x(t)‖ ≤ r0 and wT (x, ε) ≤ ∆T (x, ε) for T ≥ 0

}
.

It is easy to see that Ω is a bounded, closed and convex subset of C(R+, E).
Next, we show that F is continuous on the set Ω. Let (xn)n ⊂ Ω be
a sequence converging to x and fix T > 0. We show that ‖Fxn − Fx‖
converges uniformly to 0 on [0, T ].

‖(Sxn)(t)− (Sx)(t)‖ ≤ 2M(r0 + φ(r0)m(t) max(1, q(t)) ∈ L1
loc(R+).

Then, by Lebesgues dominated convergence theorem we have

lim
n→∞

sup
t≤T
‖(Fxn)(t)− (Fx)(t)‖ ≤ M lim

n→∞

∫ T

0
‖(Sxn)(s)− (Sx)(s)‖ds = 0.
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In order to complete our proof, let us defined the sequence (Qn) of subsets
of C(R+, E) by{

Q0 = Ω,
Qn = Conv(F (Qn−1)) for n ∈ N \ {0}. (9)

Observe that all subsets of this sequence are nonempty, closed and convex.
Moreover, Qn+1 ⊂ Qn for n ∈ N. The equicontinuity of the set Ω on
compact intervals, implies that

wT0 (Qn) = 0 for n ∈ N and T ≥ 0. (10)

Next, define the sequence (zn) ∈ C(R+,R+) by zn(t) = µ(Qn(t)). Obvi-
ously 0 ≤ zn+1(t) ≤ zn(t), for n = 0, 1, . . .. Thus the sequence converges
uniformly to the function z∞(t). By Lemma 1 and Eq. (8) we get

|zn(t)− zn(s)| ≤ µ(B(θ, 1))∆T (U, |t− s|)

which implies the continuity of zn on R+. Using Lemma 2, (C)(i), and the
properties of the measure of noncompactness µ, we obtain

zn(t) = µ
(

Conv(FQn)(t)
)

≤ µ
(∫ t

0
U(t, s)f

(
s,Qn−1(s),

∫ s

0
u(s, τ,Qn−1(τ))dτ

)
ds
)

≤ M

∫ t

0
h1(s)

(
µ(Qn−1(s)) + h2(s)µ(Qn−1(s))

)
ds

≤ M

∫ t

0
h1(s)

(
zn−1(s) + h2(s)zn−1(s)dτ

)
ds

≤ M

∫ t

0
h(s)zn−1(s)ds, (11)

where h(s) = h1(s) max(1, h2(s)). Denote h̃(t) = ess sup{h(s) : 0 ≤ s ≤ t}.
The inequality (11) will have the form

zn(t) ≤Mh̃(t)

∫ t

0
zn−1(s)ds. (12)

Denote by G the operator acting from C(R+,R+) into itself, defined as
follows

(Gx)(t) =

∫ t

0
x(s)ds.
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Hence, in view of (12) we get zn(t) ≤ (Mh̃(t))n(Gn)z0(t), where Gn denotes
the n-th iteration of the operator G. Further, taking into account the
linearity of the operator G, and Lemma 3 we have the following inequality

(Gn)z0(t) =

∫ t

0

∫ s1

0
· · ·
∫ sn−1

0
z0(sn)dsn . . . ds1. (13)

Putting

g(t) =

{
1, for t ∈ [0, 1],
tn, for t > 1,

we get

(Gn)z0(t) ≤
g(t)

n!

∫ t

0
z0(s)ds.

Since the integral from (13) has n components, it follows that

zn(t) ≤ (Mh̃(t))ng(t)

n!

∫ t

0
z0(s)ds. (14)

Now we apply the measure of noncompactness γR defined in C(R+, E) by
(3). Let us put

R(t) = r0

(
1 +

∫ t

0
z0(s)ds

)
g(t) exp(Mh̃(t)).

Observe that R(t) ≥ r0. Then, keeping in mind the measure µT defined by
formula (2), in view of (14) we obtain

µT (Qn) = sup
t≤T
{zn(t)} ≤ (Mh̃(T ))ng(T )

n!

∫ T

0
z0(s)ds.

Hence, in view of the estimate

sup
{ tn

n! exp(t)
: t ≥ 0

}
≤ nn

n! exp(n)
,

for n ∈ N , we derive the following evaluation

µT (Qn)

R(T )
≤ (Mh̃(T ))n

r0n! exp(Mh̃(T ))
≤ nn

r0n! exp(n)
.

Linking the last inequality with (10) and taking into account that

nn

r0n! exp(n)
' 1√

2πn
,

we infer that limn→∞ γR(Qn) = γR(Q∞) = 0. Under the properties of
γR given by Theorem 1, Q∞ is nonempty subset, closed and convex. By
applying the Tichonov fixed point theorem for F : Q∞ → Q∞ we conclude
that F has at least a fixed point x ∈ Q∞. Obviously, the function x is a
mild solution of (1). This completes the proof.
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4 Application

Consider the following second order partial differential equation with local
conditions, denote that

∂2x(t, ξ)

∂t2
= Lx(t, ξ) +

x(t, ξ)

1 + e−t

+
√
|x(t, ξ)|

∫ t

0

(e−t)x(s, ξ)

(1 + e−(t−s))(1 + |x(s, ξ)|)
ds, t > 0

∂x

∂t
(0, ξ) = x0(ξ), ξ ∈ [0, 1]n,

x(0, ξ) = x̃0(ξ), ξ ∈ [0, 1]n.

(15)

Let ([0, 1],A, P ) be a complete probability measure space. Let also
E = (L2([0, 1]),A, P ) be the space of A-measurable maps with the norm
defined by, for t > 0 fixed, we have

‖x(t)‖2 =
(∫ 1

0
|x(t, ζ)|dP (ζ)

) 1
2
,

where dP (ζ) = dζ. Denote by L the Laplace operator
n∑
i=1

∂2

∂ζ2i
. Then L

generates a compact, analytic semigroup U(.) of uniformly bounded linear
operators. Let (t, x) ∈ R+ × L2([0, 1]n), ζ ∈ [0, 1]n. Bay using the Jensen’s
inequality it is not difficult to see that

‖f(t, x(t, ξ),

∫ t

0
u(t, s, x(s, ξ))ds)‖2 ≤

1

1 + t2

[
‖x(t)‖2 +

√
‖x(t)‖2

]
.

Put 
p(t) = 1

1+e−t ,

q(t) = 1,
φ(s) =

√
s, for all s ≥ 0.

Denote by ν(x, ε) the Kolmogorov modulus of continuity of x

ν(x, ε) = sup{‖x(t; ζ + h)− x(t, ζ)‖2, |h| ≤ ε}.

Next, forX bounded subset of L2([0, 1]n), put ν(X) = limε→0 supx∈X ν(x, ε).
It is known [1] that ν is a measure of noncompactness on L2([0, 1]n), in ad-
dition for X bounded subset of L2([0, 1]n) we have χ(X) ≤ ν(X) ≤ 2χ(X).
So that the conditions (Hf ) and (Hu) are checked with the following func-
tions: {

h1(t) = p(t) = 1
e−t+1

,

h2(t) = q̂(t) = 1.

Applying the result obtained in Theorem 3, we deduce that equation Eq.
(1) has a mild solution.



Existence of mild solutions 317

Acknowledgments

The author would like the referee for the helpful comments.

References

[1] J. Banas and K. Goebel, Measures of noncompactness in Banach
spaces, Lecture Notes in Pure and App. Math. 60, Marcel Dekker,
New York and Basel, 1980.

[2] J. Banas, J. Rocha Martin and K. Sadarangani, On solutions of
a quadratic integral equation of Hammerstein type, Math. Comput.
Model. 43 (2006) 97-104.

[3] J. Banas, K. Balachandran and D. Julie, Existence and global attractiv-
ity of solutions of a nonlinear functional integral eqution, Appl. Math.
Comput. 216 (2010) 262-269.

[4] J. Banas, On existence theorems for differential equations in Banach
spaces, Bull. Austral. Math. Soc. 32 (1985) 73-82.

[5] J. Banas and M. Lecko, An existence theorem for of infinite systems
of integral equations. Math. Comput. Model. 34 (2001) 533-539.

[6] C. Corduneanu, Integrale equations and a applications, Cambridge
Univ. Press, New York, 1990.

[7] J. Dungundji and A. Granas, Fixed point theory, Monographie Mat.
PWN, Warsaw, 1982.

[8] H. Ding, J. Liang, G.M. NGurkata and T. Xiao, Mild pseudo-almost
periodic solutions of nonautonomous semilinear evolution equation,
Math. Comput. Model. 45 (2007) 579-584.

[9] H. Noroozi and A. Ansari, Basic results on distributed order fractional
hybrid differential equations with linear perturbations, J. Math. Model
2 (2014) 55-73.

[10] Z. Fan and G. Li, Existence results for semilinear differential equations
with nonlocal and impulse conditions, J. Funct. Anal. 258 (2010) 1709-
1727.

[11] A. Jawahdou, Mild solutions of functional semilinear evolution
Volterra integro-differential equations on an unbounded interval, Non-
linear Anal. Real World Appl. 74 (2011) 7325-7332.



318 A. Jawahdou

[12] M. Kozak , A fundamental solution of a second-order differential equa-
tion in a Banach space, Univ. Iagel. Acta Math 32 (1995) 275-289

[13] L.V. Kantorovich and G.P. Akilov, Functional analysis, Pergamon
Press, Oxford, 1982.

[14] J. Liang, J.H. Liu and T.J. Xiao, Nonlocal impulsive problems for non-
linear differential equations in Banach spaces, Math. Comput. Model.
49 (2009) 798-804.

[15] Q. Liu and R. Yuan, Existence of mild solutions for semilinear evo-
lution equations with nonlocal initial conditions, Nonlinear Anal. 71
(2009) 4177-4184.

[16] L. Olszowy, On some measures of noncompactness in Fréchet spaces
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