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Abstract. This study attempts to estimate the volatility of the American
options pricing model under jump-diffusion underlying asset model. There-
fore, the problem is formulated then inverted, and afterward, direct finance
problems are defined. It is demonstrated, then, that the price of this type
of options satisfies a free boundary Partial Integral Differential Equation
(PIDE). The inverse method for estimating the volatility and the Amer-
ican options price is also described in three phases: first, transformation
of the direct problem to a non-linear initial and boundary value problem.
Second, finding the solution by using the method of lines and the fourth-
order Runge-Kutta method.Third, presenting a minimization function with
Tikhonov regularization.
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1 Introduction

Analyzing securities is considered truly important for researchers and an-
alysts of finance and economics, auditors, and risk managers in financial
institutions. These types of securities, including stocks and derivatives,
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without using a proper mathematical model, usually, some slight mistakes,
unrecognizable errors, and misunderstandings will occur, that none of which
should be ignored by financial analysts and economists. Fortunately, fi-
nancial and risk analysts, using advanced mathematical techniques, have
recently developed new models that may react to market volatilities quite
well. These attempts have led to solving some of market problems.

The Black-Scholes model is one of the most famous models in financial
markets. In financial modeling, the Black-Scholes model plays an important
role in pricing risky assets and also provides an efficient foundation for
option-pricing modeling frameworks. The usefulness of this famous model
as a theoretical base in financial markets is proven. It, however, has some
weaknesses in predicting important features of underlying asset’s revenues,
and implicit market volatility. For this reason, a lot of reasoning is made
in favor of developing alternative models, and some works have been done
in this respect.

Under the Black-Scholes model, the price of an underlying asset follows
the geometric Brownian motion, which considers constant volatility and
drifts; so that, it cannot predict or explain the dynamic or the stochastic
behavior of the price variations. To solve this problem, considering underly-
ing asset model as a combination of diffusion and jump terms, we construct
an American option pricing model.

Many researchers have studied this type of modeling, all of which have
assumed in their option pricing studies that volatility and drift are to be
known. This assumption is due to the lack of market data in most of
the financial markets, and volatility is an unknown function. So many re-
searchers, including Rubinstein (1994), Kani and Derman (1994), Dupire
[7], Andersen and Brotherton-Ratcliffe [1], Bouchouev and Isakov [3], Verma
(1999), Coleman and Avellaneda (1997) Lagnado and Osher [12], Jackson
et al. [9], and Neisy and Salmani [13], have concluded that volatility might
depend on the underlying asset price (S) and time (¢). Most of the re-
searches, in this area, have focused on European options and American
options, which the diffusion underlying asset models were used for their
pricing; however; this paper attempts to study the volatility in American
option pricing model under jump-diffusion underlying asset model, by using
the inverse problem in the PDE. In this study, we also utilize new numerical
methods with high accuracy, which will be explained in the next parts.

This article is organized as follows: in the second section, we study the
problem of American option pricing under jump-diffusion underlying asset
model. In the third section, the direct finance problem for American option
pricing is defined. The direct problem is an initial and boundary value
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problem with free boundary, that by adding a penalty term to the PIDE
is transformed to I& BVP with fix boundary. The direct finance problem,
then, can be solved by combining it with the method of lines, and Runge-
Kutta method. In the fourth section, the inverse problem for American
option pricing is defined and using Tikhonov regularization method, and
the Euler-Lagrange equations we will show that volatility satisfies in the
Poisson problem. In the fifth section, an algorithm will be developed for
the above mentioned process. Finally, in the last section, an example will
be solved using Mathematica software, to test our proposed method.

2 The mathematical formulation

In this section, we try to develop a pricing model which its underlying asset
model is a combination of diffusion and jump terms. Other alternatives
such as the combination of the stochastic volatility and jumps or even the
simple models without considering the jumps in the market are noteworthy.
However, due to the great importance of the effects of the jumps in the
pricing models and also due to their applicability in Iran’s market, our
main focus in this paper is on the models which consider the jumps in the
market price. Considering the fact that, in general, the stock price volatility
process does not only depend on the diffusion, but also it is affected by big
jumps in some cases; and also it is noteworthy that the stock’s return does
not follow a log-normal distribution in most of the times, as a result, the
Brownian motion model cannot provide a real image of the underlying asset.
Therefore, we utilize an alternative model for the underlying asset. For this
purpose, we present a model, which is a combination of both diffusion and
jump variables, by regarding the American option price as the underlying
asset:

dS = (p —ykr)Sdt + odW + (J — 1)Sdp = dSpn + dSju, 0<t<T,

where S denotes the underlying asset price, u is the drift rate, o is the
volatility, dW is the standard Winner process, J is the jump size. dSpp; and
dSjpr represent the change in the stock price due to the geometric Brownian
motion and the Jump, respectively. dp is the independent Poisson process
with density of v > 0:

dp — 0, with probablity 1 — ~dt,
P 1, with probablity ~ydt,

and (J —1)Sdp is due to jump. Assume that the jump size has some known
probability density f(J). Given that a jump occurs, the probability of a
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jump in [J, J + dJ]. Also,

+oo +o00
/ O = [ ppar =1

The strategy taken in this paper, is to consider only the positive jumps
such that p(J) =0if J < 0. If f = f(J), then the expected value of f is
E(f) = [;7° f(J)p(J)dJ. So that we will have:

+o00
k= B(J—1) = /0 (J = 1)p(J)d.

It is noteworthy to mention that many researchers, such as Bates [2]
and Kou [11] have studied on development and application of jump term in
pricing. Now we consider a portfolio that consists of an option with a price
of V.=V(S,t), and —A of the underlying asset with the abovementioned
model. If ¥ is the value of this portfolio then

T=V -AS.

Since we have considered the change in the underlying asset price dS to
be dependent on the change in the stock price due to both the geometric
Brownian motion and the Jump, we consider the dynamic of our portfolio
to be consisted of the dynamics of two portfolios one due to geometric
Brownian motion and one due to the Jump:

d¥ =d%py + d% g,

where

d¥ gy = Variations in value of portfolio for underlying asset with
geometrical Brownian motion model,
d¥ jpr = Variations due to pure jump.

So, considering the Ito’s lemma we have:

TBM = dV(S,t)—AdSBM

oV av 1, 0%V

= S+ SodSpu + 507 SP S dt — AdSpuy

v oV 1y 00V
+0S(8—V—A)dW

0S8
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Black and Scholes showed that in order to eliminate the stochastic term

in the portfolio model, we can assume g—‘g = A condition (an assumption

which is impossible in perfect markets). We, therefore, have:

OV 1 4,0V
d¥pm = (E + 27 S ﬁ)dt,
and also:
oV
dZ s = [V(JS,t) = V(S,t)]dg — %(J —1)Sdg.

Now we assume that the jumps for these portfolios are uncorrelated and the
variance of the total portfolio is small (there is little risk). The expected
return should be

r¥dt = E[dT) = E[Tpum] + E[Z ],

where r is the risk free interest rate.
Now by substituting the above-mentioned equations, we will find that:

ov OV 1 5 00V
r(V — £S’)dt = EK@S +50 S 532 )dt]
oV
+ EIV(JS,1) - V(S,0]Eld) ~ 5 BI(J ~ ]S Eldg]
Since, [dq] = vydt.1 + (1 — ~vdt).0 = ~dt, so we have:
OV cvgp— OV | 120V
r(V 8S5)dt—(85+205 852>dt
+ EV(JS,t))|ydt — V (S, t)ydt — ?;E[(J —1)]S~dt.

And finally we can eliminate dt from each side of equation and reach to:

OV 1y 0PV ov -
where .
E[V(JS, )] = / V(IS )p(J)d. ()
0

Eq. (1) is a PIDE, and solving it requires the initial and boundary con-
ditions, so that knowing these conditions, the option that includes this
equation, will be revealed.
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3 The direct finance problem

We suppose that S is the price of the underlying asset (stock), with jump-
diffusion model introduced in Section 2, and V' = V(S ¢) is the price of the
American put-option under S (underlying asset). We consider the variable
r as the risk neutral interest rate, u represents the drift, o represents the
volatility, ¢ represents the time, T represents the maturity date, and K rep-
resents the strike price. Since an important feature of American options is
that they can be exercised anytime up to the maturity date, by considering
G = G(t) as the boundary of exercising; therefore, considering what is de-
scribed in Section 2, the price of American option in no-arbitrage condition
should satisfy in the following PIDE, for 0 <t < T,

oV 1, 0% ov
FAEV(IS,H] =0, i S>G(b),
V(S,t) = K — S, it0<S<G(),

with the following initial and boundary conditions:

V(S,T) = max(K — S,0),
V(0,t) =0,
lim V(S,t) =0,

S—+4o00
V(G(t),t) = K —G(), 3)
—=2 —

AV (G(t), 1)
as
G(T) = K.

The above problem is an initial and free boundary value problem. If all
of functions and parameters in this problem are known except V=V(S,t),
then the problem is called a Direct Finance Problem (DFP).

3.1 Penalty method to solve the DFP

To solve the DFP, we first fix the boundary of the function by adding a
penalty term to the PIDE, and then rewrite the problem. Nielsen et al. [141],
and Zvan et al. [17] proposed the following penalty term for the American
option:
V(S.D) :C— K+35 )
(S, € + S
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where C' > rK is a constant, and 0 < € < 1. The problem (3), by adding
this term to the PIDE, it is transformed as follows:

1% 1, 5,0V, oV Foo
5 dt + 5 S 552 + (r—k)S 55 (r+)Ve+~ ; Ve(JS, t)p(J)dJ
n eC _0
Vi(S,t)+e—K+S
In which we have
0< S <o, 0<t<T,
‘/;(Sa T) = maX(K - Sa 0)7 (5)
‘/;(Ovt) =0,
lim V.(S,t) =0,
S—+o0

In order to solve the problem by using the method that will be described
in the next section, we consider the following changes of variables:

x =log S, ¢ =log J, T=T—1,

and
Ve(exp(x), T — 7) = uc(z, 1),

p = p(exp(()) exp(¢).

Therefore, we have
Ve(exp(z) exp((), T — 7) = Ve(exp(z + (), T — 7) = ue(x + ¢, 7),

with this substitution of variables, the problem (5) is transformed to

Oue 1 232u5 1 5, Oue
ar 27 022 +(r—/vy—§a )8x ~ (r+7)ue
o eC
+7/Oo uel@ + C)pde — ue(z,7) + € — K + exp(z) 0

with the following terms and conditions,

—o<r<oo, 0<r<T,

ue(S,0) = max{K — exp(x), 0}, —00 <z < 00,
ue(0,7) =0, 0<7<T, (6)
22&100 ue(z, ) =0, 0<7<T,
lim w(x,7) =K exp(—rT), 0<7<T.

T—r—00
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3.2 The method of lines

In order to apply the method of lines to the problem (6), we first need to
obtain an acceptable approximation of the integral term. For this purpose,
we must calculate amin and byax that satisfies following relation:

bmax
[ e e = [ e+ € (€] < o
by choosing the following probabilistic density function:

(©) = —— exp(=2)
p - \/ﬁ(s Xp 262 9

we will need to have [(]

p(¢) > €int,

and therefore:

Gmin = —|—\/—262 log(deineV 2m)

bmax = —@min-

In this method, an acceptable approximation of the integral term can be
stated as follows

oo bmax
[ el RO = It ) 1) = [ e+ G RO

—0o0

Now the interval [amin, bmax] can be partitioned into N;y,; subintervals with
length of Axjp: = bmaﬁ,& , for each, and using the Newton-Cotes inte-
gration method, we have:

Nznt

bmax Amin
In(ue(w,7),7) = T Ny Z WL oue(fc Ck), T)
wm k=0
Ning Oue(x,T) C,% O?uc(z, )
= AZins Z Wk o(ue(x, 7)Ck o + A 92 +

where, {WNC} is a set of weights so that Zk e WNG = 1.

In order to design an acceptable approx1mat10n of the derivatives in
the PIDE, we can transform —oo < o < 00 t0 Zmin < T < Tmax. lhen
the interval [Zmin, Tmax] is partitioned into Ng; subintervals with length
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of Ax = %ﬁ;m for each, and apply approximation of the centered-
difference formula for second order derivative, and the Euler method for
first order derivative of x. Therefore, we have:

2
In(ue(xi, 1), 7) = aue(x;, 7) + bauéi’ 7) n cc‘? ue(z, 7)

0x2
' s N wi=1 _ oy 1 it
= quf 4 (M (U TR

also discretize the PIDE for the problem (6) as follows:

duc 1 o w7t —2ul +ult! 1 oo ultt — ol
dT_io-( Ax? )+(Tilwi§g)( Az )
‘ eC
_ iy ~T , _
(T+7)ue +fy N(u€<m’b77—>) ué—l—e—K—i—exp(mZ)
eC

=0l ! 4 el 4 futtt — — ,
¢ e T fuc ul(S,t) + € — K + exp(z;)

fori=1,2,..., Ng;y, where

Nint
g = ug(T) = ue(4,7), a = AZint, b= Awin Z WG,
k=1
Nint NGCE 1 9
! (0% 4 27¢) 1( L2y b) — (r+~(1+a))
= ——((r—rKky— <o —(r
¢ A2 o Y Ax 775 Y v
1, 1 1,
P= 082 2O F R rmmy = gom ),

In addition, the boundary conditions are discretized as below:

ud = K exp(—r7), AL
Therefore, the problem (6) is transformed to the following ordinary non-
linear system of differential equations:

due
dr
u(0) = up, (7)

=Auc+ F(u), 0<7<T,
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where
¢ f 1 dug
u
0 e f 5 dCZ—?
te due dr
A= ’ y  Ue = . ) dr = . )
0 e f A}dif A"dif
0 e Ue dufh
max{K — exp(z1),0}
max{K — exp(z2),0}
Ug = . )
max{K — exp(zn,,),0}
&
KeXp(—T‘T) — W
€
T uZ¥e—Kfexp(xa)
F(u,) = .

_ eC
N
ue 4 +e—K+exp(zny, ;)

Finally, we complete the model by solving the initial value problem (7)
using the fourth-order Runge-Kutta method.

4 The inverse finance problem

Since market variations depend on ¢ parameter, it is quite natural that
the market volatility, o, cannot remain constant in long-term. Further-
more, the volatility parameter is one the principle variables in the pricing
models which is indeterminate in most cases. Moreover, proper pricing of
derivatives requires information about the volatility in the underlying as-
set’s price; finding an efficient method for recognition and calculation of the
volatility, therefore, is considerably important in the stock and derivatives
markets. Many researchers have focused on finding an efficient way to es-
timate the volatility parameter, and a lot of investigation has been done in
this area, including studies on estimation of the volatility parameter using
extra-data, or implicit method which derives the volatility by applying the
derivatives pricing model (e.g. Black-Scholes). Dupire [7], Lagnado [12],
Neisy [13], Jackson [9], Andersen et al. [I] and Deng et al. [5] amongst oth-
ers, have done useful studies in this respect. In these studies, some methods
have been proposed for the estimation of the volatility, each of which has
some pros and cons. For instance, most of these studies do not consider
jumps in the underlying asset’s process or just focus on estimating a specific
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case of the volatility parameter. In this study, without any further analysis
of the advantages and disadvantages of these methods, by using the inverse
problem in the PDEs, we attempt to estimate the volatility in American
option pricing models. For this purpose, we first define the inverse finance
problem.

4.1 Mathematical model for the inverse finance problem

As explained in the introduction section, volatility in markets can be con-
sidered in various forms; but in this article, we attempt to focus on an
unknown stochastic volatility. To this end, we assume that S denotes the
price of the underlying asset (stock), with jump-diffusion model introduced
in section 2, that its volatility —o = ¢(S,t)— is an unknown function. Also
we consider V' = V(S,t) as the price of the American option under the un-
derlying asset S. Therefore, based on what was described in section 2, and
assumptions posited in section 3, the price of this option in no-arbitrage
conditions should satisfy the following PIDE for 0 <t < T

OV 1, . L0V ov
AE[V(JS, )] =0, it 5> G(1),
V(S,t)= K — 8, if0< 5 <G,

where, the initial and boundary conditions are the same as the problem
(5). The above-mentioned problem is an initial and free boundary value
problem, which is referred to as the inverse problem in partial differential
equations literature; and since we apply it to the financial markets, we call
it The Inverse Finance Problem (IFP) hereafter.

Since the inverse problem has two unknown factors, solving it requires
determination of extra-data as described below.

There are different methods for determination of the extra-data. There-
upon,we assume that we have the parameter Np with free boundary G (t),
Ga(t),Gs(t),...,Gn,(t), and that we have N;-number of strike prices K,
Kia, Kis, ..., K;n, for each G;(t). We have, therefore, a set of empirical
option prices {V;;} for each American option for K;;(i = 1,2,...,Np,j =
1,2,...,N;) strike prices.

So we can consider a set of empirical option prices {V;;} with the domain
S and t values.
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4.2 The minimization function

Based on extra-data V;; ,the minimization function can be defined as follows

[8, 13, 15]:
Np N; o] 00
() :ZZ/@ /0 (V(S,t,K,Gi(t), o) — Vij)*dSdt, (8)

i=1 j=1

Considering the fact that there are not sufficient data to meet the expec-
tation of the extra-data in the market, using the minimization function (8)
we cannot calculate a unique value for the parameter o. Furthermore, the
value of a typical function like (8) is not continuously dependent on the
data. We, therefore, face a difficult problem of determining o using this
method [8], so by applying regularization strategies, we try to somehow
mitigate the difficulty of the problem.

Considering the principles of regularization strategies, we cannot ex-
pect to find an accurate solution for the problem. Hence, we attempt to
reach an approximation which is the closest to the correct solution. Many
investigators have had useful attempts in this area, including Oshler and
Lagnado [12], Neisy and salmani [13] who based on Tikhonov strategy in-
troduced a typical regularization strategy. They calibrated their model for
a constant value of Sy in a specific point of time ¢ = (0. Therefore, there is
no guarantee that the value determined for ¢ using their method will also
explain other values of the index or for any time in the future [3, 10].

Here we solve this problem with extra-data, by choosing the following
Tikhonov’s minimization function [5, 8]:

Js(0) = [ Aall]” + TI(0)

00 o0 g5 oo Np N;
:/0 /0 (57 + (57 +8D_ > (V(S:t Ky, Gi(t), 0)

i=1 j=1
~ Vy)?)dsd, ©)
and for the minimization of the previously mentioned function, we use the
Euler-Lagrange equations [1]. For this purpose we set:
oo do Vg Ni
H = ((@)2 + (5)2 + ﬁzl Z;(V(S,t,Kij, Gi(t), o) — Vij)?,
i=1 j=

so that a ¢ that minimizes Jg(o) function can be derived by solving the
following equation [4]:
dom  dom o _
dS do,  dtdoy 0o

(10)
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since,

oOH Oo oOH B Jo

9o, 208 0oy ot
Np N;
OH Zav

i=1 j=1

Then, Eq. (10), is transformed to the following Poisson problem:

0?0 d%o ov
oz g = MWV gs0)
c(0,t) =0, 0o(S,0) =0¢(S), (known) (11)

where

oV I i gv
WV, 5o0) =2) Y S (V(St, Kij, Gilt), o) = Vij).

i=1 j=1

Consequently, the IFP of volatility - ¢ - determination led to solving a
Poisson problem. This is a very practical technique since there are a lot of
analytical and numerical methods for solving the above-mentioned Poisson
problem.

It is clear that the process of determining the volatility -o - just by
solving the Poisson problem is not finished yet, but it rather requires solving
the DFP and applying other methods mentioned in this article. Here we
summarize all necessary steps for estimating this parameter as the following
algorithm.

5 The inverse finance algorithm

e First step: Initial Forecast For The Volatility
Finding an initial approximation of o((S,t) for o as follows:

m =0,

o(S,t) = om(S, 1). (12)

There are many methods for predicting, one of which, uses the his-
torical data of the volatility parameter.

e Second Step: Solving The FDP
Substituting o(S,t) = 0, (S,t), so that the problem (12) is trans-
formed to a direct problem. Now, we are able to solve the direct
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problem by using the method introduced in section 2, and to calcu-
late the following terms in greed-points:

V(S Kig G (0)0m(S.1), D (S8, Ky, G (1), 9n(S.1),
oV

e Third Step: Calculating a Better Approximation of Volatility
Calculating o(S,t) by solving the Poisson problem (11) for ¢ = 1,
and setting

m=m+ 1,
om(S,t) = o(S,1).

e Fourth Step: Stopping Condition
If, |om(S,t) — 0m—1(S,t)|/|om(S,t)| is smaller than a favorable ac-
curacy, then go to the fifth step. Otherwise, return to the second
step.

e Fifth Step: Stopping
We Solve the direct problem for o = 0,,,(S,t). Then V (S, t), which is
derived from solving the direct problem, and o,,(S,t), are acceptable
approximations of American put-option price and volatility, respec-
tively.

6 Numerical Results
To test our proposed method, let us consider the following function:

o=0(S) =04+ 0203,

for an American put-option with maturity date of 7' = 1 year, and 8 strike
prices

K1 =50, Ky = 60, K3 = 80, K4 = 90, K5 = 110, K¢ = 120,
K7 =150, K — 8 = 160,

on free boundaries. Also, we consider r=0.05, and ¢ = 0.001 in the penalty
term. Therefore, the direct problem (6) is discretized by choosing Ny, =
Ngiy = 100, and the initial value problem (10) is solved by using the fourth-
order Runge-Kutta method and also by setting At = 0.02. Furthermore,
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a(S)

0.60

0.58

0.56

0.54

Figure 1: Approximation of American put-options volatility function for
initial approximation of o¢(s) = 0.4 and Tikhonov parameter of § = 1.
(-2 Exact Solution and .: Numerical Solution).

Figure 2: Approximation of American put-options volatility function for
initial approximation of oy(s) = 0.2 and Tikhonov parameter of 5 = 0.1.
(-: Exact Solution and .: Numerical Solution).

the resulting system of non-linear algebraic equations from the fourth-order
Runge-Kutta method is solved, by applying the Jacobi and Gauss-Seidel
method.

Now we run the inverse algorithm in section 5 in Mathematica software
by considering the following Stopping condition:

max |o(s) — om(s)| < 0.008.

Consequently, the following figures show the results with two initial ap-
proximations and three arbitrary Tikhonov parameters.
As can be seen in the above figures, in all of the three cases, applying
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a(S)

Figure 3: Approximation of American put-options volatility function for
initial approximation of oy(s) = 0.4 and Tikhonov parameter of 5 = 0.04.
(-: Exact Solution and .: Numerical Solution).

this method results in finding an efficient approximations of the volatil-
ity parameter. Figure 1, after 8 rounds results in an approximation with
maximum error of

max |o(s) — os(s)| < 0.0065.

Figure 2, after 7 rounds results in an approximation with maximum error
of
max |o(s) — o7(s)| < 0.0071,

and finally, Figure 3, after 5 rounds results in an approximation with max-
imum error of
max |o(s) — o5(s)| < 0.0021.

So we can conclude than this method is somehow fast in obtaining appro-
priate results. But with increase in sophisticated volatility functions, and
complicated free boundaries, complexity and, consequently, time of calcu-
lations is expected to increase. Also, in cases where free boundaries are
more than one, complexity of calculations will increase.

7 Conclusions and suggestions for future research

In this article we have attempted to develop a model for American options,
a direct solving method, and an inverse solving method for estimation of
the volatility in this type of options. So the future researches can fur-
ther explore following areas. Frist, American option pricing models can be
derived from underlying asset models with known volatility but unknown
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and stochastic drift. In this case, resulting models can be used for the pur-
poses of pricing oil futures with unknown convenience yields. Therefore,
with some slight changes in our proposed method, resulting models can be
solved. Second, by obtaining a closed form of the direct problem, and using
extra-data and a minimization function instead of the Poisson problem, one
can reach to an integral equation for estimating volatility, which seems to
result in a more accurate solution. Finally, one can use entropy regular-
ization instead of the inverse method. Amongst other useful applications
not mentioned here that can be subject for future researches, is studying
co-integration and consistency with methods discussed in this article.
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