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Abstract. A new weak Galerkin finite element method is applied for time
dependent Brusselator reaction-diffusion systems by using discrete weak
gradient operators over discontinuous weak functions. In this work, we
consider the lowest order weak Galerkin finite element space (P0, P0, RT0).
Discrete weak gradients are defined in Raviart-Thomas space. Thus we
employ this approximate space on triangular mesh for solving unknown
concentrations (u, v) in Brusselator reaction-diffusion systems. Based on a
weak varitional form, semi-discrete and fully-discrete weak Galerkin finite
element scheme are obtained. In addition, the paper presents some numer-
ical results to illustrate the power of proposed method.
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1 Introduction

The Weak Galerkin finite element method (WGFEM) is a numerical ap-
proximation technique for partial differential equations (PDEs) which was
developed for solving the second order elliptic problems based on local
Raviart-Thomas (RT) or Brezzi-Douglas-Marini (BDM) elements [10]. This
mehod is a combination of standard finite element method [1] and the idea
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of discontinuity by considering the value of function on the interior and
interface of elements. Numerical implementation of the WGFEM were
discussed in [7]. The main feature of this method is to approximate the
differential operators (gradient, divergence, curl, etc.) by the aid of dis-
crete weak derivatives. The WGFEM allows the use of totally discon-
tinuous functions on arbitrary shape of polygons that makes the method
highly flexible in practical computation. This approach is applied to PDEs
such as, parabolic equation [2], Darcy equation [5], elliptic interface prob-
lems [8], Darcy-stokes equation [4], and etc. In this paper the WGFEM is
applied to two-dimensional Brusselator reaction-diffusion systems. Brus-
selator reaction-diffusion systems arise in the study of chemical systems,
biological systems, physical problems, and etc. In biological systems, when
certain reaction is coupled with the process of diffusion, it is possible to
obtain a stable spatial pattern [9]. We will focus on an inhomogeneous
Brusselator model with cross-diffusion in the following form:

∂u(x, t)

∂t
−∆(D11u+D12v) = f(u, v), (x, t) ∈ Ω× [0,∞) ,

∂v(x, t)

∂t
−∆(D21u+D22v) = g(u, v), (x, t) ∈ Ω× [0,∞) ,

∂u(x, t)

∂n
=
∂v(x, t)

∂n
= 0, x ∈ ∂Ω,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1)

where u and v represent concentrations of two reactants, Ω ⊆ R2 is a
bounded domain, ∆ is the Laplace operator, n is the outward unit nor-
mal vector, Dij is the cross-diffusion coefficient for i 6= j, f(u, v) = u2v −
(B + 1)u + A , g(u, v) = −u2v + Bu and A, B are positive constants.

The outline of this paper is as follows. In Section 2 we introduce nec-
essary definitions for the WGFEM. In Section 3 the weak Galerkin finite
element scheme are proposed. In Section 4, we construct semi-discrete and
fully-discrete weak Galerkin finite element scheme. In Section 5 we give
some numerical results to verify the efficiency of proposed scheme. Finally,
conclusions are presented in Section 6.

2 Weak gradient and discrete weak gradient

In this section, we will introduce the weak functions and the weak gradient
operator which is the base of WGFEM. Let K be a polygonal domain with
boundary ∂K and interior K0. A weak function on the element K is a
function v = {v0, vb} such that v0 ∈ L2(K) and vb ∈ H

1
2 (∂K). v0 is the
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value of v in the interior of element K and vb is the value of v on the
boundary of element K. The space of weak functions on the element K is
represented by W (K):

W (K) = {v = {v0, vb}|v0 ∈ L2(K), vb ∈ H
1
2 (∂K)}.

A discrete weak function is a weak function v = {v0, vb} such that v0 ∈
Pm(K0), (m ≥ 0) and vb ∈ Pn(∂K), (n ≥ 0), where Pm(K0), Pn(∂K) are
polynomials with degree no more than m and n in interior of element K
and on boundary of element K, respectively. The space of discrete weak
function is denoted by:

W (K,m, n) = {v = {v0, vb}|v0 ∈ Pm(K0), vb ∈ Pn(∂K)}.

For any weak function v ∈ W (K), its weak gradient ∇wv is defined as a
linear functional on H(div,K) which is given by:

(∇wv, w) = −
∫
K0

v0(∇.w) +

∫
∂K

vb(w.n), ∀w ∈ H(div,K),

where H(div,K) = {v : v ∈ (L2(K))2,∇.v ∈ L2(K)} and n is the outward
normal direction to ∂K. A discrete weak gradient of v = {v0, vb} on each
element K is given by the following equation:

(∇w,dv, w) = −
∫
K0

v0(∇.w) +

∫
∂K

vb(w.n), ∀w ∈ [Pk(K)]2 .

Here, [Pk(K)]2 is the space of vector valued polynomials of degree k [3].

3 The weak Galerkin finite element method

LetK ∈ Kh be a triangular partition of domain with shape regular property.
For each K ∈ Kh the finite element space is defined by patching W (K,m, n)
over all triangles K ∈ Kh. The weak Galerkin finite element space is

Vh(m,n) = {v = {v0, vb}, v|K ∈W (K,m, n),∀K ∈ Kh},

the subspace of Vh(m,n) with vanishing boundary value on ∂Ω is

V 0
h (m,n) = {v = {v0, vb} ∈ Vh(m,n); vb|∂K∩∂Ω = 0, ∀K ∈ Kh}.
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By employing weak Galerkin finite element method, the variational form
for system (1) is to find (uh, vh) ∈ Vh such that for all test functions w =
{w0, wb} ∈ Vh:

∫
∂u(x, t)

∂t
wdx+D11

∫
∇wuh.∇wwdx+D12

∫
∇wvh.∇wwdx

=

∫
f(uh, vh)wdx,∫

∂v(x, t)

∂t
wdx+D21

∫
∇wuh.∇wwdx+D22

∫
∇wvh.∇wwdx

=

∫
g(uh, vh)wdx,

uh(x, 0) = Qhu0(x), x ∈ Ω,

vh(x, 0) = Qhv0(x), x ∈ Ω,

where Qhu = {Q0u,Qbu} is the L2 projection operator onto Pm(K0) ×
Pn(∂K). In other words, Q0u is the L2 projection of u on Pm(K0) and
Qbu is the L2 projection of u in Pn(∂K) [3].

4 Weak Galerkin finite element discretization

We define the semi-discrete weak Galerkin finite element scheme for (1) as
find (uh, vh) = {u0(., t), ub(., t), v0(., t), vb(., t)} ∈ Vh(m,n) such that for all
w = {w0, wb} ∈ Vh:

(uh,t, w) + a(uh, w) = (f(uh, vh), w),
(vh,t, w) + a(vh, w) = (g(uh, vh), w),

uh(x, 0) = Qhu0(x), x ∈ Ω,
vh(x, 0) = Qhv0(x), x ∈ Ω,

(2)

where a bilinear form a(u,w) and a(v, w) are defined as:

a(u,w) = D11

∑
K∈Kh

(∇wu,∇ww) +D12

∑
K∈Kh

(∇wv,∇ww)

+
∑

K∈Kh

h−1 ≺ u0 − ub, w0 − wb � ∂K

+
∑

K∈Kh

h−1 ≺ v0 − vb, w0 − wb � ∂K ,
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a(v, w) = D21

∑
K∈Kh

(∇wv,∇ww) +D22

∑
K∈Kh

(∇wu,∇ww)

+
∑

K∈Kh

h−1 ≺ v0 − vb, w0 − wb � ∂K

+
∑

K∈Kh

h−1 ≺ u0 − ub, w0 − wb � ∂K .

Two last terms are stabilization terms. Let τ denote the time step size,
and tn = nτ(n = 0, 1, . . .), at time t = tn adopting the backward Euler
difference quotient

∂̄tu
n
h =

unh − u
n−1
h

τ
and ∂̄tv

n
h =

vnh − v
n−1
h

τ
,

to approximate uh,t and vh,t in semi-discrete scheme (2), then the fully-
discrete scheme for (2) is to find (unh, v

n
h) = {un0 , unb , vn0 , vnb } ∈ Vh(m,n)

such that for all w = {w0, wb} ∈ Vh:
(∂̄tu

n
h, w) + a(uh, w) = (f(un−1

h , vn−1
h ), w),

(∂̄tv
n
h , w) + a(vh, w) = (g(un−1

h , vn−1
h ), w),

u0
h(x, 0) = Qhu0(x), x ∈ Ω,
v0
h(x, 0) = Qhv0(x), x ∈ Ω.

(3)

5 Numerical experiments

In this section, we examine the performance of WGFEM on two dimen-
sional Brusselator reaction-diffusion systems. We construct triangular mesh
Kh on square domain Ω and employ weak Galerkin finite element space
WG(P0, P0, RT0) for each element K.

Example 1. As numerical validation of the spatial accuracy of our method
we consider model (1) defined as [6]

∂u(x, t)

∂t
−∆(D11u+D12v) = D12v, (x, t) ∈ Ω× [0,∞) ,

∂v(x, t)

∂t
−∆(D21u+D22v) = 4D21u, (x, t) ∈ Ω× [0,∞) ,

∂u(x, t)

∂n
=
∂v(x, t)

∂n
= 0, x ∈ ∂Ω,

u(x, 0) = cos(2x) + cos(2y), x ∈ Ω,
v(x, 0) = cos(x) + cos(y), x ∈ Ω,

(4)
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Table 1: The errors for WGFEM applied to Brusselator model Example 1
at time t = 0.5.

Iteration 100 200 300 400 500

Error 1.36e− 3 6.87e− 4 4.60e− 4 3.45e− 4 2.76e− 4

on the square domain Ω = (0, 2π)2, with parameters D11 = D22 = 1, D12 =
1.5, D21 = 0.5. The exact solutions are

u(x, y, t) = exp(−4t)(cos(2x) + cos(2y)),

v(x, y, t) = exp(−t)(cos(x) + cos(y)).

We evolve system (4) until final time tf = 0.5, and the contour plot of

Figure 1: Contour plots of numerical concentration (a) u(x, y, t) , (b)
v(x, y, t) at final time tf = 0.5.

approximate solutions are plotted in Fig. 1. Table 1 displays the errors
obtained by this method.

Example 2. Consider the Brusselator system in the following form [9]:

∂u(x, t)

∂t
−∆(D11u+D12v) = u2v − (B + 1)u+A, (x, t) ∈ Ω× [0,∞) ,

∂v(x, t)

∂t
−∆(D21u+D22v) = −u2v +Bu, (x, t) ∈ Ω× [0,∞) ,

∂u(x, t)

∂n
=
∂v(x, t)

∂n
= 0, x ∈ ∂Ω,

u(x, 0) = 2 + 0.25y, x ∈ Ω,
v(x, 0) = 1 + 0.8x, x ∈ Ω,
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Table 2: The errors for WGFEM applied to Brusselator model Example 2
at time t = 3.

Iteration 100 200 300 400 500

Error 2.52e− 5 1.23e− 5 8.17e− 6 6.10e− 6 4.55e− 6

on the square domain Ω = (0, 1)2, with parametersD11 = D22 = 0.002, D12 =
D21 = 0 and A = 2, B = 1.

Figure 2: Plots of concentrations u(x, y, t) at different times (a) t = 1, (b)
t = 3, (c) t = 5, and (d) t = 7.

Fig. 2 and Fig. 3 depict concentration profiles of u(x, y, t) and v(x, y, t)
at different times. Table 2 and Table 3 display the errors obtained by this
method in two different times.
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Figure 3: Plots of concentrations v(x, y, t) at different times (a) t = 1, (b)
t = 3, (c) t = 5, and (d) t = 7.

6 Conclusion

In this paper, the weak Galerkin finite element method (WGFEM) were
used for the numerical solution of two dimensional Brusselator reaction-
diffusion systems. The spatial dimension has been discretized using the
weak Galerkin finite element method with selecting WG(P0, P0, RT0) space,
that produced a semi-discrete weak Galerkin finite element scheme. A fully-
discrete weak Galerkin finite element scheme is obtained by applying time
difference approximation. Finally, the numerical results are shown the effect
of cross-diffusion coefficients in formation of patterns and convergence to

Table 3: The errors for WGFEM applied to Brusselator model Example 2
at time t = 5.

Iteration 100 200 300 400 500

Error 2.14e− 6 1.00e− 6 6.52e− 7 4.83e− 7 3.84e− 7
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steady state point.
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