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Abstract. In this article, a method by partial eigenvalue assignment
for stabilization of descriptor fractional discrete-time linear system is pre-
sented. This system can be converted to standard descriptor system by
definition of fractional-order derivative and considering a new state vector.
Using forward and propositional state feedback we do not need to have a full
rank open-loop matrix in this kind of systems. However, only a part of the
open-loop spectrum which are not in stability region need to be reassigned
while keeping all the other eigenvalues invariant. Using partial eigenvalue
assignment, size of matrices are decreased while the stability is preserved.
Finally, two methods of partial eigenvalue assignment are compared.
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1 Introduction

Fractional calculus is a branch of mathematical analysis that studies the
possibility of differentiation and integration of arbitrary real or complex
orders of the differential operator. The idea of fractional calculus probably
being associated with Leibniz and Hospital where half-order derivative was
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mentioned. It allows us to describe and model a real object more accurately
than the classical integer methods. It has played an important role in
physics [17], electrical engineering (electrical circuits theory and fractances)
[20], control systems [18], robotics [14], chemical mixing [15], bioengineering
[13], and so on.

Descriptor fractional systems describe a more complete class of dynam-
ical models than the fractional state-space systems, which are not only
theoretical interest but also have great importance in practice, like using
of Kirchhoff’s laws for the electrical circuits [8, 9]. In this article, stabi-
lization of the descriptor fractional discrete-time linear system by partial
eigenvalue assignment is presented. The descriptor fractional discrete-time
linear system is converted to the standard descriptor model with unlimited
delay in state by the fractional derivative definition whose control is impos-
sible. Having decreasing sequence of coefficients of delays and defining a
new state vector may help us to obtain a standard descriptor discrete-time
linear system, but with large matrices. We may find several methods for
stability of just positive standard and descriptor systems. Some of them
were derived by the use of Drazin inverse [3] and Shuffle algorithm [6] in
which some initial conditions like having full row rank matrices in every
performed algorithm and finding index of Shuffle and Drazin are necessary
but we do not need them in our method.

We compare some methods via forward state matrix, forward and propo-
sitional state matrix, partial eigenvalue assignment by forward and proposi-
tional state feedback, and partial eigenvalue assignment using orthogonality
relations to stabilize the standard descriptor discrete-time linear systems.
To gain forward and propositional state feedback matrices, two standard
linear systems must exist. Assigning nonzero arbitrary eigenvalue to the
first standard system and inverse of desired eigenvalue of standard descrip-
tor system to the second one, desired eigenvalues are assigned to standard
descriptor linear system. Using the forward and propositional state feed-
back matrices, one may not need to have a full rank open-loop matrix in
standard descriptor systems. However, just a small number of open-loop
system eigenvalues are not in the stability region or other desirable region.
Therefore, if we use the method reassigns only those small number of unde-
sired eigenvalues, keeping the remaining large number of desired eigenvalues
invariant, we may obtain a new system with smaller sizes of matrices, input,
and state vectors. So it is obvious that calculating of eigenvalue assignment
is more accurate and obtaining state feedbacks is also easier. Likewise, we
do not deal with some sufficient conditions like not having eigenvalues near
zero and being distinct eigenvalues using orthogonality relations [19] by
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using partial eigenvalue assignment with similarity transformation.
This paper is organized as follow. Next section presents the conversion

of the descriptor fractional discrete-time linear system to the standard de-
scriptor discrete-time linear system but with unlimited delays whose control
is impossible. Making control and stabilization of this system with delay is
given in Section 3. In Section 4, existence and uniqueness theorem and two
methods for partial eigenvalue assignment are discussed. Illustrative exam-
ples are presented in Section 5. Convergence of the state and input vectors
to zero with their figures are also shown. At the final section, concluding
remarks are given.

The following notations will be used: R – the set of real numbers, C
– the set of complex numbers, Rn×m – the set of n × m real matrices,
Rm = Rm×1, At – the transpose matrix of A, and AH– the Hermitian
conjugate transpose matrix of A.

2 Statement of the problem

Consider the descriptor fractional discrete-time linear system described by

E∆αxk+1 = Axk +Buk, k ∈ Z+ = {0, 1, 2, . . .}, (1)

where α ∈ R+ is the fractional-order difference of state vector, xk ∈ Rn and
uk ∈ Rm are state and input vectors, the matrices E ∈ Rn×n, A ∈ Rn×n,
and B ∈ Rn×m are known constant matrices with rank(E) < n, rank(B) =
m, 1 ≤ m ≤ n, and x0 is also a nonzero definite vector.

Definition 1. ( [16]) The Grunwald-Letnikov fractional derivative of order
α is defined as

a∆
α
t f(t) = lim

h→0
h−α

[ t−a
h

]∑
i=0

(−1)i
(
α

i

)
f(t− ih),

which [x] shows the integer part of x.

Definition 2. ( [2, 7]) The fractional difference of the order α ∈ R+ with
zero initial point in discrete-time linear systems is defined by

∆αxk =
k∑
i=0

(−1)i
(
α

i

)
xk−i,

where (
α

i

)
=

{
1, for i = 0,
α(α−1)···(α−i+1)

i! , for i = 1, 2, . . . .



202 S.B. Mirassadi, H.A. Tehrani

Theorem 1. ( [12]) For n ∈ N and 0 < α < 1 we have

Dn+αx(t) = DnDαx(t).

By this theorem, we can easily assume 0 < α < 1.
Using Definition 2, system (1) becomes

E{xk+1 +

k+1∑
i=1

(−1)i
(
α

i

)
xk−i+1} = Axk +Buk. (2)

System (2) is further simplified to

Exk+1 = Aαxk +
k∑
i=1

ciExk−i +Buk, (3)

where

ci = ci(α) = (−1)i
(

α

i+ 1

)
, i = 1, 2, . . . , k, (4)

and Aα = A+ αE.
Note that Eq. (3) describes a descriptor discrete-time linear system

with unlimited delay in state. To make the control of this system possible
we should change it to standard descriptor linear system. Although the
converted standard descriptor linear systems may have large matrices, but
stability of them is proved [1].

3 Stability of descriptor fractional discrete-time
linear systems

The coefficients ci in (4) strongly decrease for increasing i when 0 < α < 1.
Assuming ci = 0 for i > h, the system (3) is converted to a descriptor linear
system with h delays [2, 7]

Exk+1 = Aαxk +

h∑
i=1

ciExk−i +Buk. (5)

Now by defining the new state vector Xk ∈ Rn̄

Xk =


xk
xk−1

xk−2
...

xk−h

 ,
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which n̄ = n(h + 1) we may convert the time delay descriptor system (5)
to a standard descriptor system

ĒXk+1 = ĀXk + B̄Uk, (6)

where

Ā =


Aα c1E · · · ch−1E chE
I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

 , B̄ =


B
0
0
...
0



Ē =


E 0 0 · · · 0
0 I 0 · · · 0
0 0 I · · · 0
...

...
...

. . .
...

0 0 · · · 0 I

 , (7)

Uk = uk ∈ Rm is the input vector, Ē, Ā ∈ Rn̄×n̄, B̄ ∈ Rn̄×m, and Ē is
singular because of singularity of E in system (1).

Definition 3. ( [2,7]) The descriptor fractional system (1) is called prac-
tically stable if and only if the time delay system (5) or equivalently the
system (6) is asymptotically stable.

3.1 Eigenvalue assignment with forward state feedback law

Consider system (6) by forward state feedback law

Uk = F ′fXk+1. (8)

The aim is to design the forward state feedback F ′f in (8) which produces
a closed-loop system of (6) with the satisfactory response by assigning de-
sirable eigenvalues L = {λ1, λ2, . . . , λn̄}, where λi ∈ C, λi 6= 0, and are
self-conjugate complex numbers for i = 1, 2, . . . , n̄.

Consider the following assumptions

I) rank[Ē|B̄] = n̄, II) rank[Ā] = n̄, III) rank[B̄] = m. (9)

If assumption (I) holds, then there exists F ′f such that [1]

rank[Ē − B̄F ′f ] = n̄. (10)
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By substituting feedback (8) into the equation (6), one has

ĒXk+1 = ĀXk + B̄F ′fXk+1 ⇒ (Ē − B̄F ′f )Xk+1 = ĀXk,

therefore
Xk+1 = (Ē − B̄F ′f )−1ĀXk, (11)

is the standard linear system which is well-defined by (10).

Theorem 2. ( [5]) The standard descriptor discrete-time linear system
(11) is asymptotically stable if and only if eigenvalues of (Ē− B̄F ′f )−1Ā lie
in the unit disk.

Theorem 3. Define the matrices N ′, M ′ as

N ′ = Ā−1Ē, M ′ = −Ā−1B̄, (12)

such that the pair of (M ′, N ′) be controllable. Let F ′f be state feedback

matrix such that {λ−1
1 , λ−1

2 , . . . , λ−1
n̄ } is the set of eigenvalues of the closed-

loop system {
zk+1 = N ′zk +M ′wk,
wk = F ′fzk,

(13)

where arbitrarily assigned and λi ∈ C, λi 6= 0, and are self-conjugate com-
plex numbers for i = 1, 2, . . . , n̄. Then for this gained F ′f , the desired spec-
trum L = {λ1, λ2, . . . , λn̄} is the set of eigenvalues of the controlled system
(6) with forward feedback law (8) and the condition (10) also holds.

Proof. Considering that (M ′, N ′) is controlled, then one can find a state
feedback matrix F ′f such that the controlled system (13) given by

zk+1 = (N ′ +M ′F ′f )zk, (14)

has the eigenvalues λ−1
1 , λ−1

2 , . . . , λ−1
n̄ . Now by (12) note that

N ′ +M ′F ′f = Ā−1(Ē − B̄F ′f ), (15)

so
(N ′ +M ′F ′f )−1 = (Ē − B̄F ′f )−1Ā. (16)

The closed-loop matrices of systems (13) and (6) via feedback law (8) are
inverse of each other by (11), (14), (15), and (16). Therefore, (10) holds
and the set of eigenvalues of the closed-loop system (6) with feedback law
(8) is equal to L = {λ1, λ2, . . . , λn̄}.
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Remark 1. From Eq. (7), the matrices Ē and Ā in system (6) are singular
because rank(E) < n is the necessary condition in the fractional descriptor
discrete-time linear system (1) and the matrix including last n columns and
first n rows of Ā, i.e. [chE], is not full rank.

The method based on using forward state feedback when Ā is singular,
i.e., the condition (II) in (9) is not satisfied, does not work. This limitative
condition is removed in Subsection 3.2.

3.2 Eigenvalue assignment with forward and propositional
state feedback law

When we use the forward and propositional state feedback instead of the
forward state feedback, we do not need the full rankness of matrix Ā in
system (6).

Consider system (6) by forward and propositional state feedback law

Uk = FfXk+1 + FpXk. (17)

The aim is to design the forward and propositional state feedbacks Ff and
Fp in (17) which produces a closed-loop system of (6) with the satisfactory
response by assigning desirable eigenvalues L = {λ1, λ2, . . . , λn̄} where λi ∈
C, λi 6= 0, and are self-conjugate complex numbers for i = 1, 2, . . . , n̄.
To establish the proposed results, consider the following assumptions

I) rank[Ē|B̄] = n̄, II) rank[B̄] = m.

If assumption (I) holds, then there exists Ff such that [1]

rank[Ē − B̄Ff ] = n̄. (18)

Substituting feedback (17) into Eq. (6), one can write

ĒXk+1 = ĀXk + B̄FfXk+1 + B̄FpXk ⇒ (Ē − B̄Ff )Xk+1 = (Ā+ B̄Fp)Xk,

so

Xk+1 = (Ē − B̄Ff )−1(Ā+ B̄Fp)Xk (19)

is the standard linear system which is well-defined by (18).

Theorem 4. ( [5]) The standard descriptor discrete-time linear system
(19) is asymptotically stable if and only if eigenvalues of (Ē− B̄Ff )−1(Ā+
B̄Fp) lie in the unit disk.
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First, the propositional feedback matrix Fp is obtained by assigning
non-zero arbitrary eigenvalues to the closed-loop matrix of the system{

qk+1 = Āqk + B̄vk,
vk = Fpqk.

(20)

Then, we obtain the forward state feedback matrix Ff by assigning {λ−1
1 , λ−1

2 ,
. . . , λ−1

n̄ }to the closed-loop matrix of the system (22), where λi ∈ C, λi 6= 0,
are self-conjugate complex numbers for i = 1, 2, . . . , n̄, and L = {λ1, λ2, . . . ,
λn̄} is the set of desired eigenvalues for the standard descriptor system (6)
via state feedback (17).

Theorem 5. Define the matrices N and M as

N = (Ā+ B̄Fp)
−1Ē, M = −(Ā+ B̄Fp)

−1B̄ (21)

such that the pair of (M,N) be controllable. Also let Ff be state feedback
matrix such that {λ−1

1 , λ−1
2 , . . . , λ−1

n̄ } is the set of eigenvalues of the closed-
loop system {

zk+1 = Nzk +Mwk,
wk = Ffzk,

(22)

where arbitrarily assigned and λi ∈ C are nonzero self-conjugate complex
numbers for i = 1, 2, . . . , n̄. Then for this gained Ff , the desired spectrum
L = {λ1, λ2, . . . , λn̄} is the set of eigenvalues of the controlled system (6)
with forward and propositional state feedback law (17) and the condition
(18) also holds.

Proof. Considering that (M,N) is controlled, then one can find a state
feedback matrix Ff such that the controlled system (22) given by

zk+1 = (N +MFf )zk (23)

has eigenvalues equal to λ−1
1 , λ−1

2 , . . . , λ−1
n̄ . Now by (21) note that

N +MFf = (Ā+ B̄Fp)
−1(Ē − B̄Ff ), (24)

so
(N +MFf )−1 = (Ē − B̄Ff )−1(Ā+ B̄Fp). (25)

The closed-loop matrices of systems (23) and (6) via feedback law (17) are
inverse of each other by (19), (23), (24), and (25). Therefore (18) holds
and the set of eigenvalues of closed-loop system (6) with feedback law (17)
is equal to L = {λ1, λ2, . . . , λn̄}.
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3.3 Eigenvalue assignment by similarity transformation in
standard systems

In this subsection, we use the method based on similarity transformation
to compute the forward state feedback matrix F ′f and also forward and
propositional state feedback matrices Fp, Ff in standard systems (13), (20),
and (22) in Subsections 3.1 and 3.2. Our assignment procedure is composed
of two stages. First, we obtain a primary state feedback matrix Φ which
assigns all the eigenvalues of closed-loop system to zero. Then, we produce a
state feedback matrix F which assigns all the closed-loop system eigenvalues
in desired region.

Consider controllable standard system{
xk+1 = A1xk +B1uk,
uk = Fxk,

(26)

and the state transformation

xk = T x̃k, (27)

where T can be obtained by elementary similarity operations as described
in [10,11]. Substituting (27) into (26) yields

x̃k+1 = T−1A1T x̃k + T−1B1uk.

It is noted that the transformation matrix T is invertible. In this way,
Ã1 = T−1A1T and B̃1 = T−1B1 are in a compact canonical form known as
vector companion form

Ã1 =

[
G0

In−m , 0n−m,m

]
, B̃1 =

[
S0

0n−m,m

]
. (28)

Here G0 is a m×n matrix and S0 is a m×m upper triangular matrix. Note
that the Kronecker invariants of the pair (B1, A1) are regular if the differ-
ence between any of them is not greater than one. If Kronecker invariants
of the pair of (B1, A1) are regular, then Ã1 and B̃1 are always in the above
form [10]. In the case of irregular Kronecker invariants, some rows of In−m
in Ã1 are displaced [11].

The state feedback matrix which assigns all the eigenvalues to zero,
for the transformed pair (B̃1, Ã1) is then chosen as Φ̃ = −S−1

0 G0,which
results in the primary state feedback matrix for the pair (B1, A1) defined
as Φ = Φ̃T−1. The transformed closed-loop matrix

Γ̃0 = Ã1 + B̃1Φ̃ =

[
0m,n

In−m , 0n−m,m

]
, (29)

assumes a compact Jordan form with zero eigenvalues.
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Theorem 6. Let D be a block diagonal matrix in the form

D =


D1 0 · · · 0
0 D2 · · · 0
...

...
. . .

...
0 0 · · · Dk

 ,
where each Dj, j = 1, 2, · · · , k is either of the form

Dj =

[
αj βj
−βj αj

]
(to designate the complex conjugate eigenvalues αj + iβj) or in the case of
real eigenvalues Dj =

[
dj
]
. If the diagonal matrix D with self-conjugate

eigenvalue spectrum is added to the transformed closed-loop matrix, Γ̃0, then
the eigenvalues of the resulting matrix are the eigenvalues in the spectrum.

Proof. The primary compact Jordan form in the case of regular Kronecker
invariants is in the form (29). The sum of Γ̃0 with D has the form

H̃ = Γ̃0 +D =

[
0m,n

In−m , 0n−m,m

]
+

 D1 · · · 0
...

. . .
...

0 · · · Dk



=



D1 0 · · · 0 0 · · · 0
0 D2 · · · 0 0 · · · 0
...

...
. . .

...
...

...
...

0 0 · · · Dl 0 · · · 0
...

...
...

...
...

...
...

I1 0 · · · 0 Dl+1 · · · 0
...

. . . · · · 0 0
. . .

...
0 · · · Ir 0 0 · · · Dk


, (30)

where divided parts of matrix H̃ in (30), i.e.
D1 0 · · · 0 0 · · · 0
0 D2 · · · 0 0 · · · 0
...

...
. . .

...
...

...
...

0 0 · · · Dl 0 · · · 0

 ,
 I1 0 · · · 0 Dl+1 · · · 0

...
. . . · · · 0 0

. . .
...

0 · · · Ir 0 0 · · · Dk

 ,
include m and n−m lines, respectively. And also Is, s = 1, 2, · · · , r is the
unit matrix of size 2 in case n−m is even. In case n−m is odd, only one
Is takes the form of unit matrix of size one.
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By expanding det(H̃ − λI) along the first row, it is obvious that the
eigenvalues of H̃ are the same as the eigenvalues of D. For the case of
irregular Kronecker invariants [11], only some of the unit columns of In−m
are displaced, since the unit elements are always below the main diagonal,
the proof applies in the same manner.

Therefore the closed-loop system matrix (29) becomes (30). Simple
elementary similarity operations can be used to obtain the matrix Ṽ from
H̃ such that

Ṽ =

[
Gλ

In−m , 0n−m,m

]
.

Thus F̃ = Φ̃ + S−1
0 Gλ = S−1

0 (−G0 + Gλ), is the feedback matrix which
assigns the eigenvalue spectrum to the closed-loop matrix Γ̃ = Ã1 + B̃1F̃ ,
and F may then be obtained by F = F̃ T−1.

4 Partial eigenvalue assignment

In this section, we propose the existence and uniqueness theorem and an
algorithm to find the state feedback matrices in standard systems. The
aim of partial eigenvalue assignment is reassigning undesired eigenvalues
of open-loop spectrums in new system with smaller sizes of matrices such
that other eigenvalues unchanged. Therefore, the stability in partial eigen-
value assignment for the standard descriptor system is kept by reassigning
eigenvalues in the unit disk and unchanging the remaining eigenvalues in
the standard system (22). Also we present some sufficient conditions in an-
other algorithm using orthogonality relations which are not necessary for
partial eigenvalue assignment algorithm based on similarity transformation.

4.1 Existence and uniqueness

Theorem 7. ( [4]) (Eigenvector criterion of controllability). The standard
system (26) or, equivalently, the matrix pair (B1, A1) is controllable with
respect to the eigenvalue λ of A1 if yHB1 6= 0 for all y 6= 0 such that
yHA1 = λyH .

Definition 4. The standard system (26) or the matrix pair (B1, A1) is
partially controllable with respect to the subset {λ1, . . . , λp} of the spec-
trum of A1 if it is controllable with respect to each of the eigenvalues
λj , j = 1, . . . , p.
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Definition 5. The standard system (26) or the matrix pair (B1, A1) is
completely controllable if it is controllable with respect to every eigenvalue
of A1.

Theorem 8. ( [4]) (Existence and uniqueness for eigenvalue assignment
problem). The eigenvalue assignment problem for the pair (B1, A1) is solv-
able for any arbitrary set S = {µ1, . . . , µp} if and only if (B1, A1) is com-
pletely controllable. The solution is unique if and only if the system is a
single-input system (that is, if B1 is a vector). In the multi-input case,
there are infinitely many solutions, whenever a solution exists.

Theorem 9. ( [4]) (Existence and uniqueness for partial eigenvalue as-
signment problem). Let Λ = diag(λ1, λ2, . . . , λp;λp+1, · · · , λn} be the diag-
onal matrix containing the eigenvalues λ1, . . . , λn of A1 ∈ Cn×n. Assume
that the sets {λ1, λ2, . . . , λp} and {λp+1, λp+2, . . . , λn} are disjoint. Let the
eigenvalues {λ1, λ2, . . . , λp} to be changed to {µ1, µ2, . . . , µp} and the re-
maining eigenvalues stay invariant. Then the partial eigenvalue assignment
problem for the pair (B1, A1) is solvable for any choice of the closed-loop
eigenvalues {µ1, µ2, · · · , µp} if and only if the pair (B1, A1) is partially con-
trollable with respect to the set {λ1, λ2, . . . , λp}. The solution is unique if
and only if the system is a completely controllable single-input system. In
the multi-input case, and in the single-input case when the system is not
completely controllable, there are infinitely many solutions, whenever a so-
lution exists.

4.2 Partial eigenvalue assignment algorithm using orthogo-
nality relations

There exists an algorithm for partial eigenvalue assignment using orthogo-
nality relations as follows [19].

Inputs:
(I) {Mk,Mk−1, · · · ,M0} are n× n real non-symmetric constant matrices.
(II) b is an n-vector and D = diag(µ1, . . . , µp) closed under complex con-
jugation.
Output:
The feedback vectors {fi}ki=1 such that the spectrum of modified matrix
polynomial

P (λ) = Mkλ
k + (Mk−1 − bfT1 )λk−1 + (M0 − bfTk ),

is {µ1, . . . , µp;λp+1, . . . , λkn}, where {λp+1, . . . , λkn} are the last kn − p
eigenvalues of matrix polynomial P (λ) = λkMk +λk−1Mk−1 + · · ·+λM1 +
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M0.
Assumption:
(I) Mk is a nonsingular matrix.
(II) The sets {µ1, . . . , µp} and {λ1, . . . , λp} are distinct and closed under
complex conjugation, where {λ1, . . . , λkn} are the eigenvalues of matrix
polynomial P (λ) = λkMk + λk−1Mk−1 + · · ·+ λM1 +M0.
(III) Λ1 = diag(λ1, . . . , λp).
Step 1. Obtain the first p eigenvalues {λ1, . . . , λp} of matrix polynomial
P (λ) = λkMk + λk−1Mk−1 + · · · + λM1 + M0 that need to be reassigned
and the corresponding left eigenvectors Y1 = (y1, y2, . . . , yp).
Step 2. Compute the explicit expression for β

βj =
1

bT ȳj

µj − λj
λj

p∏
i=1,i 6=j

µi − λj
λi − λj

, j = 1, . . . , p.

Step 3. Form

fi =
i∑

j=1

[MT
k−i+j Ȳ1Λj1]βT , fk = −MT

0 Ȳ1β
T , i = 1, . . . , k − 1, βT ∈ Cp.

By Step 2, it is clear that sufficient conditions for the existence of β,
and consequently for a solution to the partial pole assignment problem are:

(1) No λj , j = 1, . . . , p vanishes,
(2) The {λi}pi=1 are distinct,
(3) The vector b must be not orthogonal to ȳj , j = 1, . . . , p.

By the method of Subsection 4.3, we do not deal with the sufficient
conditions (1) until (3).

4.3 Partial eigenvalue assignment algorithm using similarity
transformation

The following algorithm presents a partial eigenvalue assignment method
on the standard system (26).
Inputs:
(a) The n× n matrix A1.
(b) The n×m control matrix B1.
(c) The set {µ1, µ2, . . . , µp}, closed under complex conjugation.
(d) The self-conjugate subset {λ1, . . . , λp} of the spectrum {λ1, . . . , λn} of
the matrix A1 and the associated right eigenvector set {y1, . . . , yp}.
Outputs:
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The real feedback matrix F such that the spectrum of the closed-loop ma-
trix A1 +B1F is {µ1, . . . , µp;λp+1, . . . , λn}.
Assumptions:
(a) The matrix pair (B1, A1) is partially controllable with respect to the
eigenvalues {λ1, . . . , λp}.
(b) The sets {λ1, . . . , λp}, {λp+1, . . . , λn}, and {µ1, . . . , µp} are disjoint.
Step 1. Form Λ1 = diag(λ1, . . . , λp), Y1 = (y1, . . . , yp). Step 2. Find
feedback K such that eig(Λ1 + Y H

1 B1K) = {µ1, . . . , µp} by the method in
Subsection 3.3.

Step 3. Form F = KY H
1 . Now we have eig(A1+B1F ) = {µ1, · · · , µp;λp+1,

· · · , λn}.

In the next section, examples are presented in order to compare the
numerical results obtained by our methods.

5 Numerical Results

Consider the following examples.

Example 1. Consider the system (1) with α = 0.5, h = 2, and matrices
A,B, and E as

A =

 2 3 −1
−1 −2 −4
3 1 −5

 , B =

 1 −1
2 2
1 3

 , E =

 1 0 3
1 2 −3
0 −2 6

 ,
where rank(E) = 2 < 3. The matrices Ā, B̄, and Ē are obtained as

Ā =



2.5 3 0.5 0.12 0 0.37 −0.06 0 −0.18
−0.5 −1 −5.5 0.12 0.25 −0.37 −0.06 −0.12 0.18

3 0 −2 0 −0.25 0.75 0 0.12 −0.37
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0


,
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B̄ =



1 −1
2 2
1 3
0 0
0 0
0 0
0 0
0 0
0 0


, Ē =



1 0 3 0 0 0 0 0 0
1 2 −3 0 0 0 0 0 0
0 −2 6 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


.

The eigenvalue assignment via forward state feedback is not applicable.
The pair (M,N) cannot be defined because of singularity of the matrix Ā,
rank(Ā) = 8 < 9.

Now consider the standard systems (20) and (22) by propositional and
forward state feedbacks Fp and Ff , respectively. Only obtaining the forward
feedback matrix Ff is displayed by the propositional state feedback matrix
Fp as

Fp =

[
0.13 0.23 −0.42 0.82 0.31 1.17 −0.09 0.01 −0.29

0 −0.03 0.07 −0.12 −0.04 −0.18 0.01 0 0.04

]
,

which all eigenvalues are assigned to 0.1.
The pair of (M,N) is

N = 108 ×



0 0 0 10−8 0 0 0 0 0
0 0 0 0 10−8 0 0 0 0
0 0 0 0 0 10−8 0 0 0
0 0 0 0 0 0 10−8 0 0
0 0 0 0 0 0 0 10−8 0
0 0 0 0 0 0 0 0 10−8

0.09 0.78 −2.05 0.01 −0.03 0.12 0 0 −0.01
−0.1 −0.87 2.31 −0.01 0.03 −0.14 0 0 0.01
−0.03 −0.29 0.77 0 0.01 −0.04 0 0 0


,

M = 107 ×



0 0
0 0
0 0
0 0
0 0
0 0

0.98 6.79
−1.1 −7.64
−0.36 −2.54


.

Case (a). Consider the method in Subsection 4.2. Because eig(N) =
{64.61± 85.43i,−82.3, 15.8± 11.42i, 12.94,−2.19, 0.72, 0}, we may reassign
p = 2 eigenvalues like {10, 10} instead of {0, 0.72} while leaving the other
eigenvalues unchanged. The first sufficient conditions, i.e., {λ1, λ2} should
not vanish, is not satisfied for the solution of the partial eigenvalue assign-
ment using orthogonality relations. Therefore, this method cannot be used
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in this example.

Case (b). Consider the method in Subsection 4.3. Similar to case (a), be-
cause eig(N) = {64.61± 85.43i,−82.3, 15.8± 11.42i, 12.94,−2.19, 0.72, 0},
we reassign {10, 10} instead of {0, 0.72} while leaving the other eigenvalues
unchanged. New pair (Y H

1 M,Λ1) and forward state feedback Ff are

Y H
1 M =

[
0 0.22

−0.04 −0.13

]
, Λ1 =

[
0.72 0

0 0

]
,

Ff =

[
28.8 −79.9 308.5 −10.6 31.7 −123.4 0.2 −4.1 13.2
4.7 14.6 −30.1 1.4 −4.7 18.2 0 0.8 −2.7

]
.

The eigenvalues of the closed-loop matrix of the standard system (22) and
the standard descriptor system (6) via the feedback law (17) are {64.61±
85.54i,−82.3, 15.8 ± 11.42i, 12.94,−2.2, 10, 10} and {−0.45, 0.04 ± 0.03i,
−0.012, 0.005 ± 0.007i, 0.077, 0.1, 0.1}, respectively. The Figures 1 and 2
show that the state and input variables xi(t), i = 1, 2, 3 and ui, i = 1, 2
converge to zero by considering

X0 =
[
−0.1 0.1 −0.1 0.1 0.1 −0.1 0.1 0.1 −0.1

]
.

Figure 1: State vector in Example 1.
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Figure 2: Input vector in Example 1.

Example 2. Consider system (1) with α = 0.3, h = 2, and matrices A,B,
and E as

A =

 3 −3 −4
3 1 −1
4 −1 0

 , B =

 2 −1
−1 2
1 2

 , E =

 −4 1 5
8 2 3
0 0 0

 ,
where rank(E) = 2 < 3.

The matrices Ā, B̄, and Ē are obtained as

Ā =



1.8 −2.7 −2.5 −0.42 0.1 0.52 0.23 −0.05 −0.29
5.4 1.6 −0.1 0.84 0.21 0.31 −0.47 −0.11 −0.17
4 −1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0


,

B̄ =



2 −1
−1 2
1 2
0 0
0 0
0 0
0 0
0 0
0 0


, Ē =



−4 1 5 0 0 0 0 0 0
8 2 3 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


.
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The eigenvalue assignment via forward state feedback is not applicable.
The pair (M,N) may not be defined because of singularity of the matrix
Ā, rank(Ā) = 8 < 9.

Now consider the standard systems (20) and (22) by propositional and
forward state feedbacks Fp and Ff , respectively. Only obtaining the forward
feedback matrix Ff is displayed by the propositional state feedback matrix
Fp as

Fp =

[
−3.07 0.57 −0.5 0.68 0.21 0.4 −0.13 0 0.06
−0.46 0.6 1.53 −0.69 −0.29 −0.65 0.14 0.04 0.07

]
,

which all eigenvalues are assigned to 0.1.
The pair of (M,N) is

N = 107 ×



0 0 0 10−7 0 0 0 0 0
0 0 0 0 10−7 0 0 0 0
0 0 0 0 0 10−7 0 0 0
0 0 0 0 0 0 10−7 0 0
0 0 0 0 0 0 0 10−7 0
0 0 0 0 0 0 0 0 10−7

0.01 0.05 0.18 −0.01 0 −0.01 0 0 0
−0.1 −0.37 −1.18 0.07 0.03 0.09 0 0 −0.01
0.03 0.11 0.34 −0.02 −0.01 −0.02 0 0 0


,

M = 106 ×



0 0
0 0
0 0
0 0
0 0
0 0

−0.75 −0.78
4.95 5.16
−1.46 −1.52


.

Case (a). Consider the method in Subsection 4.2. Because eig(N) =
{34.6± 40.14i,−33.53, 24.81± 18i, 4.77,−0.04± 0.92i, 0}, we may reassign
p = 3 eigenvalues like {10 ± 10i, 10} instead of {−0.04 ± 0.92i, 0} while
leaving the other eigenvalues unchanged. The first sufficient conditions,
i.e. {λ1, λ2, λ3} should not vanish, is not satisfied for the solution of the
partial eigenvalue assignment using orthogonality relations. Therefore, this
method cannot be used in this example.

Case (b). Consider the method in Subsection 4.3. Similar to case (a), be-
cause eig(N) = {34.6±40.14i,−33.53, 24.81±18i, 4.77,−0.04±0.92i, 0}, we
reassign {10± 10i, 10} instead of {−0.04± 0.92i, 0} while leaving the other
eigenvalues unchanged. New pair (Y H

1 M,Λ1) and forward state feedback
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Ff are obtained by

Y H
1 M =

 −0.25− 0.38i −0.59− 0.5i
−0.25 + 0.38i −0.59 + 0.5i
−0.33 −0.67

 ,
Λ1 =

 −0.04− 0.92i 0 0
0 −0.04 + 0.92i 0
0 0 0

 ,
Ff = 102 ×

[
−0.53 0.31 1.32 −0.23 −0.13 −0.32 0.07 0.04 0.11
−0.02 −0.13 −0.42 0.1 0.05 0.13 −0.02 −0.01 −0.02

]
.

The eigenvalues of the closed-loop matrix of the standard system (22)
and the standard descriptor system (6) via feedback law (17) are {34.6 ±
40.14i,−33.53, 24.81± 18i, 4.77, 10± 10i, 10} and {0.2,−0.03, 0.02± 0.01i,
0.01± 0.01i, 0.05± 0.05i, 0.1}, respectively. The Figures 3 and 4 show that
the state and input variables xi(t), i = 1, 2, 3 and ui, i = 1, 2 converge to
zero by considering

X0 =
[

0.02 0.02 0.02 −0.02 −0.02 −0.02 0.02 0.02 0.02
]
.

6 Concluding remarks

Stabilization and control of descriptor fractional discrete-time linear sys-
tems are presented. Assigning desired eigenvalues in unit disk to the con-
verted standard descriptor discrete-time linear system is done by eigenvalue
assignment with forward state feedback. This method needs the sufficient
condition (II) in (9) for all examples where we do not have it by using
eigenvalue assignment with forward and propositional state feedback but
with large matrices. To decrease dimensions of matrices, input, and state
vectors, partial eigenvalue assignment may be used. Although the par-
tial eigenvalue assignment algorithm using orthogonality relations is not
doable for reassigning indistinct and vanished eigenvalues. However, in
partial eigenvalue assignment via similarity transformation, undesired in-
distinct and even zero eigenvalues can be reassigned, while leaving the rest
of the spectrum invariant. Also, the eigenvalues of closed-loop matrix in last
method lie in desired region and state and input vectors xi(t), i = 1, . . . , n
and ui(t), i = 1, . . . ,m converge to zero. The results presented in this
article are also applicable in stabilization of discrete-time descriptor, frac-
tional, delayed, and two-dimensional systems. The subject of minimum
norm of feedback matrices is remarkable, too. An extension of these con-
siderations for continuous-time descriptor fractional linear systems is still
an open problem.
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Figure 3: State vector in Example 2.

Figure 4: Input vector in Example 2.
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