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Interplay of resource distributions and
diffusion strategies for spatially
heterogeneous populations
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Abstract. In this paper, we consider a reaction-diffusion competition
model describing the interactions between two species in a heterogeneous
environment. Specifically, we study the impact of diffusion strategies on the
outcome of competition between two populations while the species are dis-
tributed according to their respective carrying capacities. The two species
differ in the diffusion strategies they employ as well as in their asymmetric
growth intensities. In case of weak competition, both populations manage
to coexist and there is an ideal free pair. If the resources are shared par-
tially then one species emerge as the sole winner and the other goes extinct.
The results have been verified and illustrated numerically.
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1 Introduction

For a two species competition model, either both populations survive or
one triumphs as the other goes extinct. In some cases both species leave
the location under competition which yields neither coexistence nor extinc-
tion. In ecology or economy, this setting is important enough to warrant
investigation of how one organism of a species changes the density over
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time to survive in competition (see, e.g., [1, 20, 2, 23, 4] and references
therein). An illustrative case as such is in Fig. 1 presenting the significant
dimensions of competition or cooperation for any two interacting popula-
tions in a habitat. To explore this idea, let us initially consider the classical
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Figure 1: Extinction and coexistence patterns of two populations.

Lotka-Volterra two-species competition model with diffusion

g = Di1Au+u(t,z) (rm — oqu(t,z) — frw(t,z)) in Ry x Q,
w = DoAw + w(t, z) (re — agu(t,x) — Bow(t, z)) in Ry x €,

u(0,z) = up(z) > 0, w(0,z) = wp(z) > 0in Q,

where Ry = (0,00), A is a usual Laplace operator and the coefficients
D;, ri, a4, Bi (i =1,2) are nonnegative. In addition, the constant r; is the
specific growth rate of the populations. The constants «y, (B2 are defined
as the intra-specific competition rates whereas the constants ag, (1 are
known as the inter-specific competition rates. Unknown functions u(t,x)
and w(t, x) denote the population densities of the two competing species.

The interaction terms represent logistic growth with competition. It is
well known that the initial-boundary value problem (1) has a unique smooth
nonnegative solution; see, e.g., [30] for systems with n equations and general
semi-linearities. In mathematical modeling of ecology, the asymptotic be-
havior of the solutions of (1) has been central to understanding coexistence
and spatial dissociation of two species, see [20, 2, 23, 24].

The long-time behavior depends on the values of the reaction coefficients
ri, o, Bi(i = 1,2) in determining the asymptotic solutions of (1). For
further study, these are classified into the following four classes by setting
T12 = 11/T2, Q12 = @1/, Pra = P/ P2 (see [20, 2, 24]):
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1. If r19 > max{ai2, f12}, the solution (u,w) — (r1/a1,0) uniformly on
Q) as t — oo. Therefore, the species © dominates and the rest one, w
becomes extinct eventually regardless of the initial values wug, wy.

2. Similarly, when 712 < min{ajg, 812}, the species w dominates the
species v and in the long run u is in extinction and the solution
(u, w) converges to (0,r2/fB2) as t — oo.

3. The competition between species u and w is profusely weak as long
as r12 € (P12, a12) and coexistence is expected then. In this case, the
system (1) implies that the solution (us, ws) is globally asymptotically
stable. More precisely, lim;_oo(u(t, x),w(t,z)) = (us, ws) uniformly
for x € ). This means that both species coexist.

4. Radical and rigorous story arises in the case of 15 € (a2, 812). The
competition is strong, analysis is interesting and requires rather so-
phisticated methods. The steady states (r1/a1,0) and (0,79/82) are
locally stable while the coexistence state (us,ws) is unstable.

In the weak competition case, the positive stationary solution (us,ws)
is globally asymptotically stable independent of the diffusion coefficients.
Materially, there exists a Lyapunov functional which allows for a long-time
asymptotic analysis [21]. Thus, no non-constant stationary solution exists
for any D; and D5 and there is no pattern structure. Diffusion design in
[0, 6] was based on the notion of the ideal free distribution to optimize the
physical fitness. For the Volterra model with dispersion, for any number
of interacting populations, the effect of uniform diffusion is to damp all
spatial variations as shown in [25]. The effect of environment heterogeneity
for Lotka-Volterra two species interactions was studied in [12]. General
reaction rates and the stability of constant steady states was considered
by [7]. In the strong competition case, the result follows from [15] that
the problem (1) has no stable positive equilibrium solution if the domain
is convex. For certain dumb-bell type domains, the system (1) has at least
one stable coexistence solution [26]. According to the domains of attraction
of (r1/a1,0) and (0,r2/B2), some attractive results were shown in [28]. One
recent study of competition model has investigated the effects of diffusion
rate and spatial heterogeneity on a two species Lotka-Volterra model under
homogeneous Dirichlet boundary conditions [31]. The study derived that
in weak competition and for certain range of diffusion speeds, there exists a
unique coexistence solution which is globally asymptotically stable. How-
ever, a two species diffusive predator-prey model with bifurcation analysis
was studied in [32]. In this paper, it is shown that if diffusion rate of the
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prey is treated as a bifurcation parameter, for some certain ranges of death
rate of the predator, there exist multiply positive equilibria bifurcating from
semi-trivial equilibrium of the model. Recently, in 2018, it has been estab-
lished that the directed dispersal organism has evolutionary advantages
to design its own habitat for a weak competition coupled species model
[16] (also see the monographs [17, 18] for symmetric and non-symmetric
directed dispersal models). In contrast to the competition model (1), we
will consider the dynamics of a two-species adopted competition model (2)
with logistic types growth. In this paper, we focus on evaluating the po-
tential benefits of the species adopting their own resources according to
(2) as compared to the well-established results from the random diffusion
problem (1).

The rest of the paper is organized as follows. The mathematical model
is described in Section 2 and some auxiliary results are presented that are
utilized in the rest of the paper. Also the statements of the main results of
the paper are articulated in this section. Competitive analysis due to the
competition coefficients for coexistence solutions are investigated in Section
3. The contents of Section 4 are analysis of the semi-trivial equilibria in
non-homogeneous environment. In this section, we consider different types
of interactions between distribution functions to prove our main results
of the paper. For weak competition, it is shown that there is a unique
coexistence solution. Some applications are presented in Section 5 to justify
the theoretical results. Finally, Section 6 presents summary and discussion
of the results.

2 Adopted dispersal model and main results

In the present study, the problem deals with the competition for the same
basic resources between two species u(t, z) and w(t, x) pertaining to the dif-
fusion strategies in their adopted dynamics. This corresponds to the follow-
ing system of differential equations with homogeneous Neumann boundary
conditions:

(9t = D (JE) 4 ultn) () — = ) i B 9
YLD ) (o) (K@) —vu—w) mRyx 2 (o)
3(U/Kl): (/ Ka) _ =0 on 09,

n

u(0,z) = up(x ) w(0, ) = wp(z) in .

The habitat Q is a bounded region in R™ with 9Q € C?t#, 5 > 0.
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We consider that all parameters D;, K;(x) (i = 1,2), p,v and K(x)
are positive. The constants D;, ¢ = 1,2 represent the migration rates,
and are known as the diffusion coefficients. The function K(z) denotes
the resource distribution (carrying capacity) of the environment and the
function is spatially distributed only. We assume that the carrying capacity
K(z) is in the class of C1*#(Q), B > 0 for any = € Q and I x I3 is a bounded
subset of R%2. The set l; x ly corresponds to the range of the solutions to
(2) and is determined by the corresponding upper and lower solutions. It
is important to note that, we consider the common carrying capacity and
the specific growth rates are proportional in (2), which makes the reaction
patterns different from the primary system (1). The following result is
well-established for monotone dynamical system (2) (see the monographs

[1, 13, 29]).

Theorem 1. [1/, 27, 11] If the system (2) has no coexistence equilibrium
then one of the semi-trivial equilibrium is unstable while the other is globally
asymptotically stable [1/]; if both semi-trivial equilibria are unstable, the
problem (2) has at least one stable coexistence equilibrium [27, 11].

For the sake of comprehension and clarity, we state our key results at
this point. For simplicity, it is also noted that throughout the paper, we
consider const instead of constant while the rational functions are defined.
Theorem 2. Assume that II((I((;C)) = const. If p € (0,1) and v > 1, then
the equilibrium (K (x),0) of (2) is globally asymptotically stable. That is,
for any nonnegative nontrivial initial values ug,wy € C(S2), the solution
(u,w) of (2) satisfies (u,w) — (K(x),0) as t— oo uniformly in x € Q.
Ki(x)
K(z)
Dy = D, then the system (2) has a stable positive coexistence equilibrium,
which is ((1EM)K(w) (171’)K(I)> as long as p,v € (0,1).

Theorem 3. Suppose that K1 = K,

= const, (1 =1,2), and Dy =

—pv 1—pv
K (x) Ky(z) _
Theorem 4. Let K(z) % const and K(z) = const. If p,v € (0,1), then

the system (2) has at least one coexistence equilibrium (us,ws), which is
stable for any nonnegative and nontrivial initial conditions.

The proofs of Theorems 2-4 are formulated through a series of steps in
the Section 4.

3 Classical approach to equilibrium analysis

Analysis of the problem designated in (2) is undertaken at this stage.
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Substituting h(t,x) = u(t,z)/Ki(z) and m(t,z) = w(t,z)/Ka(z), the
problem (2) becomes

3)

In a bid to provide exposition, we will consider the system (3) for numerical
simulations so as to corroborate the theoretical results. In the following,
we will state the results on stability of the semi-trivial equilibria for the
system (2).

The functions u(t, x) and w(t, x) are the solutions of (2) and exist for all
t > 0. The system (2) has at most four nonnegative equilibria; the trivial
equilibrium (0, 0), two semi-trivial equilibria (u*(z),0), (0, w*(z)) and the
coexistence equilibrium (us(z), ws(z)). If (u(x),w(x)) is any stationary
coexistence solution of (2), consider the following eigenvalue problem to
analyze the linear stability of the system,

Dia 1?1(8) +o(@)(f +ufu) +9(2) ufy = o(z) in Q,

DaA [?2((12) +1(x)(g + wgw) + ¢(z) - wgy = o(x) in Q, (4)

a(qsa/fl) _ Ma/yfﬁ) — 00n 00,

where f,, and g,, are the derivatives of f and g with respect to u and w,
respectively, and

f(@,u,w, K) = (K(2) — u(z) — pw(z)),

g(z,u,w, K) = (K(x) — vu(z) — w(x)).

The function ¢(x) and ¥ (x) are two eigenfunctions and o is the correspond-
ing eigenvalue.
Next, let us proceed to test the stability of trivial equilibrium solution.

Lemma 1. [19, 5] The trivial equilibrium (0,0) of the system (2) is unsta-
ble. Moreover, it is a repelling equilibrium.

Proof. Let us consider the eigenvalue problem (4) around the origin with
corresponding boundary condition in (4)

o()
Ki(z)

0(¢/ K1)

on

DA < ) + ¢(z)K(z) = o¢(x) in 2, =0onodQ. (H)
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Now it suffices to show that the principal eigenvalue is positive. Accord-
ing to the variational characterization of the eigenvalues [%], the principal
eigenvalue of (5) is given by

—Dlgjz’\V(¢/K1)\2dx+g{K(x)%21dx

o1 = sup

$£0,pEW L2 (J; (¢?/K1)da

For eigenfunction ¢(z) = K;(z), we have

fK x)dz mln{ 1nf K(x }le

= min{inf K(z)} > 0,

> @ >
L= le - le zeQ
Q Q

and the trivial equilibrium (0,0) of (2) is unstable.
Next step is to prove that the trivial equilibrium (0, 0) of (2) is a repeller.
Let

. K K K
o=min {ing a0 20 nf 101 >0
uo(x) > 0 and wo(x) > 0 be such that ug(x) < 0, wo(zr) < ¢ for

(up(z), wo(x)) # (0,0). Add the first two equations of (2) and integrate
over ) using Neumann boundary conditions [13, 8], we get

% (u—i—w)da;:/u(K—u—,uw)dx—i—/w(K—w—Vu)dx. (6)
Q Q Q

Note that v = min{ in?2 K (x)} > 0 on condition that v < § and w < § there
e
holds

jt (u+w)d:p>'y9/ <1—1) dx+’y£w<1—;> d:czgﬂ/(ww)dfﬂ-

Therefore using Gronwall’s lemma [24, 29], we get

/(u(t, ) + w(t,z)) dz > '/? /(uo(x) + wo(x)) dz.

o) Q
Smcef (up(z)+wo(z))dx > 0, then the mtegralf (t,z)+w(t,x))dx grows

up exponentlally with time as far as © < ¢ and w < 4. So, we can say that
there exists ¢y > 0 such that u(tp,z) > § and w(tg,x) > ¢ for some z € 2
and the equilibrium point (0,0) is a repeller. O
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3.1 Preliminaries

The function u(x) is the solution of the following elliptic boundary value
problem and it corresponds to a state when only species u survives in (2):

d(u/K
DiA (Ki@)) +u(z) (K(z) — u(z)) = 0in Q, %” = 00ondQ. (7)

If one of u, w is identically equal to zero, we obtain semi-trivial equi-
librium solutions, where the non-trivial part solves a single equation. For

single-species u of (2), the proof of the following lemma can be found in

[19]-

Lemma 2. [19] Suppose that

Ky (z)

# const and let u(t,x) be a solution

to

0 t A(u/K
—u:DlA <IIIJ((,1’(§§> +u(K(x) —u) in€Q, <u6/nl) =00nd. (8)
Then there is a unique stationary solution u*(x) of (8). Also, with non-
trivial nonnegative initial condition any solution u(t,z) > 0, and u(t,z) —
u*(z) as t — oo. Moreover

/ (K(z) — w*(2)) K (2)dz = / (@) = K(2))? dz > 0. (9)
Q Q

KQ(.%')
tive stationary solution w*(x) in (2) such that

/ (K(z) — w*(2)) K ()dz = / (w(z) — K(2))? dz > 0. (10)
Q Q
We need the following definition concerning the elliptic eigenvalue prob-
lem of (2).
Definition 1. [8, 22] Given a positive constant D and a function p €
L>(Q), we define the n'* eigenvalue o, (D, p) with counting multiplicities

B
DA +pp = —0p, T €Q, a—i —0, z €00, (11)

where o1(D,p) is defined as the first eigenvalue of (11) and ¢ is the eigen-
function.

Proposition 1. [5] If p1 < pa within Q, then o1(D,p1) > o1(D,p2) and
the equality holds only when p1 = pso in ). In addition, if p is nonconstant,
then o1(D1,p) < 01(D2,p) as long as D1 < Ds.

For single species w, if # const, then there exists a unique posi-

The proof of the Proposition 1 is available in [3], pp. 95.
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3.2 Stability analysis of coexistence solutions

The asymptotic behavior of the solutions (u(t,z),w(t,z)) for the system
(2) with nonnegative and nontrivial initial functions (u(0,z),w(0,z)) can
be categorized into four classes: (i) 0 < pu<l,v>1; (i) 0<v <1, u>1;
(iii) 0 < p, v < 1; and (iv) g, v > 1. In this section, our discussion is limited
to the first two classes, exploring the coexistence of both populations.

The next result is concerned with the coexistence of both populations
in case of competition coefficients 0 < p < 1 and v > 1.

K1 ((E)

no coezistence state (us(x), ws(z)) of (2).

Lemma 3. Suppose that = const. If u € (0,1) and v > 1, there is

Proof. Let us assume the contrary, i.e., that there exists a strictly positive
solution (us(z),ws(z)) of (2). Then an equilibrium (us(z),ws(z)) must
satisfy

Dy (20 Ly () (K (2) = (@) — () = 0 in

Ky ()
Dy %Q(é)) b ws (@) (K(2) — vug(z) — wa(x)) =0inQ,  (12)
8(1%/[(1) = 8(w5/K2) =0 on 09.

After multiplying the second equation in (12) by p, adding them and inte-
grating over ) using boundary conditions in (12), we obtain

0= / [us(z) (K(x) — us — pws) + pws(z) (K(x) — vus —wy)] de. (13)
Q

IfO<pu<landwv>1,then (K(x)— us — pws) > (K(x) — vus — ws) and
it follows that
/(us(x) + pws(z)) (K(x) — us(z) — pwy(x)) dz > 0. (14)
Q
Integrating the equality
(us+uws) (K —Us — ,uws) = (K —Us — ,U/ws) (u8+MwS_K)+<K —Us — MwS)Kv
over {2 using (14) leads to

/ K(z) (K(x) — us — pwy) d > / (K () — us — pw,)? dz, (15)
Q Q
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and (15) is valid for any positive (us(x), ws(x)) and p € (0, 1) which exclude
the possibility of us(x) + pws(x) = K(x). Thus the left integral is positive
only when us(x) + pws(z) Z K(x) and we define the eigenvalue problem
d(o/K
DA 2 + ¢ (K —us — pws) = op(x) in €, ¢/ K1) =0on 0. (16)
}(1 on

According to the variational characterization of eigenvalues described in
[8], its principal eigenvalue is given by

2
—D1 [|V(¢/K1)|? dz + f% (K — us — pws) dz
o1 = sup Q Q

$£0,6EW 1.2 g{(¢2/i(1)dx

(17)

For eigenfunction ¢(x) = K(z) and using (15), we have

J (K () = us(x) — pws(2)) K (x) do

o> 2 K@) do >0, since Ki(x)/K(x) = const.
Q
Since 0 is always a principal eigenvalue with a positive principal eigenfunc-
tion of (16), this contradicts o1 > 0. O
Ky(z) _

Remark 1. Suppose that K1) = const. If v € (0,1) and p > 1 then
there is no coexistence state (us(x),ws(z)) of (2).

If p=v =1, Ki(x) = K(z) and []{{2((;)) # const then there is no
coexistence, and this result is reported in [19].

_ .B%(x) _ .

Lemma 4. Suppose that K1 = Ko, K(z) = const, (i = 1,2), and Dy =

Dy = D, then for each p,v € (0,1), the system (2) has a unique positive

(1-pK (].—V)K)
l—pv 7 1—pv )°

coexistence equilibrium, and that is given by (

Proof. For stationary solutions (us(x),ws(z)), the system (2) can be writ-
ten as

DA ;?1((?) + us (K () — us — pws) = 0in £,
DA ws () + ws (K (z) — vus —ws) = 0in Q, (18)

Ky(x

Ous/K1) _ O(ws/Ky) _ o)

~—
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By direct substitution it is easy to check that (%, %) is a co-
existence stationary solution of (18). To show the uniqueness, suppose that

(1-p)K (1—1/)K>

(us, ws) is any coexistence equilibrium of (18) except ( T T
Claim: (1 —v)us(z) = (1 — p)ws(x).
Assume to the contrary that (1—v)us(x) # (1—p)ws(x) and let vg(z) =
(1 —v)us(z) — (1 — p)ws(z) # 0. Dividing the last equation by K; and for
equality of diffusion coefficients, assume that K; = Ks. Since % = % =

const, after simplification we have

vs()

K,

=(1- y)u;éf) —(1— ,u)w;((:) Z0.

Multiplying the first equation of (18) by (1 — v) and second equation by
(1 — p), we obtain

D —)A (LY |y (K (@) — s — pawg) = 0in Q,

Ki(z)
D(1—p)A Iué;(é)) + (1 — p)ws (K(z) — vus — ws) = 01in Q, (19)
a(ug/Kl) = 8(w§/K2) =0 on 99.

Subtracting the first two equations in (19), v, satisfies

9(vs/ K1)

o = (0 on 0N

DA (I?l((”;))) +y(2) (K (2) — us — wy) = 0in Q,

and therefore, o, (D, K(z) — us(z) — ws(x)) = 0 for some n > 1.
However, using Proposition 1,

on (D, K —us —ws) > 01 (D, K —us —ws) > o1 (D, K —us — pws) =0,
is a contradiction, where the last equality is satisfied by the first equation
of (18).

Therefore, (1—v)us(z) = (1—p)ws(x) which implies ws(z) = W
and by substituting ws(x) in the first equation of (18), we obtain

DA(us(x>)+us <1—(K_W)“S> —omea, 20K oo e,

K () (1—p) an
Hence by uniqueness us(z) = m and wg(z) = m O



186 Md. Kamrujjaman

4 Global analysis of semi-trivial equilibria

In this section, the stability properties of the equilibria (u*(x),0) and
(0, w*(z)) are examined for the system (2) for different cases of p and v.
Besides, when K;(z)/K(z) = const, (i = 1,2), and u,v € (0,1) then the
stability of (K (x),0) and (0, K (x)) are analyzed as part of our study. In this
case, the coexistence solution (us(x),ws(x)) = ((111‘2)5{, (11:’L)VK of (2) is
the intersection of the lines u(z) + pw(z) = K(z) and vu(z)+w(z) = K(z)
whenever it exists. Also it is well established that if a stationary solution
of (2) is linearly stable then it is asymptotically stable [29].

4.1 Effects of higher consumption rate

First we note that in random movement of the species [20, 2, 24] if 0 < p <
1, v > 1, then the solution (u(¢, x),w(t, z)) converges to (u*(x),0) ast — oo
for any positive (ug(x),wo(x)). Similarly, the solution (u(t,x),w(t,z)) —
(0,w*(z)) as t — oo for v < 1 < p regardless of the initial conditions.
For the adopted dynamical system (2), we will show some applications by
considering various relations between K;(x) (i = 1,2) and K(x) as well
as for different values of u, v. We illustrated that the results of random
diffusion are not always true for the modified directed dynamics model,
coexistence is also possible.

The following lemma shows the instability of the semi-trivial equilibrium
(0, w*(z)) (as well as possible (0, K(z))) under certain conditions.

Lemma 5. Assume that II{{l(;:) = const and v > 1, then the semi-trivial

equilibrium (0,w*(z)) of (2) is unstable if p € (0,1).

Proof. Note that if 1[((2((5)) # const then (0,w*(z)) is an equilibrium of (2).

The associated eigenvalue problem of (4) around (0, w*(z)) is

DA (;{i) + ¢ (K — pw*) = op(z) in Q, (9(%/;(1) =0ondf. (20)

The variational characterization [3] leads to the principal eigenvalue of (20)

=Dy [ [V(0/K0)da+ | P (K@) - o (@) da
o1 = sup

$£0,pEW 12 g{ (¢%/ K1) dx



Interplay of resource distributions and diffusion strategies... 187

Choosing the eigenfunction ¢(x) = K(z) and for 0 < u < 1, we obtain

[ (@) = o’ (@) K)o [ (K (o) = (o)) K o) do
o= | K(z)dx ” | K(z)dx Y
Q Q

since [I((l((j)) = const. Therefore, 0 is positive using (10) and the equilibrium

II((Q((X)) = const and the
equilibrium (0, K (x)) is also unstable. Here, in fact, the principal eigenvalue

(21) becomes

(0, w*(z)) is unstable. In particular, w*(z) = K(z) if

(@)~ (@) K@) do [ (1= 10 K(0)da
o= J K(z)dx - J K(z)dx
Q Q

Thus o7 is positive when p € (0,1) and K(x) > 0, which concludes the
proof. O

Now we are ready to give the proof of the Theorem 2.

Proof of Theorem 2:

Proof. It can be checked that the system (2) satisfies all the conditions of
a strong monotone dynamical system. The system (2) has no coexistence
solution by Lemma 3 and trivial equilibrium (0, 0) is unstable by Lemma 1.
Moreover, (0, w*(z)) is unstable according to Lemma 5 while 0 < p < 1 and
v > 1. Hence the equilibrium (K (x),0) is globally asymptotically stable as
a consequence of Theorem 1. ]

Remark 2. Assume that Ko(z) = const and p > 1, then two equilibria

K(z)
u*(x),0) and (K(x),0) of (2) are unstable according to K, (=) const and
K(z)
II?((;})) = const, respectively if v € (0,1). Finally the semi-trivial equilib-

rium (0, K(x)) of (2) is globally asymptotically stable for any nonnegative
nontrivial ug, wo € C(Q) if v € (0,1).

If K1(x) and K(x) are arbitrary whereas Ky(z) and K (x) are propor-
tional then we have following two results prescribed in Propositions 2 and
3.

II?((S:)) % const, [[(;.2((;) = const, then the
semi-trivial equilibrium (0, K (x)) of (2) is unstable if p € (0,1).

Proposition 2. Assume that
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The proof is similar to Lemma 5 and thus is omitted.

Iz?g)) £ const and I;?&)) = const. If v € (0,1),

then the semi-trivial steady state (0, K(x)) of (2) is unstable.

Proposition 3. Let

The proof of proposition 3 is fairly straightforward and thus is omitted.

If II%((;U)) # const, (i = 1,2), then both semi-trivial equilibria (u*(z),0)

and (0,w*(z)) are stable whenever p € (0,1),v > 1 and the coexistence
solution is unstable. If (u*(z),0) is an equilibrium of (2), then the corre-
sponding eigenvalue problem of (2) around (u*(z),0) is

v O(Y/Ks)

DyA <K2) + ¢ (K —vu*) = oy(x) in £, = Oon0Q, (22)

and we will apply it in the subsequent analysis.

Kg(m') K1 (1‘) _
Remark 3. Assume that K (2) % const, K(z) — const and p > 0, then

the semi-trivial equilibrium (K (x),0) of (2) is unstable if v € (0,1).

4.2 Case of weak competition

In a competitive system, one of the fundamental problems in ecology is to
determine which species will survive. In this subsection, we will consider
the problem (2) under weak competition to determine whether both species
persist or one goes extinct.

The next result shows that one equilibrium point is instable if the com-
petition coefficients, p, v € (0,1) and the resource functions are propor-
tional.

I[{{Z((j)) = const, (i = 1,2) and v € (0,1),

then the semi-trivial equilibrium (0, K (x)) of (2) is unstable if u € (0,1).

Proposition 4. Assume that

Proof. Consider the eigenvalue problem (4) about (0, K (z)) using the bound-
ary condition in (4) and we obtain

DA (;?1) + ¢ (K —uK) =o0¢(x) in Q, a(‘g/;(l) =0ondf2.  (23)

According to the variational characterization of the eigenvalues [3], the
principal eigenvalue of (23) is given by

=Dy [V (/K da+ | & (K@) - uK (@) da
o1 = sup

$£0,EW 1.2 g (¢%/ K1) dx
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The circumstance II{{Z((;:)) = const, (i = 1,2) implies that gﬁgg = const.
Choosing the eigenfunction ¢(x) = Ks(x) such that
J (K(z) = pK () Ka(z) da
Q
> 0
o= | Ka(x) dz -
Q
where 0 < p < 1, K(x) > 0, Ka(x) > 0. This concludes the proof. O
Proposition 5. Assume that K(z) = const, (i = 1,2) and p € (0,1),

then the semi-trivial equilibrium (K (z),0) of (2) is unstable if v € (0,1).

Analogous to Proposition 4, it is easy to show that the equilibrium
(K(z),0) is unstable.
Now, it is time to give the proof of the Theorem 3.

Proof of Theorem 3:

Proof. If p,v € (0,1) then two semi-trivial equilibria (0, K (z)) and (K (x),0)
are unstable according to Propositions 4 and 5, respectively. Also the triv-
ial equilibrium is a repeller by Lemma 1. Since (2) is a strongly mono-
tone dynamical system, therefore, as a consequence of Theorem 1 and

Lemma 4 the unique coexistence solution (M (I_V)K) is stable as

1—pv 7 1—pv

far as p,v € (0,1).

Remark 4. If K1 # Ky but I;;f((:f)) = const, (i = 1,2), then the Theorem
3 is valid continually for 0 < p,v < 1.

oy Kl(l‘) KQ(:L‘) —
Proposition 6. Let K(2) % const and K(z) = const. If u,v € (0,1),

then the semi-trivial steady state (u*(x),0) of (2) is unstable.

K ()
K (x)
equilibrium of (2). Consider the principal eigenvalue of (22) about (u*(z), 0)
and we have

Proof. Notice that # const implies that (u*(z),0) is a semi-trivial

—DQS‘{ |V(1[1/K2)|2(1l:1:+S{}l}:2 (K(x) — vu*(z)) dx
o1 = sup

YO pEW 2 g{ (V2 /Ky) dx
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Since = const, then for ¥ (z) = K(x), we obtain

g{(K_ vu*) K(z)dz [ (K —u*) K(z)dz

Q
o1 = J K(z)dx ” J K(z)dx
Q Q

, since0 <v <1,

and o is positive using (9) in Lemma 2. O

At this phase, we are in stable setting to establish the last Theorem 4
when both species are cooperating with each other.

Proof of Theorem 4:

Proof. Two equilibria (0, K(z)) and (u*(z),0) of (2) are unstable as a con-

sequence of the Propositions 3 and 6, respectively, due to II?((;:)) % const,
Ko (z)
K(x)
system (2), the system has at least one stable coexistence solution according
to the monotone properties of Theorem 1. O

= const and for p,v € (0,1). Therefore, for a monotone dynamical

5 Examples and applications

In this section, we will use the following mathematical notations to define
the average solutions of u, w and K:

e Average solution of u i8S Ugye,
e Average solution of w 18 Wgye, and
e Average solution of K is K pe.

For numerical simulations, first, let us consider the case when the compe-
tition coefficients p € (0,1), v > 1. The following example shows that in
the case of space-dependent resource distribution, only the population u
survives, coexistence solution being unstable.

Example 1. Consider the problem (2), where Q = (0,1), I[{(}((;C)) = const,
II?((;:)) # const, where K(z) = 2 4 cos(mzx), Ki(x) = 0.3K(x), Ks(x) =

1.5 4 cos(mz), and Dy = Dy = 1. If p € (0,1), v > 1, then according
to Theorem 2, the semi-trivial equilibrium (K (z),0) is globally asymptot-
ically stable as t — oo. This result guarantees the survival of species u,
similar results were established for random diffusion models in [20, 2, 24].
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The numerical simulations show that in this situation, the average solu-
tion (Ugye, Wave) — (Kave, 0), see Fig. 2. However, when v is large enough
compared to u, for example v = 1.1 and pu = 0.75, then the convergence
of Ugpe tend to Ky is faster than the other values. The figure represents
that there is no coexistence, consistent with the Lemma 3 and that the
equilibrium (0, w*(z)) is unstable in accord with Lemma 5.

25 5
< 20 2
3 S
215 =
=10 e (v)=(0.75,1.1) RS
§ e (11,V)=(0.95,1.05) §
S 05 — (u,v)=(0_99’1_05) 8
00 50 . 100 150 200 -0.5; o 100 150 200
fime time

Figure 2: Average solutions of (2) for different functional values and for
various (p, V).

We next consider various illustrations of the problem (2) in the following

II?((;C)) # const, II({Q((;U)) = const and (b) I;gf; # const, (i =
1,2) by showing the effects of different competition coefficients, where p €

(0,1), v > 1.

cases: (a)

Ki(z Ko(x
Kl((:n)) =% const, 1{2((93))
const for K (z) = 2+cos(mx), Ki(x) = 1.14+cos(nz) and Ka(x) = 0.7K (z).
The parameters represent the effects applicable to the other species. Nu-
merical simulations depicted in Fig. 3 indicates that the first population, u
survives while the species, w goes extinct and coexistence is also possible.
According to Proposition 2, the steady state (0, K (x)) is unstable and all
positive solutions converge to the semi-trivial equilibrium (u*(x),0) when
1 is small enough compared to v.
Ki(x)
K ()
model (2). Different types of scenarios are seen in Fig. 4. When p ~ 0.99 <
1 and v ~ 1.05 > 1, then the semi-trivial steady state (0, w*(x)) is globally
asymptotically stable as ¢ — oo. In all other cases in Fig. 4, the effects
of species w on species u is less than the effects of species u on its own

Example 2. In Fig. 3, we have taken into account

Next consider the state # const, (i = 1,2) in the logistic growth
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I
o

1.5

(1,v)=(0.50,1.1) (1,v)=(0.50,1.1)
— (11,V)=(0.90,1.1) — (11,V)=(0.90,1.1)
< 20 e (11,V)=(0.99,1.1) 2 ] (11,V)=(0.99,1.1)
1.0
s s
1.5
£ s o
D
~ 10 %
2 2
S S
0.0 0.5
0 100 200 300 400 0 100 200 300 400
ltime ltime

Figure 3: Average solutions of (2) for different set of functional values while
(u,v) varies.

members and only the population u sustains in competition. Numerical
results give evidence that there is no coexistence in these events.

2.0 2.0

ave density of u
o

ave density of w

Figure 4: Average solutions of (2) for several parametric values of (u,v).

The next example investigated the small deviations between two func-
tions K (x) and Kj(x) when either u or v is greater than one but close to
1 (approaches 1 from above) or equal to 1.

Example 3. Let us consider II{{l((;)) # const and | K (xz)— K(z)| = € on the

domain © = (0,1). Here € > 0 is sufficiently small whereas I%((f)) # const
and choosing the values of competition coefficients ¢ = v = 1 or using
w1, v} 1, here (u,v) is eventually drop down to 1. In this example,
we consider K(z) = 2 + cos(mz), Ki(z) = 1.97 + 0.98 cos(mz), Ko(x) =
1.9 + cos(mx).
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Fig. 5 illustrates average solutions in a time interval of length 400. In
symmetric competition, the first population u is approximately choosing
the carrying capacity dependent diffusion strategy because of small devia-
tions between K(z) and Kj(z). It is well established that the semi trivial
equilibrium (K (z),0) is globally asymptotically stable when ¢ — oo when-

ever p =v =1, Ki(z) = K(z) and II((Q(%) # const [19]. The left diagram

in Fig. 5 illustrates that for p = v = 1, [I?(%) # const and K(z), Ki(x)

chosen, there exists € > 0 such that both populations coexist.

1.2 2.0
e i— u
1.6 e — N
209 2
~ ~
> > 1.2
S S
= =
§ § 0.
S 0.6 f— ] S
e — \\] 0.4
0'30 100 200 300 400 0‘co 100 200 300 400
time time

Figure 5: Average solutions of (2) for (left) u = v =1 and (right) p = v =
1.03.

In Example 4, we show the limiting case of exact solution for propor-
tional functions by choosing various u,v € (0, 1).

I[%((:f)) = const, (i = 1,2), then according to Theorem
3, there is a exact stable coexistence solution, and that is (K, K3) =

((11—_;;)5(7 Uf_ﬁf) for p,v € (0,1). From Fig. 6 (left), it can be observed

Example 4. If

that Theorem 3 is no longer valid when p — 0 and v — 1. In Fig. 6 (left), it
is apparent that when ¢ — oo, the average density of u tends to the average
density of K whereas wgye — 0. Moreover, if 4 — 0 and v — 1, then it

can be easily checked that the exact solution (%, (II:V)K) — (K,0).
v uv

The continuity of similar scenario is also observable in Fig. 6 (right) for

K(z) # const, (i = 1,2).

For fixed v = 0.5, the variational values of u € (0,1) except close to one,
Fig. 6 (right) shows that there is always a stable coexistence solution. The
average density of species u is decreasing and converges to zero while wgye
tends to Kgqpe at time ¢ = 400.

p 2 0 as well as for 4 < 1 wherein v = 0.5 and
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ave density
ave density

-0 100 200 300 400 "0 0.25 0.5 0.75 1
time u

Figure 6: Average solutions of (2) for (left) 4 = 0.001, v = 0.99 and (right)
v =05, 1€ (0,1) at t = 400.

The following example illustrates the accuracy of numerical solutions
and explore how the average population densities depend on the relations
between carrying capacities, K (z), Ki(x) and Ko(x) whenever p,v € (0,1).

Example 5. Here we consider II{{’((;:)) = const, (i = 1,2) in Fig. 7 (left)
and see that there is an excellent agreement between numerical runs and
(1-p)K (1-v)K

exact solution (ﬁ’ ﬁ) for p,v € (0,1).

In Fig. 7 (middle and right), we have II{{’((;:)) # const, (i =1,2), where

K(z) = 24 cos(mx), Ki(x) = 1.25 4 cos(mx), Ka(z) = 1.5 + cos(mz) and
different p,v € (0,1). All possible types of stability are displayed in the
two diagrams of Fig. 7 (right) depending on the numerical values of the
competition coefficients. When p is very close to 1 and v = 0.5, then the
average rates of v is in extinction while the average rates of w is globally
asymptotically stable as t — oo. Similarly, for (u,v) = (0.05,0.99), the
population v — u* and the second population w is very close to 0 (see
similar behavior of u, v in Fig. 6). In all other cases of Fig. 7 (middle and
right), the coexistence solution (us,ws) is stable.

6 Conclusion

In this paper, we have studied a two species Lotka type competition model
where two species are diffused according to their own carrying capacity and
the environment has an individual resource function. We established the
following results:

1. If the first species is adopted with the carrying capacity and the
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Figure 7: Solutions and average solutions of (2) for arbitrary functional
values as long as p,v € (0,1).

resources are shared only partially between the two organisms (u <
1 < v), then the second species goes extinct (see Fig. 2).

2. When both species share the resources with each other in a habitat
then a unique coexistence solution exist provided that p, v € (0,1)
and K7 = Ky with K, (i = 1,2) and K are rational, (see Fig. 7,
left). In this case both populations are distributed ideally, maximize
their fitness and make an ideal free pair [9, 10].

3. It is also proven that at least one stable coexistence solution exists
when K; and K are arbitrary and u, v € (0,1).

4. Even for weak competition, the coexistence solution is not guaranteed
as shown in Fig. 7 (middle and right) as long as the selection of all
functions is random.

We consider the case when one species dominates the other and also cooper-
ates with each other. It appears that for strong competition, p, v > 1, the
expected outcome is that two semi-trivial steady states are locally asymp-
totically stable but the proof and study of this issue is left for future study.
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