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Abstract. In this paper, we study the existence, uniqueness and stability
of solutions of a nonlocal Cauchy problem for nonlinear fractional integro-
differential equations with positive constant coefficient. The results heavily
depend on the Banach contraction principle, Schaefer’s fixed point theorem
and Pachpatte’s integral inequality. In the last, results are illustrated with
suitable example.
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1 Introduction

The idea of fractional differentiation was introduced by Riemann and Li-
ouville in the nineteenth century. It is the generalization of ordinary
differentiation and integration to arbitrary non-integer order, for details,
see [1, 2, 6, 8, 9, 30,32] and the references therein.
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The area of fractional differential equations is now considered to be very
important due to its various applications in different fields of science and
technology such as control theory, rheology, signal processing, modelling,
fractals, chaotic dynamics, bioengineering and biomedical and so on, for ex-
ample see [9,24,37] and the references therein. Recently, many researchers
studied the fractional differential and integro-differential equations and ob-
tained many interesting existence and uniqueness results, see [4,11,23,38].

The stability problem of functional equations was introduced by Ulam
[39,40] and Hyers [18] which is known as Hyers-Ulam stability. Rassias [33]
studied the Hyers-Ulam stability of linear and nonlinear mapping. Jung [19,
20] established Hyers-Ulam stability for more general mapping on restricted
domain. Obloza [29] was the first who studied the Hyers-Ulam stability of
linear differential equations. Later many researchers studied the Ulam type
stability, for detail see [3, 5, 7, 15–17,21,22,26,33–36,41–43].

In [14], Castro and Simões studied different kinds of Hyers-Ulam-Rassias
stabilities for a class of nonlinear integro-differential equations. In [10],
Benchohra and Bouriahi investigated existence and stability of solutions for
a class of boundary value problem for implicit Caputo fractional differential
equations of the type:

cDαy(t) = f(t, y(t), cDαy(t)), t ∈ J := [0, T ], T > 0,

ay(0) + by(T ) = c.

Kucche and Shikhare [27] studied the Ulam-Hyers stabilities for Volterra
integro-differential equations and Volterra delay integro-differential equa-
tions in Banach spaces on both finite and infinite intervals by using Pach-
patte’s inequality.

The above results motivates us and therefore, in this paper, we obtain
the existence, uniqueness and various types of Ulam stability of the fol-
lowing nonlinear Caputo fractional integro–differential equations of order
α (0 < α ≤ 1) with constant coefficient λ > 0 of the type:

cDαy(t) = λy(t) + f

(
t, y(t),

∫ t

0

h(t, s)y(s)ds

)
, t ∈ J := [0, T ], T > 0, (1)

y(0) + g(y) = y0, (2)

where f : J ×R×R→ R is a continuous function, g : C(J,R)→ R is a
continuous function and y0 is a real constant. This type of nonlocal Cauchy
problem was introduced by Byszewski [12,13]. The nonlocal condition can
be more useful than the classical initial condition to describe some physical
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phenomena [12,13] . We take an example of nonlocal conditions as follows:

g(y) =

p∑
i=1

ciy(ti), (3)

where ci, i = 1, 2, . . . , p are constants and 0 < t1 < . . . < tp ≤ T.
The rest of the paper is organized as follows. In Section 2, some def-

initions, notations and basic results are given. Section 3 is devoted to
study the existence, uniqueness and stability of the problem (1)-(2). An
illustrative example is given in the last section.

2 Preliminaries

In this section, we introduce some definitions, notations and results which
are useful for further discussion. For T > 0 and J = [0, T ], C(J,R) denotes
the Banach space of all continuous functions from J into R with the norm
||y||∞ = sup{|y(t)| : t ∈ J}. Also L1(J) denotes the space of Lebesgue-
integrable functions y : J → R with the norm

||y||L1 =

∫ T

0
|y(t)| dt.

Definition 1. [32] The Riemann-Liouville fractional integral of a function
h ∈ L1([0, T ],R+) of order α ∈ R+ is defined by

Iαh(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s) ds,

where Γ is the Euler gamma function.

Definition 2. [24] The Caputo fractional derivative of order α > 0 of a
function h ∈ L1([0, T ],R+) is defined as

cDαh(t) =
1

Γ(n− α)

∫ t

0
(t− s)n−α−1h(n)(s) ds,

where n=[α]+1 and [α] denotes the integer part of the real number α.

Lemma 1. [24] Let α > 0 and n=[α]+1. Then

Iα(cDαf(t)) = f(t)−
n−1∑
k=0

fk(0)

k!
tk,

where fk(t) is the usual derivative of f(t) of order k.
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Lemma 2. [32] Let α > 0. Then the fractional differential equation

cDαh(t) = 0,

has the solution h(t) = c0 + c1t + c2t
2 + . . . + cn−1t

n−1, where ci, i =
0, 1, 2, . . . , n− 1 are constants and n=[α]+1.

The following Pachpatte’s inequality plays an important role in obtain-
ing our main results.

Theorem 1. ( [31, page 39]) Let u(t), f(t) and q(t) be nonnegative con-
tinuous functions defined on R+, and n(t) be a positive and nondecreasing
continuous function defined on R+ for which the inequality

u(t) ≤ n(t) +

∫ t

0
f(s)

[
u(s) +

∫ s

0
q(τ)u(τ) dτ

]
ds,

holds for t ∈ R+. Then

u(t) ≤ n(t)

[
1 +

∫ t

0
f(s) exp

(∫ s

0
[f(τ) + q(τ)] dτ

)
ds

]
,

for t ∈ R+.

The following definitions are useful in the study of stability results.

Definition 3. [10, 36] The equation (1) is Ulam-Hyers stable if there
exists a real number cf > 0 such that for each ε > 0 and for each solution
z ∈ C1(J,R) of the inequality∣∣∣∣∣∣∣∣cDαz(t)− λz(t)− f

(
t, z(t),

∫ t

0
h(t, s)z(s)ds

)∣∣∣∣∣∣∣∣ ≤ ε, t ∈ J,
there exists a solution y ∈ C1(J,R) of equation (1) with ||z(t)− y(t)|| ≤
cf ε, t ∈ J.

Definition 4. [10, 36] The equation (1) is generalized Ulam-Hyers stable
if there exists ψf ∈ C(R+,R+), ψf (0) = 0, such that for each solution
z ∈ C1(J,R) of the inequality∣∣∣∣∣∣∣∣cDαz(t)− λz(t)− f

(
t, z(t),

∫ t

0
h(t, s)z(s)ds

)∣∣∣∣∣∣∣∣ ≤ ε, t ∈ J,
there exists a solution y ∈ C1(J,R) of equation (1) with

||z(t)− y(t)|| ≤ ψf (ε), t ∈ J.
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Definition 5. [10,36] The equation (1) is Ulam-Hyers-Rassias stable with
respect to ϕ ∈ C(J,R+) if there exists a real number cf > 0 such that for
each ε > 0 and for each solution z ∈ C1(J,R) of the inequality∣∣∣∣∣∣∣∣cDαz(t)− λz(t)− f

(
t, z(t),

∫ t

0
h(t, s)z(s)ds

)∣∣∣∣∣∣∣∣ ≤ εϕ(t), t ∈ J,

there exists a solution y ∈ C1(J,R) of equation (1) with

||z(t)− y(t)|| ≤ cf εϕ(t), t ∈ J.

Definition 6. [10,36] The equation (1) is generalized Ulam-Hyers-Rassias
stable with respect to ϕ ∈ C(J,R+) if there exists a real number cf,ϕ > 0
such that for each solution z ∈ C1(J,R) of the inequality∣∣∣∣∣∣∣∣cDαz(t)− λz(t)− f

(
t, z(t),

∫ t

0
h(t, s)z(s)ds

)∣∣∣∣∣∣∣∣ ≤ ϕ(t), t ∈ J,

there exists a solution y ∈ C1(J,R) of equation (1) with

||z(t)− y(t)|| ≤ cf,ϕϕ(t), t ∈ J.

Remark 1. A function z ∈ C1(J,R) is a solution of the inequality∣∣∣∣∣∣∣∣cDαz(t)− λz(t)− f
(
t, z(t),

∫ t

0
h(t, s)z(s)ds

)∣∣∣∣∣∣∣∣ ≤ ε, t ∈ J,
if and only if there exists a function g ∈ C(J,R) (which depends on solution
z) such that

i) ||g(t)|| ≤ ε, ∀t ∈ J.
ii) cDαz(t) = λz(t) + f(t, z(t),

∫ t
0 h(t, s)z(s)ds) + g(t), t ∈ J.

Remark 2. Clearly,

i): Definition 3. implies Definition 4.

ii): Definition 5. implies Definition 6.

Remark 3. A solution of the fractional differential inequality∣∣∣∣∣∣∣∣cDαz(t)− λz(t)− f
(
t, z(t),

∫ t

0
h(t, s)z(s)ds

)∣∣∣∣∣∣∣∣ ≤ ε, t ∈ J,
is called an fractional ε−solution of the nonlinear fractional integro-differential
equation (1).
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3 Existence and Ulam-Hyers stability of the non-
local problem

In this section we obtain existence, uniqueness and stability results for the
nonlocal problem (1)-(2). Now we introduce the following set of conditions:

(H1) There exists a constant L > 0 such that

||f(t, x, y)− f(t, x̄, ȳ)|| ≤ L(||x− x̄||+ ||y − ȳ||),

for each t ∈ J and x, y, x̄, ȳ ∈ R.

(H2) The function f : J ×R×R→ R is continuous.

(H3) There exists a constant af > 0 such that

||f(t, x, y)|| ≤ af (1 + ||x||+ ||y||),

for each t ∈ J and x, y ∈ R.

(H4) There exists a constant G > 0 such that ||g(y)|| ≤ G, for each y ∈
C(J,R).

(H5) There exists a constant K̄ > 0 such that ||g(y)− g(ȳ)|| ≤ K̄ ||y − ȳ|| ,
for each y, ȳ ∈ C(J,R).

Lemma 3. [10] Let 0 < α ≤ 1 and h : [0, T ] → R be a continuous
function. Then the linear problem

cDαy(t) = h(t), t ∈ [0, T ], T > 0,

y(0) + g(y) = y0,

has a unique solution which is given by

y(t) = y0 − g(y) +
1

Γ(α)

∫ t

0
(t− s)α−1h(s) ds.

As a consequence of Lemma 3 and [23], we have the following result which
is useful in our main results.

Lemma 4. Let f : J ×R ×R → R be a continuous function. Then the
problem (1)-(2) is equivalent to the following integral equation

y(t) = y0 − g(y) +
λ

Γ(α)

∫ t

0
(t− s)α−1y(s) ds

+
1

Γ(α)

∫ t

0
(t− s)α−1f

(
s, y(s),

∫ s

0
h(t, τ)y(τ)dτ

)
ds, t ∈ J. (4)
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Theorem 2. Assume that (H1), (H2), (H5) hold. If[
K̄ +

(λ+ L)Tα + LhTT
α+1

Γ(α+ 1)

]
< 1, (5)

where hT = sup{|h(t, s)| |0 ≤ s ≤ t ≤ T}, then the nonlocal problem (1)-(2)
has a unique solution on J.

Proof. We transform problem (1)-(2) into a fixed point problem. For this,
consider the operator F̄ : C(J,R)→ C(J,R) defined by

F̄ (y)(t) = y0 − g(y) +
λ

Γ(α)

∫ t

0
(t− s)α−1y(s) ds

+
1

Γ(α)

∫ t

0
(t− s)α−1f

(
s, y(s),

∫ s

0
h(t, τ)y(τ)dτ

)
ds. (6)

Let x, y ∈ C(J,R). Then for each t ∈ J , we have∣∣∣∣F̄ (x)(t)− F̄ (y)(t)
∣∣∣∣

≤ ||g(x)− g(y)||+ λ

Γ(α)

∫ t

0

(t− s)α−1 ||x(s)− y(s)|| ds

+
1

Γ(α)

∫ t

0

(t− s)α−1
∣∣∣∣∣∣∣∣f(s, x(s),

∫ s

0

h(t, τ)x(τ)dτ

)
− f

(
s, y(s),

∫ s

0

h(t, τ)y(τ)dτ

)∣∣∣∣∣∣∣∣ ds
≤ K̄ ||x(t)− y(t)||+ λ

Γ(α)

∫ t

0

(t− s)α−1 |x(s)− y(s)| ds

+
L

Γ(α)

∫ t

0

(t− s)α−1
(
||x(s)− y(s)||+

∫ s

0

|h(s, τ)| ||x(τ)− y(τ)|| dτ
)
ds

≤ K̄ ||x(t)− y(t)||+ (λ+ L)

Γ(α)

∫ t

0

(t− s)α−1 ||x(s)− y(s)|| ds

+
LhTT

Γ(α)

∫ t

0

(t− s)α−1 ||x(τ)− y(τ)|| ds

≤
[
K̄ +

(λ+ L)Tα + LhTT
α+1

Γ(α+ 1)

]
||x− y||∞ .

Thus ∣∣∣∣F̄ (x)− F̄ (y)
∣∣∣∣
∞ ≤

[
K̄ +

(λ+ L)Tα + LhTT
α+1

Γ(α+ 1)

]
||x− y||∞ .

This implies that F̄ is a contraction due to the inequality (5). By Banach
contraction principle, we deduce that F̄ has a unique fixed point which is
a solution of the problem (1)-(2) .



140 S.R. Tate, V.V. Kharat, H.T. Dinde

The next result is based on Schaefer’s fixed point theorem.

Theorem 3. Assume that (H2), (H3), (H4) hold. Then the nonlocal prob-
lem (1)-(2) has at least one solution on J .

Proof. We complete the proof in the following four steps.
Step 1: F̄ is continuous.

Let {yn} be a sequence such that yn → y in C(J,R). Then for each t ∈ J ,
we have∣∣∣∣F̄ (yn)(t)− F̄ (y)(t)

∣∣∣∣
≤ ||g(yn)− g(y)||+ λ

Γ(α)

∫ t

0
(t− s)α−1 ||yn(s)− y(s)|| ds

+
1

Γ(α)

∫ t

0
(t− s)α−1 sup

t∈J

∣∣∣∣∣∣∣∣f(s, yn(s),

∫ s

0
h(t, τ)yn(τ)dτ

)
− f

(
s, y(s),

∫ s

0
h(t, τ)y(τ)dτ

)∣∣∣∣∣∣∣∣ ds.
Since f and g are continuous functions and yn → y, then we have∣∣∣∣F̄ (yn)(t)− F̄ (y)(t)

∣∣∣∣
∞ → 0,

as n→∞ . Consequently, F̄ is continuous.
Step 2: F̄ maps bounded sets into bounded sets in C(J,R).

We need to show that for any η∗ > 0, there exists a positive constant l such
that for each y ∈ Bη∗ = {y ∈ C(J,R) : ||y||∞ ≤ η∗}, we have

∣∣∣∣F̄ (y)
∣∣∣∣
∞ ≤ l.

By (H3) and (H4), for each t ∈ J, we have∣∣∣∣F̄ (y)(t)
∣∣∣∣ ≤ ||y0||+ ||g(y)||+ λ

Γ(α)

∫ t

0
(t− s)α−1 ||y(s)|| ds

+
1

Γ(α)

∫ t

0
(t− s)α−1

∣∣∣∣∣∣∣∣f(s, y(s),

∫ s

0
h(t, τ)y(τ)dτ

)∣∣∣∣∣∣∣∣ ds
≤ ||y0||+G+

λη∗Tα

Γ(α+ 1)

+
1

Γ(α)

∫ t

0
(t− s)α−1af (1 + ||y(s)||+

∫ s

0
|h(t, τ)| ||y(τ)|| dτ) ds

≤ ||y0||+G+
λη∗Tα

Γ(α+ 1)
+
af (1 + η∗ + hT η

∗T )Tα

Γ(α+ 1)
.

Thus∣∣∣∣F̄ (y)
∣∣∣∣
∞ ≤ ||y0||+G+

λη∗Tα

Γ(α+ 1)
+
af (1 + η∗ + hT η

∗T )Tα

Γ(α+ 1)
:= l.
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Step 3: F̄ maps bounded sets into equicontinuous sets of C(J,R) .

Let t1, t2 ∈ (0, T ], t1 < t2, Bη∗ be a bounded set of C(J,R) as in step
2, and let y ∈ Bη∗ . Then∣∣∣∣F̄ (y)(t1)− F̄ (y)(t2)

∣∣∣∣
≤ λ

Γ(α)

∫ t1

0

{(t1 − s)α−1 − (t2 − s)α−1}||y(s)|| ds

+
1

Γ(α)

∫ t1

0

{(t1 − s)α−1 − (t2 − s)α−1}||f
(
s, y(s),

∫ s

0

h(t, τ)y(τ)dτ

)
|| ds

+
λ

Γ(α)

∫ t2

t1

(t2 − s)α−1||y(s)|| ds

+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1||f
(
s, y(s),

∫ s

0

h(t, τ)y(τ)dτ

)
|| ds

≤ λη∗

Γ(α)

∫ t1

0

{(t1 − s)α−1 − (t2 − s)α−1} ds

+
af (1 + η∗ + hT η

∗T )

Γ(α)

∫ t1

0

{(t1 − s)α−1 − (t2 − s)α−1} ds

+
λη∗

Γ(α)

∫ t2

t1

(t2 − s)α−1 ds+
af (1 + η∗ + hT η

∗T )

Γ(α)

∫ t2

t1

(t2 − s)α−1 ds

≤ (λη∗ + af (1 + η∗ + hT η
∗T ))

Γ(α+ 1)
{2(t2 − t1)α + (tα1 − tα2 )}.

As t1 → t2, the right-hand side of the above inequality tends to zero. As
a consequence of steps 1 to 3 together with the Arzela-Ascoli theorem, we
can conclude that F̄ : C(J,R) → C(J,R) is continuous and completely
continuous.
Step 4: A priori bounds.

Now it remains to show that the set

E = {y ∈ C(J,R) : y = βF̄ (y), for some β ∈ (0, 1)},

is bounded. Let y ∈ E , then y = βF̄ (y), for some β ∈ (0, 1). Thus, for each
t ∈ J we have

y(t) = β

{
y0 − g(y) +

λ

Γ(α)

∫ t

0
(t− s)α−1y(s) ds

+
1

Γ(α)

∫ t

0
(t− s)α−1f

(
s, y(s),

∫ s

0
h(t, τ)y(τ)dτ

)
ds

}
.
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This implies by (H3) and (H4) that for each t ∈ J we have

∣∣∣∣F̄ (y)(t)
∣∣∣∣ ≤ ||y0||+G+

λη∗Tα

Γ(α+ 1)
+
af (1 + η∗ + hT η

∗T )Tα

Γ(α+ 1)
.

Thus for every t ∈ J , we have

∣∣∣∣F̄ (y)
∣∣∣∣
∞ ≤ ||y0||+G+

λη∗Tα

Γ(α+ 1)
+
af (1 + η∗ + hT η

∗T )Tα

Γ(α+ 1)
:= R.

This shows that the set E is bounded. Now applying Schaefer’s fixed point
theorem, we deduce that F̄ has a fixed point which is a solution of the
problem (1)-(2).

Theorem 4. Assume that (H1), (H5) and the inequality (5) hold. Then
the nonlocal problem (1)-(2) is Ulam-Hyers stable.

Proof. Let ε > 0 and let z ∈ C1(J,R) be a function which satisfies the
inequality ∣∣∣∣∣∣∣∣cDαz(t)− λz(t)− f

(
s, z(s),

∫ s

0
h(t, τ)z(τ)dτ

)∣∣∣∣∣∣∣∣ ≤ ε, (7)

for every t ∈ J and let y ∈ C(J,R) be the unique solution of the following
Cauchy problem

cDαy(t) = λy(t) + f

(
s, y(s),

∫ s

0
h(t, τ)y(τ)dτ

)
, t ∈ J, 0 < α ≤ 1,

z(0) + g(y) = y0.

By Lemma 4, we have

y(t) = y0 − g(y) +
λ

Γ(α)

∫ t

0
(t− s)α−1y(s) ds

+
1

Γ(α)

∫ t

0
(t− s)α−1f

(
s, y(s),

∫ s

0
h(t, τ)y(τ)dτ

)
ds.

By integrating (7), we obtain∣∣∣∣∣∣∣∣z(t)− y0 + g(z)− λ

Γ(α)

∫ t

0
(t− s)α−1z(s) ds

− 1

Γ(α)

∫ t

0
(t− s)α−1f

(
s, z(s),

∫ s

0
h(t, τ)z(τ)dτ

)
ds

∣∣∣∣∣∣∣∣ ≤ εtα

Γ(α+ 1)
. (8)
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Using (H1), (H5) and the inequality (8), for every t ∈ J , we have

||z(t)− y(t)|| ≤
∣∣∣∣∣∣∣∣z(t)− y0 + g(z)− λ

Γ(α)

∫ t

0

(t− s)α−1z(s) ds

− 1

Γ(α)

∫ t

0

(t− s)α−1f
(
s, z(s),

∫ s

0

h(t, τ)z(τ)dτ

)
ds

∣∣∣∣∣∣∣∣
+ ||g(z)− g(y)||+ λ

Γ(α)

∫ t

0

(t− s)α−1 ||z(s)− y(s)|| ds

+
1

Γ(α)

∫ t

0

(t− s)α−1
∣∣∣∣∣∣∣∣f(s, z(s),∫ s

0

h(t, τ)z(τ)dτ

)
− f

(
s, y(s),

∫ s

0

h(t, τ)y(τ)dτ

)∣∣∣∣∣∣∣∣ ds,
≤ εtα

Γ(α+ 1)
+ K̄ ||z(t)− y(t)||

+
(λ+ L)

Γ(α)

∫ t

0

(t− s)α−1 ||z(s)− y(s)|| ds

+
LhT
Γ(α)

∫ t

0

(t− s)α−1
(∫ s

0

||z(τ)− y(τ)|| dτ
)
ds.

Thus

||z(t)− y(t)|| ≤ εtα

Γ(α+ 1)(1− K̄)

+
(λ+ L)

Γ(α)(1− K̄)

∫ t

0

(t− s)α−1 ||z(s)− y(s)|| ds

+
LhT

Γ(α)(1− K̄)

∫ t

0

(t− s)α−1
(∫ s

0

||z(τ)− y(τ)|| dτ
)
ds,

≤ εtα

Γ(α+ 1)(1− K̄)

+

∫ t

0

(λ+ L)

Γ(α)(1− K̄)
(T − s)α−1

[
||z(s)− y(s)||

+

∫ s

0

LhT
(λ+ L)

||z(τ)− y(τ)|| dτ
]
ds. (9)

By applying Pachpatte’s inequality given in Theorem 1 to the inequality
(9) with

u(t) = ||z(t)− y(t)|| , n(t) =
εtα

Γ(α+ 1)(1− K̄)
,

f(s) =
(λ+ L)

Γ(α)(1− K̄)
(T − s)α−1, q(τ) =

LhT
(λ+ L)

,
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we obtain

||z(t)− y(t)|| ≤ εtα

Γ(α+ 1)(1− K̄)

[
1 +

∫ T

0

(λ+ L)

Γ(α)(1− K̄)
(T − s)α−1

× exp

(∫ s

0

{
(λ+ L)

Γ(α)(1− K̄)
(T − τ)α−1 +

LhT
(λ+ L)

}
dτ

)
ds

]
,

≤ εTα

Γ(α+ 1)(1− K̄)

[
1 +

∫ T

0

(λ+ L)

Γ(α)(1− K̄)
(T − s)α−1

× exp

(∫ s

0

{
(λ+ L)

Γ(α)(1− K̄)
(T − τ)α−1 +

LhT
(λ+ L)

}
dτ

)
ds

]
.

Putting

C =
Tα

Γ(α+ 1)(1− K̄)

[
1 +

∫ T

0

(λ+ L)

Γ(α)(1− K̄)
(T − s)α−1

× exp

(∫ s

0

{
(λ+ L)

Γ(α)(1− K̄)
(T − τ)α−1 +

LhT
(λ+ L)

}
dτ

)
ds

]
,

we obtain ||z(t)− y(t)|| ≤ Cε, ∀t ∈ J. Thus the problem (1)-(2) is Ulam-
Hyers stable.

Corollary 1. If f and g in the nonlocal problem (1)-(2) satisfy the con-
ditions (H1), (H5) and the inequality (5) hold, then the nonlocal problem
(1)-(2) is generalized Ulam-Hyers stable.

Theorem 5. Assume that (H1), (H5) and inequality (5) hold. Further
suppose there exist an increasing function ϕ ∈ C(J,R+) and κϕ > 0 such
that Iαϕ(t) ≤ κϕϕ(t), for any t ∈ J . Then the nonlocal problem (1)-(2) is
Ulam-Hyers-Rassias stable.

Proof. Let z ∈ C1(J,R) be a solution of the following inequality∣∣∣∣∣∣∣∣cDαz(t)− λz(t)− f
(
t, z(t),

∫ t

0
h(t, τ)z(τ)dτ

)∣∣∣∣∣∣∣∣ ≤ εϕ(t), (10)

for any t ∈ J, ε > 0. Let y ∈ C(J,R) be the unique solution of the following
Cauchy problem

cDαy(t) = λy(t) + f

(
t, y(t),

∫ t

0
h(t, τ)y(τ)dτ

)
, t ∈ J ; 0 < α ≤ 1,

z(0) + g(y) = y0.

By Lemma 4, we have

y(t) = y0 − g(y) +
λ

Γ(α)

∫ t

0
(t− s)α−1y(s) ds

+
1

Γ(α)

∫ t

0
(t− s)α−1f

(
s, y(s),

∫ s

0
h(t, τ)y(τ)dτ

)
ds.
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By integrating (10), we obtain

∣∣∣∣∣∣∣∣z(t)− y0 + g(z)− λ

Γ(α)

∫ t

0
(t− s)α−1z(s) ds

− 1

Γ(α)

∫ t

0
(t− s)α−1f

(
s, z(s),

∫ s

0
h(t, τ)z(τ)dτ

)
ds

∣∣∣∣∣∣∣∣
≤ ε

Γ(α)

∫ t

0
(t− s)α−1ϕ(t)ds = εIαϕ(t) ≤ εκϕϕ(t). (11)

Further for any t ∈ J we have

||z(t)− y(t)|| ≤
∣∣∣∣∣∣∣∣z(t)− y0 + g(z)− λ

Γ(α)

∫ t

0
(t− s)α−1z(s) ds

− 1

Γ(α)

∫ t

0
(t− s)α−1f

(
s, z(s),

∫ s

0
h(t, τ)z(τ)dτ

)
ds

∣∣∣∣∣∣∣∣
+ ||g(z)− g(y)||+ λ

Γ(α)

∫ t

0
(t− s)α−1 ||z(s)− y(s)|| ds

+
1

Γ(α)

∫ t

0
(t− s)α−1

∣∣∣∣∣∣∣∣f(s, z(s),∫ s

0
h(t, τ)z(τ)dτ

)
)

− f
(
s, y(s),

∫ s

0
h(t, τ)y(τ)dτ

)∣∣∣∣∣∣∣∣ ds.
Using inequality (11), conditions (H1) and (H5), we obtain

||z(t)− y(t)|| ≤ εκϕϕ(t) + K̄ |z(t)− y(t)|

+
λ

Γ(α)

∫ t

0
(t− s)α−1 ||z(s)− y(s)|| ds

+
1

Γ(α)

∫ t

0
(t− s)α−1L

(
||z(s)− y(s)||

+

∫ s

0
|h(t, τ)| ||z(τ)− y(τ)|| dτ

)
ds

≤ εκϕϕ(t) + K̄ |z(t)− y(t)|

+
(λ+ L)

Γ(α)

∫ t

0
(T − s)α−1 ||z(s)− y(s)|| ds

+
LhT
Γ(α)

∫ t

0
(T − s)α−1

(∫ s

0
||z(τ)− y(τ)|| dτ

)
ds.
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Thus

||z(t)− y(t)|| ≤ εκϕϕ(t)

(1− K̄)
+

(λ+ L)

Γ(α)(1− K̄)

∫ t

0
(T − s)α−1 ||z(s)− y(s)|)| ds

+
LhT

Γ(α)(1− K̄)

∫ t

0
(T − s)α−1

(∫ s

0
||z(τ)− y(τ)|| dτ

)
ds

≤ εκϕϕ(t)

(1− K̄)
+

∫ t

0

(λ+ L)

Γ(α)(1− K̄)
(T − s)α−1

[
||z(s)− y(s)||

+

∫ s

0

LhT
(λ+ L)

||z(τ)− y(τ)|| dτ
]
ds.

Now by applying Pachpatte’s inequality given in the Theorem 1 with

u(t) = ||z(t)− y(t)|| , n(t) =
εκϕϕ(t)

(1− K̄)
,

f(s) =
(λ+ L)

Γ(α)(1− K̄)
(T − s)α−1, q(τ) =

LhT
(λ+ L)

,

we obtain

||z(t)− y(t)|| ≤ εκϕϕ(t)

(1− K̄)

[
1 +

∫ t

0

(λ+ L)

Γ(α)(1− K̄)
(T − s)α−1

× exp

(∫ s

0

{
(λ+ L)

Γ(α)(1− K̄)
(T − τ)α−1 +

LhT
(λ+ L)

}
dτ

)
ds

]
≤ εκϕϕ(t)

(1− K̄)

[
1 +

∫ T

0

(λ+ L)

Γ(α)(1− K̄)
(T − s)α−1

× exp

(∫ s

0

{
(λ+ L)

Γ(α)(1− K̄)
(T − τ)α−1 +

LhT
(λ+ L)

}
dτ

)
ds

]
.

Thus we have ||z(t)− y(t)|| ≤ Cεϕ(t), ∀t ∈ J , where

C =
κϕ

(1− K̄)

[
1 +

∫ T

0

(λ+ L)

Γ(α)(1− K̄)
(T − s)α−1

× exp

(∫ s

0

{
(λ+ L)

Γ(α)(1− K̄)
(T − τ)α−1 +

LhT
(λ+ L)

}
dτ

)
ds

]
.

Corollary 2. Under the assumptions of Theorem 5, the nonlocal problem
(1)-(2) is generalized Ulam-Hyers-Rassias stable.
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4 Example

In this section, we illustrate our main results with the help of following
example.

Consider the nonlocal problem:

cD1/2y(t) =
1

10
y(t) +

e−t

(9 + et)

[
|y(t)|

1 + |y(t)|

]
+

1

10

∫ t

0

e−t

(3 + t)2
y(s)ds, t ∈ [0, 1],(12)

y(0) +

n∑
i=1

ciy(ti) = 1, (13)

where 0 < t1 < . . . < tn < 1 and ci, i = 1, 2, . . . , n are positive constants
with

n∑
i=1

ci ≤
1

5
. (14)

Problem (12)-(13) is of the form (1)-(2) with α = 1
2 , λ = 1

10 ,

f(t, y(t), Hy(t)) =
e−t

(9 + et)

[
|y(t)|

1 + |y(t)|

]
+

1

10
Hy(t), t ∈ [0, 1], y ∈ [0,∞),

where

Hy(t) =

∫ t

0

e−t

(3 + t)2
y(s)ds.

Clearly, the function f is continuous. For each y, ȳ ∈ R and t ∈ [0, 1]

||f(t, y,Hy(t))− f(t, ȳ, Hȳ(t))|| ≤ 1

10

[
||y − ȳ||+ ||Hy −Hȳ||

]
.

Also, we have

||g(y)− g(ȳ)|| ≤

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

ciy −
n∑
i=1

ciȳ

∣∣∣∣∣
∣∣∣∣∣ ≤

n∑
i=1

ci ||y − ȳ|| ≤
1

5
||y − ȳ|| .

Hence conditions (H1) and (H5) are satisfied with L = 1
10 , K̄ = 1

5 , hT = 1
9

and λ = 1
10 . We have[

K̄ +
(λ+ L)Tα + LhTT

α+1

Γ(α+ 1)

]
=

[
1

5
+

( 1
10 + 1

10) + 1
90

Γ(32)

]
=

1

5
+

19

45
√
π
< 1.

It follows from Theorem 2 that the problem (12)-(13) has a unique solution
on [0,1] and by Theorem 4, the problem (12)-(13) is Ulam-Hyers stable.
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