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Abstract. In this paper, we consider a time-fractional inverse heat con-
duction problem with an unknown function in the nonlinear boundary con-
dition. First, ill-posedness of this problem is shown. Thus, we will apply
the mollification regularization method with Gauss kernel to regularize the
problem, then the space marching finite difference method is considered to
solve numerically the mollified problem. The generalized cross-validation
choice rule is used to find a suitable regularization parameter. The numer-
ical scheme is completely described and the stability and convergence of
the solutions are investigated. Finally, some numerical examples are pre-
sented to illustrate the validity and effectiveness of the proposed algorithm.
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1 Introduction

In recent decades, fractional calculus and fractional differential equations
have been used widely to model a range of phenomena in different fields of
sciences, such as physics, chemistry, biology and engineering [3, 4, 9, 12, 18,
22,26]. The main reason for this occurrence is the memory and hereditary
properties of the fractional operators. Thus, fractional calculus has been
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introduced as an efficient tool for modeling physical problems. For exam-
ple, fractional models have been successfully used to describe anomalous
difiusion processes such as contaminant transport in soil, oil flow in porous
media, and groundwater flow [6, 23, 24]. The fractional-order dynamics of
brainstem vestibulo-oculomotor neurons [1], dispersive transport of charge
carriers in disordered nanostructured materials [25], the total fractional-
order variation regularizer in non-rigid image registration in image inverse
problems [31], fractional order HIV immune system with memory in the
study of infectious diseases [5] are some other applications of fractional
order systems.

In forward time-fractional heat conduction problems, the unknown tem-
perature is derived from the known appropriate initial distribution and
boundary conditions. However, in many practical situations some param-
eters such as initial or boundary functions, source term, a coefficient of
the heat conduction equation or fractional order of the equation cannot
be directly specified. Therefore, some inverse problems have to be solved
to infer these unknown parameters indirectly from additional measured
data. In recent ten years many authors worked on these types of prob-
lems. In [2, 15, 19, 20, 27, 28] authors considered some inverse problems
related to the heat conduction equation to find the inaccessible boundary
data through interior measurements. In [29] authors proposed an optimal
regularization method to solve a fractional order backward heat conduc-
tion problem. In [11] and [17] some inverse source problems of the heat
equation involving fractional derivative were investigated. Also, in [32]
the optimal order of Caputo’s fractional derivative for time-fractional heat
conduction in a composite medium is estimated with Levenberg-Marquardt
method. These inverse problems are generally ill-posed, namely, in present
of noisy data, the solution of problems are not continuously dependent on
the input data [10, 13]. Thus, the researchers combine their proposed al-
gorithms with appropriate regularization methods to find stable numerical
solutions. In this work, we investigate an inverse problem related to a time-
fractional heat conduction equation with an unknown boundary function.
Firstly, the problem is stabilized by using the mollification regularization
technique. Afterwards, a numerical scheme based on the space marching
finite difference method will be introduced to approximate the solution of
the problem.

Bearing these ideas in mind, the manuscript is organized as follows.
In Section 2, description of the inverse problem is considered and its ill-
posedness is indicated. In Section 3, the mollification method is described
and applied to the inverse problem in order to find a regularized problem.
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Afterwards, the space marching algorithm for the numerical solution of the
mollified problem is given. The stability and convergence of the proposed
numerical scheme are studied in Section 4. Finally, some numerical test
problems are investigated in Section 5.

2 Formulation of the problem

In this work, the one-dimensional time-fractional inverse heat conduction
equation

D
(α)
t u(x, t) = uxx(x, t), 0 < x < 1, 0 < t < 1, (1)

with the initial condition

u(x, 0) = u0(x), 0 ≤ x ≤ 1, (2)

and the boundary conditions

ux(0, t) = γ(t), 0 ≤ t ≤ 1, (3)

−ux(1, t) = f(u(1, t)) + η(t), 0 ≤ t ≤ 1, (4)

is considered, where u0(x) ∈ L2([0, 1]) is the given initial temperature, η(t)
and γ(t) are considered to be known continuous functions and f(u) is the
unknown boundary function. It is assumed that f is a Lipschitz continuous
function and satisfies the compatibility condition −u′0(1) = f(u0(1))+η(0).

In Eq. (1) D
(α)
t (.) is the Caputo time-fractional derivative of order 0 < α <

1 defined as [16]

D
(α)
t ξ(t) =

1

Γ(1− α)

∫ t

0

ξ′(s)

(t− s)α
ds, 0 ≤ t ≤ 1, (5)

where ξ is a differentiable function and Γ(.) is the Gamma function.
To determine the set of functions (u, f) in the problem (1)-(4) we need

a additional condition. Here, the condition

u(0, t) = p(t), 0 ≤ t ≤ 1, (6)

is used. This problem with η(t) = 0 has been considered in [21] and the
existence and uniqueness of the solution for this inverse problem is proved
by applying the fixed point theorem. In our numerical approach that fol-
lows, we will assume that the solution of the problem (1)-(6) is a sufficiently
smooth function.
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In practice, the input functions u0(x), γ(t), η(t) and p(t) are not exact, but
some perturbed versions of them are in hand. On the other hand, the prob-
lem (1)-(6) is ill-posed, i.e. small errors in the input functions can blow up
in the solution. To show the ill-posedness of this problem, we solve it in the
frequency domain. For this purpose, all the related functions are extended
to the whole real line R by defining them to be zero for (−∞, 0)∪ (1,+∞).
Taking the Fourier transform of Eqs. (1), (3) and (6) with respect to t [18],
we get

(iω)αû(x, ω) = ûxx(x, ω), (7)

ûx(0, ω) = γ̂(ω), (8)

û(0, ω) = p̂(ω), (9)

where
(iω)α = |ω|α

(
cos

απ

2
+ isgn(ω) sin

απ

2

)
,

and sgn(ω) is the sign function. The second-order ordinary differential
equation (7) under the conditions (8) and (9) has the following solution:

û(x, ω) = cosh
(
(iω)

α
2 x
)
p̂(ω) + (iω)−

α
2 sinh

(
(iω)

α
2 x
)
γ̂(ω).

Now, suppose that the input data functions u0(x), γ(t) and η(t) be exact
and we have only noisy data p(t). Let the measured data pε(t) satisfy
pε(t) = p(t) + ε(t), where ε ∈ L2(R) is the measured error. Hence, the
solution to the problem (7)-(9) has the form

ϑ̂(x, ω) = û(x, ω) + cosh
(
(iω)

α
2 x
)
δ̂(ω). (10)

Let the solution û(x, ω) belongs to L2(R) with respect to ω. For a fixed
value 0 < x < 1, cosh

(
|ω|

α
2 cos απ4 x

)
is unbounded as ω → ∞. There-

fore, the exact input data function p̂(ω) must decay rapidly. But, we have
the noisy data pε(t) ∈ L2(R) and cannot expect the measurement data
p̂ε(ω) to have the same decay in the frequency domain as the exact data
p̂(ω). Hence, in general, the solution ϑ̂(x, ω) will not belongs to L2(R).
So, the numerical solution will be destroied by magnified high frequency
components of the error ε. Thus, to solve the problem (1)-(4), we require
a regualarization method. The mollification technique utilizes a convolu-
tion of the input data and a smooth function with a parameter, to filter
the high-frequency components of the noisy data. Therefore, the problem
becomes well-posed. This method is being widely used as regularization
method in many ill-posed problems [7, 8, 13, 30]. The simplicity of imple-
mentation and capability in the presence of high noise levels are principal
advantages of the mollification technique.
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3 Numerical scheme

3.1 Mollification method

Let δ > 0, p > 0, and

Ap =
(∫ p

−p
exp(−s2)ds

)−1
.

The δ-mollification of an integrable function is based on a convolution with
the Gaussian kernel

ρδ,p(t) =

{
Apδ

−1 exp(− t2

δ2
), |t| ≤ pδ,

0, |t| > pδ.

The δ-mollifier ρδ,p is a non-negative function on space of infinitely

differentiable functions in (−pδ, pδ) and satisfying
∫ pδ
−pδ ρδ,p(t)dt = 1.

Suppose ζ(t) is a locally integrable function in R. The δ-mollification of
ζ(t) is defined by the convolution

Jδζ(t) = (ρδ ∗ ζ)(t) =

∫ t+pδ

t−pδ
ρδ(t− s)ζ(s)ds,

where the p-dependency on the kernel has been dropped for simplicity of
notation. The radius of mollification δ is determined automatically by the
Generalized Cross Validation (GCV) ceriteria [13]. In order to define the
mollification of a discrete function, let

K = {tj : j ∈ Z},

and ∆t = sup
j∈Z

(tj+1 − tj), satisfy

tj+1 − tj > d > 0 , j ∈ Z,

where Z is a set of integers, and d is a positive constant.
Let G = {ζ(tj) = ζj : j ∈ Z} be a discrete function defined on K. We

set

sj =
1

2
(tj + tj+1) , j ∈ Z.

The discrete δ-mollification of G is defined as follows:

JδG(t) =
∞∑

j=−∞

(∫ sj

sj−1

ρδ(t− s)ds
)
ζj ,
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where

∞∑
j=−∞

(∫ sj

sj−1

ρδ(t− s)ds
)

=

∫ pδ

−pδ
ρδ(s)ds = 1.

We assume that instead of the function ζ, we know some noisy data function
ζε such that ‖ζ − ζε‖∞ ≤ ε.

Theorem 1. Let the functions ζ and ζ ′ are uniformly Lipschitz on R. Also
let G = {ζj : j ∈ Z} and Gε = {ζεj : j ∈ Z} be the discrete version of ζ and
ζε, which are defined on K, satisfying ‖ζ − ζε‖∞ ≤ ε and ‖G−Gε‖∞ ≤ ε.
Then
i) there exists a constant C, independent of δ, such that

‖JδG− ζ‖∞ ≤ C(δ + ∆t), (11)

and

‖(JδG)′ − ζ ′‖∞ ≤ C
(
δ +

ε+ ∆t

δ

)
. (12)

ii) if ‖G−Gε‖∞ ≤ ε, then

‖JδG− JδGε‖∞ ≤ ε. (13)

Also, there exists a constant C, independent of δ, such that

‖(JδG)
′ − (JδGε)

′‖∞ ≤ C
ε

δ
. (14)

Theorem 2. Let a differentiation operator Dδ0 be defined by the following
rule:

Dδ0(G) = D0(JδG)(t)
∣∣∣
K
,

in which D0 is the centeral difference operator

D0ζ(t) =
ζ(t+ ∆t)− ζ(t−∆t)

2∆t
.

Then

‖Dδ0(G)‖∞ ≤
4Ap
δ
‖G‖∞.

The proofs of these theorems can be found in the reference [13].
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3.2 Mollified fractional derivative

The process of numerical fractional differentiation is well known to be an
ill-posed problem, because a small error in measurement data can induce
a large error in the approximate derivative. Suppose ζε(t) is a perturbed

version of the exact function ζ(t). To approximate Jδ(D
(α)
t ζε) on a uni-

form partition K of the unit interval, we follow the mollification technique
proposed in [14].

Let D+ be forward finite difference operator. The discrete computed

solution (D
(α)
t Gε)δ of the mollified function Jδ(D

(α)
t ζε) in the grid points,

will be as(
D(α)Gε

)
δ
(t1) = D+(JδGε)(t1)W1(

D(α)Gε
)
δ
(t2) = D+(JδGε)(t1)W2 +D+(JδGε)(t2)W1, (15)(

D(α)Gε
)
δ
(tj) = D+(JδGε)(t1)Wj

+

j−1∑
i=2

D0(JδGε)(ti)Wj−i+1 +D+(JδGε)(tj)W1,

where j = 3, 4, . . . , n and the weights Wj are as follows:

W1 =
1

Γ(2− α)

(∆t

2

)1−α
,

Wi =
1

Γ(2− α)

[(
(2i+ 1)

∆t

2

)1−α
−
(

(2i− 1)
∆t

2

)1−α]
,

where i = 2, 3, . . . , j − 1, and

Wj =
1

Γ(2− α)

[
j∆t−

[(
j − 1

2

)
∆t
]1−α]

.

Theorem 3. Let the functions ζ ′ and ζε are uniformly Lipschitz on R as
‖ζ − ζε‖∞ ≤ ε. Also, suppose G and Gε, the discrete versions of ζ and ζε,
satisfy ‖G−Gε‖∞ ≤ ε. Then∥∥∥(D

(α)
t Gε)δ −D

(α)
t ζ

∥∥∥
∞
≤ C

Γ(2− α)

(
δ +

ε

δ
+ ∆t

)
,

where C is a constant independent of δ.

Proof. Refer to [14].
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3.3 The δ-mollified space marching algorithm

Suppose υ = Jδu is the mollified version of u. The regularized problem is
formulated as follows

D
(α)
t υ(x, t) = υxx(x, t), 0 < x < 1, 0 < t < 1,

υ(x, 0) = Jδuε0(x), 0 ≤ x ≤ 1,
υ(0, t) = Jδ0pε(t), 0 ≤ t ≤ 1,
υx(0, t) = J

δ
′
0
gε(t), 0 ≤ t ≤ 1,

(16)

where δ, δ0 and δ
′
0 are the radii of mollification, and will be chosen using the

GCV criteria. After solving (16), the mollified function F(υ) is obtained
from

− υx(1, t) = F(υ(1, t)) + Jδ′′η
ε(t), 0 ≤ t ≤ 1, (17)

Let M and N be two positive integers. We consider a uniform grid in
the unit interval I = [0, 1]× [0, 1] as

{(xi = ih, tn = nk) , i = 0, 1, . . . ,M ; n = 0, 1, . . . , N},

in which Mh = 1 and Nk = 1. Let the value of υ(x, t) at (xi, tn) is indicated
by Rni . In addition, suppose

Wn
i = υx(ih, nk) , Qni = D

(α)
t υ(ih, nk) , ηn = Jδ′′η

ε(nk).

Let

Rn0 = Jδ0pε(nk), Wn
0 = J

δ
′
0
gε(nk), Qn0 = D

(α)
t (Jδ0pε(nk)), n ∈ {1, . . . , N},

and
R0
i = Jδuε0(ih), i ∈ {0, 1, . . . ,M}.

We approximate the partial differential equation in system (16) by the finite
difference schemes

Rni+1 = Rni + hWn
i , (18)

Wn
i+1 = Wn

i + hQni , (19)

Qni+1 = D
(α)
t (Jδi+1

Rni+1), (20)

where i = 0, . . . ,M − 1 and n = 1, . . . , N . To approximate D
(α)
t (JδiRni ),

the quadrature formula (15) will be used. After applying these schemes,
the values of u(x, t) and ux(x, t) are calculated on the boundary x = 1. By
substituting RnM and Wn

M in equation (17), we get

−Wn
M = F(RnM ) + ηn. (21)

Finally the unknown function F is reconstructed by interpolating these
values.
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4 Stability and convergence analysis

Suppose the discrete function G = {ζj = ζ(tj) : j ∈ Z} is defined on K.
After applying Theorem 2, we have

|D(α)
t JδG(t)| =

∣∣∣ 1

Γ(1− α)

∫ t

0

(JδG(s))
′

(t− s)α
ds
∣∣∣ =

∣∣∣ 1

Γ(1− α)

∫ t

0

D0(JδG(s))

(t− s)α
ds
∣∣∣

≤ 1

Γ(1− α)

∫ t

0

4Ap‖G‖∞
δ|(t− s)α|

ds =
4Ap‖G‖∞t1−α

δΓ(2− α)
. (22)

Theorem 4. Suppose |Ri|,Wi|, |Qi| are maximum values of |Rni |, |Wn
i |, |Qni |,

where n ∈ {0, 1, . . . , N}. For the marching scheme, there exists a constant
θ, such that

max{|RM |, |WM |, |QM |} ≤ θmax{|R0|, |W0|, |Q0|}.

Proof. By using (18) and (19), we have

|Rni+1| ≤ (1 + h) max{|Rni |, |Wn
i |}, (23)

|Wn
i+1| ≤ (1 + h) max{|Wn

i |, |Qni |}. (24)

Let δ
′

= min
i
{δi}, from (20), (22) and (23), we have

|Qni+1| ≤
4Ap(nk)1−α(1 + h)

δ′Γ(2− α)
max{|Rni |, |Wn

i |}. (25)

Let

Ĉ = max
{

1,
4Ap(nk)1−α

δ′Γ(2− α)

}
,

from (23)-(25), we obtain

max{|Ri+1|, |Wi+1|, |Qi+1|} ≤ (Ĉ + Ĉh) max{|Ri|, |Wi|, |Qi|}. (26)

By iterating (26), M times, we get

max{|RM |, |WM |, |QM |} ≤ (Ĉ + Ĉh) max{|RM−1|, |WM−1|, |QM−1|}
≤ (Ĉ + Ĉh)2 max{|RM−2|, |WM−2|, |QM−2|}
≤ · · · ≤ (Ĉ + Ĉh)M max{|R0|, |W0|, |Q0|},

which implies

max{|RM |, |WM |, |QM |} ≤ ĈM exp(1) max{|R0|, |W0|, |Q0|}.

Letting θ = ĈM exp(1), completes the proof of this statement.
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Remark 1. For the boundary function f , there exists a constant Φ, such
that

max{|F(RM )|} ≤ Φ max{|R0|, |W0|, |Q0|, |η|}.

Proof. By using (21), we have

|F(RnM )| ≤ max |Wn
M |+ max |ηn|,

and from Theorem 4, we have

max |F(RM )| ≤ θmax{|R0|, |W0|, |Q0|}+ max |ηn|.

Letting Φ = max{1, θ}, we obtain

max{|F(RM )|} ≤ Φ max{|R0|, |W0|, |Q0|, |η|}.

Theorem 5. For the marching schemes, when ε, h and k tend towards
0, by choosing δ

′
= δ

′
(ε), the discrete mollified solution converges to the

mollified exact solution.

Proof. Suppose i ∈ {0, 1, ...,M} and n ∈ {0, 1, ..., N}. First, we define the
discrete error functions ∆Rni = Rni −υ(ih, nk) and ∆Wn

i = Wn
i −υ(ih, nk).

By applying Theorem 1, we have

|Qni −D
(α)
t υ(ih, nk)| = |D(α)

t Jδuε(ih, nk)−D(α)
t Jδu(ih, nk) + O(k)|

= |D(α)
t (Jδuε(ih, nk)− Jδu(ih, nk)) + O(k)|

≤ 1

Γ(1− α)

∫ nk

0

Cε
δ(nk − s)α

ds+ O(k)

=
Cε(nk)1−α

δΓ(2− α)
+ O(k)

≤ Cε
δΓ(2− α)

+ O(k)

= Cα
ε

δ
+ O(k),

where Cα = C
Γ(2−α) .

Expanding the mollified solution υ(x, t) by the Taylor series, we obtain

υ((i+ 1)h, nk) = υ(ih, nk) + hυx(ih, nk) + O(h2), (27)

υx((i+ 1)h, nk) = υx(ih, nk) + hD
(α)
t υ(ih, nk) + O(h2). (28)
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From (18) and (27), we have

∆Rni+1 = Rni+1 − υ((i+ 1)h, nk)

= Rni + hWn
i − υ((i+ 1)h, nk)

= Rni + hWn
i − υ(ih, nk)− hυx(ih, nk) + O(h2)

= ∆Rni + h∆Wn
i + O(h2), (29)

and by using (19) and (28), we have

∆Wn
i+1 = Wn

i+1 − υx((i+ 1)h, nk)

= Wn
i + hQni − υx((i+ 1)h, nk)

= Wn
i + hQni − υx(ih, nk)− hD(α)

t υ(ih, nk) + O(h2)

= ∆Wn
i + hCα

ε

δ
+ O(hk) + O(h2). (30)

Let |∆Ri| = max
0≤n≤N

|∆Rni | and |∆Wi| = max
0≤n≤N

|∆Wn
i |. Thus, from (29)

and (30), we obtain

|∆Rni+1| ≤ |∆Rni |+ h|∆Wn
i |+ O(h2)

≤ max
0≤n≤N

|∆Rni |+ h max
0≤n≤N

|∆Wn
i |+ O(h2)

= |∆Ri|+ h|∆Wi|+ O(h2),

and

|∆Wn
i+1| ≤ |∆Wn

i |+ hCα
ε

δ
+ O(hk) + O(h2)

≤ max
0≤n≤N

|∆Wn
i |+ hCα

ε

δ
+ O(hk) + O(h2)

= |∆Wi|+ hCα
ε

δ
+ O(hk) + O(h2).

Hence

|∆Ri+1| = max
0≤n≤N

|∆Rni+1| ≤ |∆Ri|+ h|∆Wi|+ O(h2),

≤ (1 + h) max{|∆Ri|, |∆Wi|}+ O(h2),

|∆Wi+1| = max
0≤n≤N

|∆Wn
i+1| ≤ |∆Wi|+ hCα

ε

δ
+ O(hk) + O(h2),

≤ max{|∆Wi|}+ hCα
ε

δ
+ O(hk) + O(h2).

Then, we have

max{|∆Ri+1|, |∆Wi+1|} ≤ (1 + h) max{|∆Wi|, |∆Ri|}+ Λ, (31)
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where Λ = hCα
ε

δ
+ O(hk) + O(h2). Now, let ∆i = max{|∆Wi|, |∆Ri|}.

From (31), we have
∆i+1 ≤ (1 + h)∆i + Λ, (32)

and

∆M ≤ (1 + h)∆M−1 + Λ ≤ (1 + h)2∆M−2 + (1 + h)Λ + Λ

≤ · · · ≤ (1 + h)M∆0 + τΛ, (33)

where τ =
M−1∑
i=0

(1 + h)i. Now by using Theorem 1, for n ∈ {0, 1, . . . , N},

there exists constant Cn and Dn, such that

|∆Rn0 | = |Rn0 − υ(0, nk)| ≤ Cn(δ0 + k),

|∆Wn
0 | = |Wn

0 − υx(0, nk)| ≤ Dn(δ
′
0 + k),

let δ′ = max{δ0, δ
′
0} and C′ = max{Cn,Dn| n = 0, . . . , N}, then we have

∆0 = max{|∆Rn0 |, |∆Wn
0 |} ≤ C′(δ′ + k),

and
∆M ≤ exp(1)C′(δ′ + k) + τΛ. (34)

Thus when ε, h and k tend towards 0, by choosing δ′ = δ
′
(ε), ∆M will tend

to 0. It completes the proof.

Remark 2. For the marching schemes, when ε, h and k tend towards 0,
the discrete mollified boundary function F converges to the mollified exact
boundary function f .

Proof. Suppose ∆Fn = F(υ(1, nk))−F(RnM ). By using (17) and (21), we
have

∆Fn = (−υ(1, nk)− Jδ′′η
ε(nk))− (−Wn

M − ηn)

= (Wn
M − υ(1, nk)) + (ηn − Jδ′′η

ε(nk))

= ∆Wn
M + (ηn − Jδ′′η

ε(nk)),

by applying Theorem 1, we have

|∆Fn| ≤ |∆Wn
M |+ |(ηn − Jδ′′η

ε(nk))| ≤ ∆M + ε,

consequently by using (34), we have

|∆Fn| ≤ exp(1)C′(δ′ + k) + τΛ + ε.

This implies that when ε, h and k tend to zero,|∆Fn| tend towards zero
too. It completes the proof.
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5 Numerical Implementation

Suppose the number of space and time divisions are M and N . Let h = 1
M

and k = 1
N and ε be the maximum level of noises in the data. We use the

following formula to generate the noisy data

sεn = s(tn) + εn, n = 0, . . . , N,

where s(tn) is the exact data and εn is a Gaussian random variable with
variance σ2 = ε2 [13].

The temperature and heat flux errors are measured by the relative
weighted l2-norm defined as

σN (u) =

(
1

N+1

∑N
n=0 |RnM − u(1, nk)|2

) 1
2

(
1

N+1

∑N
n=0 |u(1, nk)|2

) 1
2

,

and the boundary function f(u) errors are measured by

σN (f) =

(
1

N+1

∑N
n=0 |F(RnM )− f(u(1, nk))|2

) 1
2

(
1

N+1

∑N
n=0 |f(u(1, nk))|2

) 1
2

.

Example 1. Consider the following problem:

D
(α)
t u(x, t) = uxx(x, t), (x, t) ∈ [0, 1]× [0, 1],

u(x, 0) = u0(x) =

{
x, x ∈ [0, 1

2 ],

1− x, x ∈ [1
2 , 1],

u(0, t) = 0, t ∈ [0, 1],

ux(0, t) =
∞∑
n=1

ndnEα(−n2tα), t ∈ [0, 1],

where

dn =
2

π

∫ π

0
u0(x) sin(nx)dx =

2(1 + (−1)n+1)

πn2

(
sin(

nπ

2
)− nπ

2
cos(

nπ

2
)
)
,

for n = 1, 2, . . .. Also, suppose

η(t) = −1−
∞∑
n=1

ndnEα(−n2tα) cos(n)− 2 sin
( ∞∑
n=1

dnEα(−n2tα) sin(n)
)
.
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Figure 1: The exact solution of u(x, t) for Example 1 when α = 0.75.

The exact solution is

u(x, t) =

∞∑
n=1

dnEα(−n2tα) sin(nx),

where Eα(.) is the Mittag-Leffler function and

f(u) = 1 + 2 sin(4πu).

After adding noise to the data, to generate the noisy functions uε(0, t),
uεx(0, t) and uε(x, 0), the mollified problem (16) is solved with the various
values of the parameters h, k and the time fractional order α.

Figure 1 shows the exact solution of u(x, t) and Figure 2 and Figure
3 show the numerical approximation and absolute error of u(x, t) when
α = 0.75, M = 150, N = 150, ε = 0.01 and ε = 0.05 .

Table 1 displays the errors of the approximated values of temperature
and heat flux at the boundary x = 1 and f(u). Furthermore, Figure 4
shows the numerical approximations of f(u) with regularization and with-
out regularization when M = 100, N = 128, α = 0.8 and ε = 0.1. Also,
Figure 5 shows the exact and numerical approximations to f(u) for several
values of ε = 0.001, 0.01, 0.05, 0.1, when M = 50, N = 128, α = 0.5. Fi-
nally, Figure 6 indicates the absolute error of numerical approximations for
f(u).

Example 2. Consider the problem (1)-(4) with u0(x) = e−x, γ(t) =
−Eα(tα) and p(t) = Eα(tα). The exact solution of this problem is

u(x, t) = Eα(tα)e−x,
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Figure 2: The numerical solution and absolute error of u(x, t) for Example
1 when α = 0.75 and ε = 0.01.
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Figure 3: The numerical solution and absolute error of u(x, t) for Example
1 when α = 0.75 and ε = 0.05.

where Eα(.) is the Mittag-Leffler function and f(u) = u3 − αu+ 1.
Figure 7, Figure 8 and Figure 9 show the exact and numerical solutions

of u(x, t) when M = 150, N = 150, α = 0.25, 0.5, 0.75 and ε = 0.05.
Table 2 indicates the errors of the approximated values of temperature

and heat flux at the boundary x = 1 and f(u). Also, Figure 10 shows the
exact and numerical solutions (left) and absolute error (rigth) of f(u) when
N = 50, α = 0.5, ε = 0.01 and M = 50, 100, 150.
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Figure 4: The numerical approximations of f(u) with regularization and
without regularization in Example 1 when α = 0.8 and ε = 0.1 .
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Figure 5: The exact and numerical approximations of f(u) in Example 1
when α = 0.5.
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Figure 6: Absolute error of numerical approximations f(u) in Example 1
when α = 0.5.
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Table 1: The relative weighted l2-norm errors between the computed and
the exact values of u(1, t), ux(1, t) and f(u) in Example 1 for various values
of h, k and ε.

α = 0.25 α = 0.75
N M σN (u) σN (ux) σN (f) σN (u) σN (ux) σN (f)

ε = 0.01

50 64 0.0032 0.0057 0.0288 0.0171 0.0299 0.0356
50 128 0.0028 0.0046 0.0235 0.0109 0.0206 0.0283
50 256 0.0022 0.0035 0.0186 0.0087 0.0153 0.0229

100 64 0.0027 0.0049 0.0253 0.0152 0.0261 0.0311
100 128 0.0023 0.0042 0.0202 0.0093 0.0182 0.0241
100 256 0.0018 0.0031 0.0173 0.0071 0.0105 0.0185

ε = 0.05

50 64 0.0093 0.0239 0.0456 0.0285 0.0403 0.0517
50 128 0.0085 0.0187 0.0377 0.0162 0.0325 0.0473
50 256 0.0070 0.0133 0.0290 0.0111 0.0292 0.0411

100 64 0.0090 0.0215 0.0411 0.0263 0.0373 0.0496
100 128 0.0078 0.0160 0.0356 0.0120 0.0306 0.0432
100 256 0.0062 0.0117 0.0266 0.0098 0.0257 0.0361

ε = 0.1

50 64 0.0225 0.0513 0.0637 0.0399 0.0566 0.0770
50 128 0.0191 0.0422 0.0576 0.0325 0.0511 0.0692
50 256 0.0150 0.0385 0.0469 0.0271 0.0436 0.0618

100 64 0.0203 0.0493 0.0592 0.0362 0.0516 0.0713
100 128 0.0174 0.0401 0.0511 0.0270 0.0455 0.0652
100 256 0.0122 0.0362 0.0443 0.0211 0.0372 0.0600

6 Conclusion

In this article, a numerical algorithm for solving an inverse problem of a
time-fractional inverse heat conduction equation with an unknown nonlin-
ear boundary function is proposed. According to the ill-posedness of the
problem, first the mollification regularization method is applied. After-
wards, a marching finite difference scheme is used to solve the stabilized
problem. Stability and convergence analysis are theoretically proven. Fi-
nally, two numerical examples are provided to demonstrate the stability
and convergence behaviours of the presented method.
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Figure 7: The exact and numerical solutions of u(x, t) for Example 2 when
α = 0.25 and ε = 0.05.
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Figure 8: The exact and numerical solutions of u(x, t) for Example 2 when
α = 0.5 and ε = 0.05.
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Figure 9: The exact and numerical solutions of u(x, t) for Example 2 when
α = 0.75 and ε = 0.05.
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Figure 10: The exact and numerical solutions (left) and absolute error
(rigth) of f(u) for Example 2 when α = 0.5 and ε = 0.01.
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