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Abstract. The aim of this research is to apply the stochastic arithmetic
(SA) for validating the Sinc-collocation method (S-CM) with single or dou-
ble exponentially decay to find the numerical solution of second kind Fred-
holm integral equation (IE). To this end, the CESTAC(Controle et Esti-
mation Stochastique des Arrondis de Calculs) method and the CADNA
(Control of Accuracy and Debugging for Numerical Applications) library
are applied. Using this method, the optimal iteration of S-CM, the optimal
approximation, the absolute error and the numerical instabilities can be de-
termined. A theorem is proved which shows the accuracy of the S-CM by
means of the concept of common significant digits. Some IEs are presented
and the numerical results of comparison between the single exponentially
decay (SE) and the double exponentially decay (DE) are demonstrated in
the tables.

Keywords: Stochastic arithmetic, CESTAC, Sinc-collocation method, CADNA li-
brary, Single exponentially decay, Double exponentially decay, Fredholm integral
equations.

AMS Subject Classification: 45B05, 65R20

1 Introduction

Consider the following second kind Fredholm TE
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b
y(s) = a(s) +/ H(s,O)y(t)dt, a<st<b, (1)

where z(s) and H(s,t) are given functions and y(s) is an unknown func-
tion. In recent years, the collocation method (CM) with different types of
basis functions has been applied to solve many problems which the results
are computed based on the floating-point arithmetic (FPA) [10,15,17,21,
,44,45]. In the iterative schemes based on the FPA, usually the numer-
ical results are obtained for special iteration or the following termination
criterion is applied:
ly(s) —yi(s)| <, (2)
where the value € is a given tolerance and y;(s) is the approximate solution
of y(s).
In this work, the Sinc basis functions with SE and DE precisions [0,
, 16,27-29,31-34,37,38, 41,42, 47] are considered to solve Eq. (1) based
on the SA [9, 12,22 23] and validate the results by using the CESTAC
method [1-5,8,14,18-20,35,36]. Also, the optimal iteration and the optimal
approximation of S-CM with SE and DE precisions are found. Recently, the
CESTAC method has been applied to implement the numerical methods
for finding the approximate solution of different problems such as [1-5, 14,
,25]. In this method, instead of using the mathematical packages such
as Matlab, Mathematica and the others, the CADNA library [1-5, 24, 25]
is applied. Also, in this library the logical programs can be written by
statements of C/C++, FORTRAN or ADA [13]. Some of the advantages
of using the CESTAC method and CADNA library are:

e In the CESTAC method, not only the optimal numerical solution can
be produced but also, the optimal iteration can be obtained.

e The CADNA library is able to detect any instability in mathematical
operations, branching, functions and so on [13,419,50] but the FPA
does not have these abilities.

e In the FPA, the termination criterion (2) depends on value e. For €
large enough, the iterations can be stopped before finding the suitable
approximation and for small values of € the unnecessary iterations can
be produced without improving the accuracy of the results. In the
SA, the numerical results do not depend on the value € and a new
stopping condition is replaced which is independent of e.

The remainder of this work is organized in the following form: In next
section, some preliminaries about the SA, the CESTAC method and the
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CADNA library are presented. Furthermore, algorithm of the CESTAC
method is introduced. In section 3, the necessary definitions and properties
of the Sinc function are presented. In section 4, the S-CM is applied to solve
the second kind Fredholm IE. In this section, by presenting a theorem, the
validation of results is considered. Some examples of Fredholm IEs are
approximated by SE and DE S-CM in section 5. The optimal iteration
of method, optimal approximation and absolute error are shown in several
tables which are based on the proposed algorithm in the SA. Finally, in
section 6 some conclusions are drawn.

2 Preliminaries

Let y; for j > 1 be the approximate solution of Eq. (1) which are produced
by one of the numerical methods. In Eq. (2) which is applied in the FPA,
for € large enough, the suitable approximation can not be obtained and for
small values of € the unnecessary iterations can be produced.

In the SA, instead of Eq. (2), the following termination criterion is
replaced:

lyj(s) — yj+1(s)| = @.0, (3)
where @.0 means the computed result does not have any correct significant
digits and it is called the informatical zero [1-5, 11,18, 13].

Let F be a set of real values which are reproduced by computer arith-
metic and the arbitrary value ¢ is demonstrated as ¥ € F'. In the personal
computer (PC), U with the binary FPA, p mantissa bits and the rounding
error term is shown by

U= — 2870, (4)

where 279 is the missing segment of mantissa which is obtained from
round-off error, € is the sign of ¥ and E is the binary power of the outcome.
In order to apply the SA, we make the perturbation on the last mantissa
bit of ¥. So the value p can be considered as a random variable uniformly
distributed on [—1, 1]. Therefore, the random result of ¥ can be calculated
where mean (p) and standard deviation (o) are applied to guarantee the
precision of results [2,9,22,23, 49, 50].

In PC, for § = 24,53 the results can be obtained by single and double
precisions, respectively. By m times performing the process for ¥;,i =
1,...,m the distribution of them is in the quasi Gaussian form. Therefore,
the mean of them is equal to the exact value of ¢ and the values of y and o
can be estimated by these m samples. The following algorithm of CESTAC
method is presented where 75 is the value of T distribution with m — 1
degree of freedom and confidence interval 1 — §.
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Algorithm 1:
Step 1- Find m samples for ¥ as & = {Uy, Uy, ..., ¥,,} by means
of the perturbation of the last bit of mantissa.

m
> Wy
Step 2- Compute U, = =l Tt

m
M = Uy )?
Step 3- Calculate o = 2iz (Vi ave) .
m—1
vm U
Step 4- Compute Cy,,. v = logmM, as the common

T§O
significant digits between ¥ and Wg,y..

Step 5- If Cy,,..v <0 or V¥, =0, then write ¥ =@.0.

CADNA enables to create new numerical types with the others opera-
tors such as ADA, C/C++ or FORTRAN [13,18]. The codes of CADNA
library are similar to programs which are produced by these operators and
by minor variations we can apply the CADNA programs. The process of
algorithms is stopped when the informatical zero’s sign @.0 is shown in
the termination criterion. A sample program in order to run by CADNA
library is shown in the following form:

program sample

# include <cadna.h>

cadna_init(-1)

double_st (float_st) value;

The Main Program

printf (" value= %s \n ",Strp(value));

cadna_end() ;

In order to show the significant digits by CADNA, the function "Strp"
in the output instruction has been applied. Hence, if the number of signifi-
cant digits becomes zero, it is shown with the notation @.0. It means that
the value is an informatical zero. Also, if the values are in double or float
precision, it must be placed type double_st or float_st at the related
line. More information are presented in www.cadna.lib6.fr.

3 Sinc function

In this section, some definitions and properties of the Sinc approximation
are given. Also, application of S-CM to solve the Fredholm IEs are consid-
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ered. The Sinc function on the real line is defined as follows

in(mrs)
smﬂ;rs , s # 0’

Sinc(s) = (5)
1, s =0.

The Whittaker cardinal for f € R and the step size h > 0 is defined as
follows

Ca(f,h)(s) = Y f(KR)S(k,h)(s), (6)
k=—o00
and the [-th order of Eq. (6) is
l
Cai(f,)(s) = D FEMS(k,h)(s), (7)
k=—1

whenever this series convergence, and the M-th order of Sinc function is
defined in the following form
_sin[n(s — Mh)/h]

S(M, h)(s) = o P VY R M=0,+1,+2,... . (8)

Now, the following function space should be introduced.

Definition 1. /25] Assume that « € RT and for bounded and simply-
connected domain D we have (a,b) C D. The family of functions f which
is shown by L, (D) satisfy in the following conditions:

(i) f is analytic in D;

(i) 3C" € R* such that for all s in D

[f(s)] < C'[(s = a)(b—s)|*. (9)
The SE precision is presented in the following form
b—a t b+a
SE t
@7 (t) = 5 tanh(2) + 5 (10)
SEN/ 1 t 2
{655 (1) = £(b — a)sech(5)” (11)

Theorem 1. [/0] Let f € Lo(¢5F(Dy)) for d with 0 < d < Z. Then for
positive integer N and

h= (12)



68 M.A. Fariborzi Araghi, S. Noeiaghdam

we have

< Wexp (—\/W) ,

b N
| s —n 32 FE ) 65y (k)
a k=N

(13)

where W is a constant value and independent of N.

In order to apply the DE-transformation of Sinc function we get
b— b
SPE () = 2= tanh(Z sinht) + L2, (14)
2 2 2
and ; T osh(t

(oPPy () = LBty (15)

2 cosh?(% sinh(t))

Theorem 2. [79] Assume that f € Lo(¢PF(Dyg)) for d with 0 < d < .
Then for positive integer N and

h= %log(@), (16)
we have
b N 27
/ f(s)ds —h > f(6PF(kR){¢PPY (kh)| < W exp (%ﬁfff) )
a k—_N log(T)
(17)

where W is a constant value and independent of N.

4 Main idea

By using the SE and DE Sinc approximation for integral part of Eq. (1),
the following relations are obtained

/ H(s,t)y(t)dt ~ h Z (s, 05 F (kR)) {5V (kh)y,, (18)

/ H (s, t)y(t)dt =~ h Z (s, 8PP (kh){oPEY (kh)ye,  (19)

where yr, = y(qx),k = —N, ... ,N. By substituting Egs. (18) and (19) into
Eq. (1), we get

N

y(s) —h Y H(s,°"(kR){¢"FY (kh)yp ~ x(s), (20)

k=—N
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—h Z (s, 8" (k) {$7FY (kh)yp = (). (21)

Now, by putting the collocation grids s7¥ = ¢°F(ih),i = —N,..., N for
SE precision and sP?¥ = ¢PE(ih) for DE precision in Egs. (20) and (21),
the (2N 4 1) x (2N + 1) system of equations can be produced as

—h Z 9P, 65 E (k) {¢°FY (khyy, = 2(s7F),  (22)

N
PEY=h Y H(sPP PP (km){@PPY (kR = x(sPF),  (23)
k=—N

fori = —N,..., N. The matrix form of the systems (22) and (23) are given
in the following form

(I - ASE)y = X5E, (24)
(I — APEYY — xPE, (25)
where
455 = [ (s5%. 65 (k1) {655 (0) ’
(2N+1)x (2N+1)
ADE _ [hmsgw, ¢DE<kh)>{¢DE}’<kh>] 7
(2N+1)x (2N+1)
and
T
Y—|:y—N7"'7yN:| ?
(2N+1)x (2N +1)
T
X5 = o8l ,
(2N+1)x (2N +1)
T
xDE _ {x(sDﬁ), o x(s ]?,E)] '
(2N+1)x(2N+1)

By solving the system of equations (24) (or (25)) and substituting the
unknowns in

N

yNo(s) ma(s) +h Y H(s, % (kR){0°Y (kh)ys, (26)

k=—N
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yn" (s) m a(s) + h Z (s, " (kh){6P"Y (kR)yx, (27)
k=—N

the numerical solution of Eq. (1) can be estimated.

Theorem 3. ( [25]) Assume y(s) is the ezact and yxF(s) is the numerical
solutions of Eq. (1). Then

max |y(s) — y3F (s)] < WuF log(N + 1)V'N exp (—\/7rdocN> . (28)

s€(a,b)
where p3F = ||(I — ASE)~L|| and W is a constant and independent of N.

Theorem 4. ( [28]) Assume y(s) is the exact and yRF (s) is the numerical
solutions of Eq. (1). Then

—mdN
—yPE() < WuRE log(N + 1 — 2
ma [9(s) ~ s ()] < Wik log(N + Dewp (i) 9

where pRF = ||(I — APE)Y=Y| and W is a constant and independent of N.

Definition 2. ( [/, 2, 1/]) The number of significant digits between two
real numbers 67 and 65 is described as

(1) for 01 # 6a,

001 02 — 1OglO

(2) for all real numbers 61, Cp, 9, = +00.

Theorem 5. Let y(s) be the exact solution and y3F(s) be the N-th order
numerical solution of Eq. (1) which is produced by SE Sinc-collocation
method. Then for arbitrary s € [a,b] we have

Coir ) ~ CugPe) O (log(N + 1)VNexp (~VrdaN) ) . (31)

7y%€1 (S) -
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Proof. According to Definition 2

yRP () + yRE, (s) ‘

2(yxF (s) — yRE41(9))

= logo | =7 y]%E(SgE -1
yno (s) —ynia(s) 2

Y (s)
yE (s) — yE ()
1

1 e A7) - yfvfil(s))\

Cys () w38 1 (s) = 10810

Y (s)
yF(s) — yE 1 (s)

= logyg +0O (?J]%E(S) - yffﬁﬂs)) .

Since
X7 (8) =y (s) = yR7(5) = y(s) — (Y5 (5) = ¥(5)) = Bu(s) = Ensa(s),
thus
O (ya"(5) = yx51(8) = O (Eu(s) = Ens1(s))
=0 (log(N +1)V/N exp (—\/77(10[]\[))
+0 <10g(N +2)VN + Lexp (— wda(N + 1)))
=0 (log(N +1)V'N exp (—\/77dozN>> .
Therefore,

y3” (s)

V)~ )

+0 (1og(N +1)VNexp (—m)) .

(32)

Cyse(s).w3E,(s) = 10810

Furthermore,

YR~ (s) + y(s)

_ B yE (s) 1
Copens = 1080 2<yfvE<s>—y<s>>‘ = 10810 | SB T (e ‘2’
1o yzé:/E(S) SE(g) _ u(s
=1 g10 y]%E(S) *y(S) +O(yN ( ) y( ))
= logyg M +0 (log(N +1)V'N exp (—\/ﬂd@N)) .
yF (s) — y(s)

(33)
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Using Eqgs. (32) and (33) we get

Cys2(s)u(s) — CugF (o) w32 (5)
= logyy —y]%E(S) —logyg y]%E(S)
yaE(s) — y(s) yF(s) — yRE 1 (s)

+0

R

log(N + 1)v/N exp (—W))

yaE (s) —y(s)
yRE (s) — y3E ()

+O (1og(N +1)vV/Nexp (—\/W))

@ (1og(N + 1)V N exp (_\/m))

19 <log(N +1)v/Nexp (—\/W))
+0 (1og(N +1)VN exp (—\/W))

-0 (1og(N +1)VNexp (—W)) ,

= logyg

= logyg

and finally the following formula can be obtained
Cy]%E(s%y(s) — Cyls\']E(S)’y]%il(s) = O <10g(N + l)mexp (— V 7TdO[N)> .

O

When N — oo the right hand side of above equation tends to zero and
hence we obtain

Cys8()0(s) = CygP () w38 ()"

Theorem 5 shows that the number of common significant digits between
two successive approximations with SE precision is almost equal to the
number of common significant digits between the exact and approximate
solutions.

Theorem 6. Let y(s) be the exvact solution and yQF(s) be the N-th order
numerical solution of Eq. (1) which is produced by DE Sinc-collocation
method. Then for arbitrary s € [a,b] we have

—7d
e (O (log@d“Z*”))) ‘ |
(34

Cy(s)ybP(s) — CybE (5)42P(s) = 10810
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Proof. According to Definition 2

y(s) + yR¥(s) ‘
2(y(s) —yRF(s))
yr" ()

" (s) = yxa(s)

Cys)wRP(s) ~ CuRE ()07 (5) = 10810

= logyg

ynr1(s) +yn"(s)
2(yp(s) —yR"(s))

o
Yny1(s) + yn" ()

—logyg (35)

yRE () — yRE(s)
y(s) —yRE(s)

+logyg

The first term of Eq. (35) can be neglected because when N — oo the
approximate solution is very close to exact solution. Therefore, the second
term of Eq. (35) is written as follows

ynia(s) —yx®(s) _ (unFa(s) —u(s)) + (y(s) — yx®(s))
y(s) —yRE(s) y(s) —yRFE(s)
YNt (s) —y(s)

=1+ . (36)
y(s) —yR"(s)
Also, by using Eq. (29) the following relation is obtained
—7md(N+1)
WRE ) ) {k’g““ ?) exp (w))ﬂ
DE =
y(s) —yRP(s) O [log(N + 1) exp (% |
B log(N + 2) N N+1
=0 log N +1 P (Wd <log(2dcfv) log(Qd(]ZH))))] .
(37)

. . log(N+2 .
Since, limy _so0 % = 1, we can write

yni(s) — y(s) N N+1
N+1 a exp <7rd (log(QiN) — log(Qd(]ZH))>>] ,  (38)

y(s) —yDP(s)
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and
af N N+1 g log (2N jog (24N ) (N+1)
T - -0 '
log(%) log(W) 1Og(%)log(w)
(39)
When N — oo, the numerator of Eq. (39) is written as follows
(M)N (2d(ZZ+1))N . 9dN
8 @ T Ty T T e WO

and by using Egs. (39) and (40) the following equation is obtained

logQgTN —md
—Wd<1og(2dN)log(2d(N+l)) =0 W : (41)

By considering Eqgs. (35), (36) and (41) and for N large enough, we
have

_ yn+1(s) — yn(s)
Cuts) =) ~ CuRF ()87 = 10810 y(5) — yn (%)
DE
ynt1(s) —y(s)
=log |1+ ——"F+——
10 y(s) _ y]I\)/E(S) (42)
—7d
=logig|l+exp | O | —5—— .
v ( <1og<2d“i+” ) )) ‘
O

When N increases, in the right hand side of Eq. (42) we get

—7d
exp | O | —~—+—— < 1.
( <log<2d“i“>>>>

Cys)wlB(s) = CybE (5)42E (s)"

Therefore

Theorems 5 and 6 illustrate the accuracy of the S-CM in SE and DE
precisions respectively and permit us to apply an optimal termination cri-
terion like Eq. (3) in the CESTAC method. Also, based on Egs. (31) and
(34), the DE S-CM is faster and more accurate than the SE precision.
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5 Numerical experiments

In this section, some examples are given; the Love’s IE, the Lichtenstein-
Gershgorin IE and the Fredholm TE with weakly singular kernel. The nu-
merical results are obtained based on the SE and DE S-CM. These results
are calculated by the CESTAC method. The following algorithm is based
on the CADNA library and the stopping condition has been chosen accord-
ing to Theorem 5 for SE S-CM. This algorithm can be written similarly for
DE precision. Optimal step of SE and DE S-CM, the optimal approximate
solutions and the absolute errors in companion with the difference between
two sequential results are presented in the tables. Furthermore, compar-
ison between the exact and the approximate solutions and figures of the
absolute error functions are given.

Algorithm 2:
Step 1- Let N =1.
Step 2- Define the functions ¢°F(s), {¢SF}Y (s), H(s,t),z(s).
Step 3- Enter the parameters a,b,s,a,d.
Step 4- Do the following steps while |y§,€1 —y3F| #£ @.0
{
Step 4-1- Let h = %log(%).
Step 4-2- Calculate the collocation points.
Step 4-3- Approximate the coefficient matrix ASE
Step 4-4- Create the matrix (I — ASF) and (I — ASF)~1,
Step 4-5- Construct the right hand side matrix X.
Step 4-6- Solve the system of equations (24) by using the
obtained results of steps (4-4) and (4-5).
Step 4-7- Apply Egqs. (26) to find the numerical solution
Eq. (1).
Step 4-8- Print y]%E, ‘yﬁ,ﬁl —y]%E‘ and |y—y]%E .
Step 4-9- N=N+1.
}

Example 1. The Love’s IE is given as

0]

w ) @ (s—ppdt =)

y(s)
where ¢ = —1 and 2(s) = 1+ £ (arctan(1 + s) + arctan(1 — s)). It appears
in electrostatic [20,40]. The results of SE precision are presented in Table

1. The optimal iteration of this method is N = 71 and the optimal approx-
imation is y2{(0.2) = 0.1000008E +001. Also, the numerical results which
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are based on the DE S-CM are shown in Table 2. The optimal iteration for
DE precision is N = 7 and the optimal approximate solution for s = 0.2
is yP#(0.2) = 0.1000001E + 001. According to numerical results, the DE
precision is faster and more accurate than the SE S-CM.

Table 1: Numerical results of SE S-CM of Example 1 when s = 0.2, a = 1,
d=Z%.
6

N [ y3F(s) 3t () = yRE () [ Ty(s) — yRF ()]

1 | 0.1060901E+001 | 0.1060901E-+001 | 0.6090104B-001
2 | 0.1044062E+001 | 0.1683819E-001 | 0.4406285E-001
3 | 0.1031736E+001 | 0.1232624E-001 | 0.3173661E-001
30 | 0.1000327E+001 | 0.40E-004 0.327E-003

31 | 0.1000202E+001 | 0.3528594FE-004 | 0.202E-003

32 | 0.1000261E-+001 | 0.31E-004 0.2614259E-003
69 | 0.1000009E+001 | 0.8344650E-006 | 0.9775161E-005
70 | 0.1000009E-+001 | 0.7152557E-006 | 0.9059906E-005
71 | 0.1000008E--001 | @.0 0.86E-005

Table 2: Numerical results of DE S-CM for Example 1 when s = 0.2, a = 1,

d=1.

N yF"0) W) — PG | 9() — yRP ()
1 0.1400815E+001 | 0.1400815E+001 0.400815E+000
2 0.1013534E+001 | 0.387281E+000 0.13534E-001
3 0.1001183E+001 | 0.12350E-001 0.1183E-002

4 0.1000113E+001 | 0.1069E-002 0.1139640E-003
5 | 0.1000009E+001 | 0.103E-003 0.99E-005

6 0.1000002E+001 | 0.77E-005 0.2264976E-005
7 | 0.1000001E+001 | @.0 0.1E-005

Example 2. ([/5]) Consider the following Lichtenstein-Gershgorin IE

1 [27 n®(y)
o(0) — 7T/0 (n24+1) — (n? —1)cos({ +y)

= 2arctan [

nsin ¢

dy

n2(cosf — cos? () —sin? /]’

0</¥¢<2m.
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for This equation has applications in physics and engineering [10]. By
substituting
(=n(l+s), y=n(l+t), B(0)=uv(s)
we have
1
ny(t)
— dt
v(s) /_1 (n2+1) — (n2—1)cosm(s+1t)
= 2arctan nem s —3 —1<s<1.
n?(cos s — cos? ws) + sin” s
(43)

Now, we apply the S-CM with SE and DE decays to find the ap-

proximate solution of Eq. (43), for n = 1.2. Because the exact solu-

tion of Eq. (43) is unavailable therefore we evaluate the results of Table
4 with results of [10]. The numerical solution of IE (43) for s = 0.5 is
y(0.5) ~ 1.5707963267. In Tables 3 and 4, sign @.0 shows the optimal iter-
ation of SE and DE precisions for arbitrary value s = 0.5. By comparison
between the numerical results of Tables 3 and 4, the SE optimal iteration
is N = 17 and the DE optimal iteration is N = 5.

Table 3: Numerical results of SE S-CM for Example 2 when s = 0.5, a = 1,
d=Z.
6

N | yx"(s) Y1 (s) =y ()] | ly(s) —yx7(s)]
1 ] 0.160437E+001 | 0.160437E4-001 0.33574E-001
2 | 0.1593363E-+001 | 0.11007E-001 0.22567E-001
3 | 0.158435E+001 | 0.9005E-002 0.1356E-001

4 | 0.1578845E4-001 | 0.5512E-002 0.8049E-002

5 | 0.157570E+001 | 0.3142E-002 0.4906E-002
14 | 0.15708E+001 0.6E-004 0.8E-004

15 | 0.157082E+001 | 0.5E-004 0.3E-004

16 | 0.15707E+001 0.4E-004 @.0

17 | 0.15707E+001 @.0 @.0

Example 3. Let us consider the following singular Fredholm integral equa-

tion [

]

2

v =vi-3+ [

y(t)
VI—1t

dt,

0<s<1,

(44)
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Table 4: Numerical results of DE S-CM for Example 2 when s = 0.5, a = 1,

d=1.

yn~ (s)

lyRE (s) — yRE(s)]

ly(s) —yR¥(s)]

Cﬂﬂkwl\ﬁr—ﬂz

0.1751564E4-001
0.156827E+001
0.15651E+4001
0.1566E4-001
0.156E+001

0.1751564E4-001
0.18329E4-000
0.31E-002
0.1E-002

@.0

0.1807684E4-000
0.252E-002
0.56E-002
0.44E-002

@.0

Table 5: Numerical results of SE S-CM for Example 3 when s = 0.5, a = 1,

d=Z%.
N |y (s) [yRE1(5) —yx" ()] | ly(s) — yx(s)]
1 | 0.128159E+001 | 0.128159E4-001 0.57449E4-000
2 | 0.108988E+001 | 0.19171E+000 0.382782E+000
3 | 0.9726340E-+000 | 0.11725E+000 0.2655271E4-000
23 | 0.715821E4-000 | 0.106E-002 0.8714E-002
24 | 0.714891E4-000 | 0.929E-003 0.7785E-002
25 | 0.71407E4000 0.81E-003 0.697E-002
47 1 0.708021E+000 | 0.7E-004 0.914E-003
48 | 0.707952E+000 | 0.69E-004 0.845E-003
49 | 0.70789E4-000 0.6E-004 0.78E-003
50 | 0.7078E+000 @.0 0.7E-003

where y(s) = y/s. The optimal iteration, optimal approximation, difference
between two successive approximation and the absolute error for SE and DE
precisions are shown in Tables 5 and 6. According to obtained results, the
presented algorithm can be stopped when difference between two successive
approximations is equal with the informatical zero sign @.0. In this exam-
ple, the optimal iteration of SE decay is N = 50 and the optimal approxi-
mation is ygoE(Ob) = 0.7078 E4000. But, the optimal iteration of DE S-CM
is N = 10 and the optimal approximation is yF(0.5) = 0.707108E + 000.
Therefore, the DE S-CM is better and faster in comparison with the SE
precision.
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Table 6: Numerical results of DE S-CM for Example 3 when s = 0.5, a = 1,

d=1T.
N | yR"(s) lyRia(s) —yR" ()l | ly(s) — yR"(s)]
1 | 0.198464E1001 | 0.193464E+001 | 0.127754E+001
2 | 0.773888E+000 | 0.121076E+001 | 0.66781E-001
3 | 0.718046E+000 | 0.55841E-001 0.1094E-001
4 | 0.7092914E-+000 | 0.8755E-002 0.2184E-002
5 | 0.707582E+000 | 0.1708E-002 0.476E-003
6 | 0.707216E+000 | 0.366E-003 0.10E-003
7 | 0.707133E+000 | 0.82E-004 0.26E-004
8 | 0.707113E+000 | 0.19E-004 0.6E-005
9 | 0.707109E+000 | 0.4E-005 0.2E-005
10 | 0.707108E+000 | @.0 0.1E-005

6 Conclusions

The validation of Sinc-collocation method with SE and DE precisions to
find the optimal iteration and the optimal approximation of Fredholm IE
is illustrated. To this aim, the CESTAC method which is based on the SA
was applied. In order to implement the CESTAC method, the CADNA
library is used. The accuracy of the Sinc method is proved which allows
us to apply the CESTAC method. According to the sample examples, the
DE S-CM is faster and more accurate in comparison with the SE precision.
Consequently, it is suggested to apply the proposed scheme to validate the
algorithms based on the Sinc method for solving IEs to find the optimal
results computationally.
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