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Abstract. We propose and analyze a mathematical model to study the
dynamics of smoking behavior under the influence of educational and media
programs. Proposed mathematical model subdivides the total population
into potential smokers, smokers and those smokers who quit smoking per-
manently. The biologically feasible equilibrium points are computed and
their stability is analyzed and discussed. The theoretical analysis of the
model reveals that the smoking-free equilibrium is stable when a threshold,
termed as the smokers-generation number, is less than unity, and unstable
if this threshold value is greater than unity. Moreover, number of smokers
may be effectively controlled by keeping the smokers generation number
less than unity. Analytical findings are justified by numerical simulation.
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1 Introduction

Smoking is a leading cause of heart disease, strokes, peripheral vascular
diseases, chronic obstructive lung diseases and other respiratory diseases.
Moreover, it is also a probable cause of peptic ulcer diseases and increased
infant mortality including sudden infant death syndrome (SIDS). Every
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year, smoking causes some 5 million premature deaths1 . Smoking in India
has been known since 2000 BC and is first mentioned in the Atharvaveda,
which dates back a few hundred years BC. It reveals that smoking has been
practiced in India for at least 2,000 years. Tobacco was introduced to In-
dia in the 17th century that later on merged with other existing practices
of smoking [11].As a consequence of after impact of smoking, government
took many steps to control smoking. Government of India has launched
many antismoking campaigns in the country. Law is enforced to stop in-
dividuals smoking in indoor public places, such as bars, pubs and restau-
rants. Smoking was prohibited in public places nationwide from 2 October
2008 [11]. Kerala became the first Indian state to ban smoking in public
places on 12 July 1999 after the declaration of a Division Bench of the Ker-
ala High Court. Since 8 September 2000, The Cable Television Network
(Regulation) Amendment Bill completely prohibits cigarette and alcohol
advertisements2 . The government began screening two anti-tobacco adver-
tisements with effect from 2 October 2012, titled “Sponge” and “Mukesh”,
in movie theatres and on television too3 . It is also made mandatory for
theatres to display a disclaimer on-screen whenever smoking scenes are
showed in the movie [32]. Later on, the “Sponge” and “Mukesh” ads were
replaced by “Child” and “Dhuan”4 . Although mathematical modeling has
been used extensively to address questions of public health importance in
the pioneering works of Bernoulli, Kermack and McKendrick [4,23–25] and
those reported in literature [1–3,6–10,14–16,19–22,28–31,33–36] not much
work has been done in terms of the mathematical modeling of human social
behavior. In particular, except the basic model in [5,6,13,18,26,37–39], no
mathematical study has been found that fully examine, and assesses, the
impact of smoking in population. However, Castillo-Garsow et al. [11] pro-
posed a simple mathematical model on smoking. They considered a system
of ordinary differential equations described by the simplified PSQ model.
In this mathematical model, total constant population is divided into three
classes, potential smoker, smokers and smoker who have quit smoking per-
manently. Later, this mathematical model was modified by Sharomi and
Gumel (2008) [33], by introducing a new class of smokers who temporarily
quit smoking. In 2012, Erturk et al. [17] studied this model numerically
after introducing fractional derivatives into it. The aim of this paper is

1World Health Organization, http://www.emro.who.int/tfi/facts.htm, fact2, 2010.
2Alcohol in India, http://www.ias.org.uk, 8 September 2000. Retrieved 14 January 2013.
3Government to launch fresh campaign against smoking,

https://economictimes.indiatimes.com, 2013.
4New ad spots to focus on passive smoking,

http://shodhganga.inflibnet.ac.in/bitstream/10603/97366/7/references.pdf, 2013.



Global dynamics of a mathematical model on smoking 51

to provide a qualitative study of the dynamics of smoking with impact of
anti-smoking campaigns. Inclusion of anti-smoking campaigns is the novel
feature of our model that has not been found in the literature to the best
of our knowledge. In this paper, we study the dynamics of progression of
potential smoker class to the class of smokers followed by the movement
of smokers to the state in which they permanently quit smoking due to
anti-smoking campaigns.

2 Mathematical Model

We propose a mathematical model to asses the impact of anti-smoking
campaigns to control smoking. We considered a region with total popula-
tion T at any time t. The whole population is divided in three subclasses:
Potential smokers (P ), Smokers (S), and Permanent smoking quitters (R),
i.e. those individuals who have either quit smoking or never smoke due to
anti-smoking campaigns. If the individuals are well-informed about the fa-
tality caused by smoking, then they may be refrained from smoking. Here
we assume that due to awareness individuals in potential smokers class will
leave at a rate δp. These individuals will never smoke and hence will join
permanent quitters class. Let µ be inflow rate of individuals in poten-
tial smoker class. It also represent natural per capita death rate in each
compartment. New smokers increase through contact of potential smokers
with smokers, which is taken as standard mass action inside. Let β be the
rate of transmission of smoking habit, so that βPS denotes the smoking
incidence rate. A fraction α(1− ε)S of these recovered will revert back to
potential smoker class due to low determination level and remaining αεS
will proceed to removed class. The ε is the measure of determination. On
the other hand, some of the smokers become aware of ill-effects of smoking
due to media campaigns, and join the quitters class at a rate ηSM . Fur-
ther, it assumed that some media campaigns fade or loss of their impact on
people, moreover φ and φ0 are constants denoting the rate of implemen-
tation and fading of media campaigns respectively, but a baseline number
of media campaigns M0 should be maintained in the system.

dP

dt
= µ− βPS + α(1− ε)S − µP − δP, (1)

dS

dt
= βPS − µS − αS − ηSM, (2)

dR

dt
= αεS + ηSM − µR+ δP, (3)

dM

dt
= φS − φ0(M −M0), (4)
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where P (0) ≥ 0, S (0) ≥ 0, R (0) ≥ 0 and M (0) ≥ 0. Here note that

P (t) + S(t) +R(t) = T (t).

By combining the first three equations of the above model, we have

dT

dt
= µ− µT,

which implies that the total population lim
t→∞

supT (t) ≤ 1. Since the above

model monitors human population, all the variables and parameters are
assumed to be non-negative for all t ≥ 0. We study the above model in the
positively invariant set

Ω = {(P, S,R,M) ∈ R4
+ : 0 ≤ P, S,R ≤ 1, 0 ≤M ≤ φ

φ0
},

which is region of attraction for model.

3 Equilibria and their stability analysis

3.1 Equilibria

3.1.1 Smoking-free equilibrium point (SFE)

The Smoking-Free equilibrium point (SFE) of the system (1-4), is obtained
by setting all the smokers classes and recovered classes to zero. We get

µ− µP 0 − δP 0 = 0,

µR0 − δP 0 = 0,

φ0(M −M0) = 0,

which yields P 0 = µ/(µ+ δ), R0 = δ/(µ+ δ), M0 = M0. The SFE point
for our system is given by

E1 = (P 0, 0, R0,M0) =

(
µ

(µ+ δ)
, 0,

δ

(µ+ δ)
,M0

)
.

Thus, system becomes smoking free when M = M0, i.e., program execua-
tion is 100% which is an ideal situation.
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3.1.2 Existence of endemic equilibrium point

The model system exhibits an smoking present equilibrium E2(P ∗, S∗, R∗,
M∗). By setting dP

dt = dS
dt = dR

dt = dM
dt = 0, all components of E2 can be

expressed in terms of S∗ as

M∗ = M0 +
φ

φ0
S∗, P ∗ =

µ+ α(1− ε)S∗

µ+ δ + βS∗
,

R∗ =
1

µ

(
αεS∗ + ηS∗

(
M0 +

φ

φ0
S∗
)

+ δ

(
µ+ α(1− ε)S∗

µ+ δ + βS∗

))
and P ∗ = (µ+ α+ ηM∗)/β. So from the above relation we can write

µ+ α(1− ε)S∗

µ+ δ + βS∗
=
µ+ α+ ηM∗

β
.

Now putting the value of M∗ in this equation and simplifying gives a
quadratic equation with respect to S∗ as A1S

∗2 +A2S
∗ −A3 = 0, where

A1 = βη(
φ

φ0
),

A2 =

(
µβ + αβε+ βηM0 + (µ+ δ)η(

φ

φ0
)

)
,

A3 = (µ+ δ)(ηM0 + µ+ α)[S0 − 1].

It is clear that sign of A1 and A2 is always positive and sign of A3 depends
on (S0 − 1), where

S0 =
µβ

(µ+ δ)(ηM0 + µ+ α)
.

Let S∗± denote the roots of the above quadratic equation, then

S∗± =
−A2 ±

√
A2

2 + 4A1A3

2A1
.

We now consider the following three cases:
Case 1: If S0 > 1, then A3 > 0. In this case S∗− is always negative

and S∗+ is always positive. It follows that above quadratic equation has a
unique positive solution and there exists a unique positive equilibrium E2

whenever S0 > 1.
Case 2: If S0 < 1, then A3 < 0. Here both the roots of quadratic

equation S∗+ and S∗− positive if A2 < 0 and A2
2 + 4A1A3 > 0; otherwise

there is not any positive roots of the equation exist. This implies that,
multiple endemic equilibia ( E∗+ and E∗−) exist when S0 < 1.

Case 3: If S0 = 1, then A3 = 0 and A1 > 0, A2 > 0. Thus there are no
positive solutions.
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3.2 Smokers’s generation number

The quantity S0 plays the role analogous to the basic reproduction number
in epidemic models. In the mathematical epidemiology, the basic repro-
duction number S0 defined as the expected number of secondary infections
arising from a single individual during his or her entire infectious period,
in a population of susceptible [14]. A fundamental result in mathematical
epidemiology, which most epidemic model follow, is that endemic equilib-
rium exists whenever S0 > 1, which physically means that the disease can
invade the population if each infective generates, on average, more than one
new infective cases in the population. Following similar pattern, smokers
generation number S0 is determined as

S0 =
µβ

(µ+ δ)(ηM0 + µ+ α)
,

which demonstrates that one smoker creates µβ smokers in its whole life
time of 1/(ηM0 + µ+ α) spent in smoking class. Life time spent in smoking
class can be reduced by increasing ηM0 and hence S0 can be reduced by
increase ηM0. Thus anti-smoking campaign may play an important role in
reducing number of smokers.

3.3 Stability Analysis

Now we proceed to study the stability behavior of equilibria E1 and E2.
The Jacobian matrix at SFE is given by

J∗1 =


−µ− δ − λ −βP + α(1− ε) 0 0

0 βP − µ− α− ηM0 − λ 0 0
δ αε+ ηM0 −µ− λ 0
0 φ 0 −φ0 − λ

 . (5)

It is apparent that eigenvalues of J∗1 is (−µ − δ), −φ0, −µ and βP − µ −
α− ηM0. It is noted that if

S0 =
µβ

(µ+ δ)(ηM0 + µ+ α)
< 1,

then all the eigenvalues of J∗1 are negative whereas one eigenvalue becomes
positive if S0 > 1. Hence we make an assertion that Smoking-free equilib-
rium point is locally asymptotically stable if S0 < 1 and unstable (saddle
point) if S0 > 1. Therefore the Smoking-free equilibrium point undergoes
a trancritical bifurcation if S0 = 1.
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Now for the endemic equilibrium the Jacobian matrix is given as

J∗
2 =


−µ− βS∗ − δ − λ −βP ∗ + α(1− ε) 0 0

βS∗ βP ∗ − µ− α− ηM∗ − λ 0 −ηS∗

δ αε+ ηM∗ −µ− λ ηS∗

0 φ 0 −φ0 − λ

 . (6)

By expanding along C3 we get

(−µ− λ)

−µ− βS∗ − δ − λ −βP ∗ + α(1− ε) 0
βS∗ βP ∗ − µ− α− ηM∗ − λ −ηS∗

0 φ −φ0 − λ

 = 0. (7)

Clearly one eigenvalue is −µ of J∗2 and other three eigenvalues are found
by solving the characteristic polynomial for J∗2 is given by

λ3 +B1λ
2 +B2λ+B3 = 0,

where

B1 = φ0 + (βP ∗ − µ− α− ηM∗) + (βS∗ + µ+ δ)

B2 = βS∗(βP ∗ − α(1− ε)) + ηS∗φ− (βP ∗ − µ− α− ηM∗)φ0

+(βS∗ + µ+ δ)φ0 − (βS∗ + µ+ δ(βP ∗ − µ− α− ηM∗)),
B3 = βS∗(µ+ α+ ηM∗)φ0 + (µ+ δ)(µ+ α+ ηM∗)φ0

−(µ+ δ)βP ∗φ0 − φ0βS
∗α(1− ε) + βηS∗2φ+ (µ+ δ)ηS∗φ.

By using the Routh-Hurwitz Criterion Marsden and McCracken (1976) [27],
we can say that endemic equilibrium point E2 is locally asymptotically
stable if and only if the inequalities, Bi > 0, i = 1, 2, 3 and B1B2 −B3 > 0
are satisfied.Thus on the basis of study regarding the equilibria of given
model and their stability following results have obtained:

Theorem 1. (i) If S0 < 1, then (SFE) E1 is locally asymptotically stable.
(ii) If S0 > 1, then Smoking-free equilibrium point (SFE) E1 becomes un-
stable and the endemic equilibrium E2 exists, which is locally asymptotically
stable if the inequality B1B2 −B3 > 0 holds.

4 Global stability

Consider the following Lyapunov’s function as

V =
1

2
(P − P ∗)2 +

q1

2
(S − S∗)2 +

q2

2
(R−R∗)2 +

q3

2
(M −M∗)2,
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where q1, q2 and q3 are some positive constants to be chosen later. On
differentiating V with respect to t along the solutions of given model, we
get

dV

dt
= −1

2
b11(P − P ∗)2 + b12(P − P ∗)(S − S∗)− 1

3
b22(S − S∗)2

−1

3
b22(S − S∗)2 + b24(S − S∗)(M −M∗)− 1

2
b44(M −M∗)2

−1

2
b44(M −M∗)2 + b34(M −M∗)(R−R∗)− 1

3
b33(R−R∗)2

−1

3
b33(R−R∗)2 + b23(S − S∗)(R−R∗)− 1

3
b22(S − S∗)2

−1

3
b33(R−R∗)2 + b13(P − P ∗)(R−R∗)− 1

2
b11(P − P ∗)2.

Now we choose q1 = q2 = q3 = 1 and for the sufficient condition of dV
dt to

be negative definite, the following inequalities are hold:

b212 <
2

3
b11b22, b224 <

2

3
b22b44, b234 <

2

3
b33b44,

b223 <
4

9
b22b33, b213 <

2

3
b11b33,

where

b11 = (µ+ δ + βS∗), b22 = q1(µ+ α+ ηM∗ − βP ), b33 = q2µ,

b44 = q3φ0, b12 = (α(1− ε)− βP + βS∗q1), b13 = q2δ,

b24 = q3φ− q1ηS, b23 = q2(αε+ ηM∗), b34 = q2ηS.

This shows that V is a Lyapunov’s function for the model, implying that
endemic equilibrium E2 is globally asymptotically stable.

On the basis of our study regarding the endemic equilibrium E2 of model
and their global stability we have following result.

Theorem 2. The model is globally or nonlinearly asymptotically stable
around the endemic equilibrium point E2, provided the following conditions
hold:
(i) (α(1− ε)− βP + βS∗q1)2 < 2

3(µ+ δ + βS∗)q1(µ+ α+ ηM∗ − βP ),
(ii) (q3φ− q1ηS)2 < 2

3q1(µ+ α+ ηM∗ − βP )q3φ0,
(iii) (q2ηS)2 < 2

3q2µq3φ0,
(iv) (q2(αε+ ηM∗))2 < 4

9q1(µ+ α+ ηM∗ − βP )q2µ,
(v) (q2δ)

2 < 2
3(µ+ δ + βS∗)q2µ,

inside the region of attraction Ω.
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5 Numerical Simulations

In this section, we present computer simulation results for model by using
Matlab 7.10. We choose the following set of parameters:

µ = 0.2, β = 0.9, ε = 0.02, δ = 0.1, φ = 0.2, η = 0.03, φ0 = 0.01,M0 = 3.

For these values of parameters, we see that the endemic equilibrium E2(P ∗,
S∗, R∗,M∗) exists and E2 (P ∗, S∗, R∗,M∗) are given as follows: P ∗ =
0.5005, S∗ = 0.1340, R∗ = 0.3655 and M∗ = 5.6806.

We also note that all conditions of Theorems 1 and 2 are satisfied. This
implies that E2 is locally as well as globally asymptotically stable for the
above set of values of parameters.

Figure 1: Global Stability in R-S
Plane.

Figure 2: Variation of smokers
population S with time for differ-
ent values of parameter β.

In Figure 1, we have considered the five different initial values of the
recovered and smokers populations. All trajectories starting from different
initial values approach to (R∗, S∗). This point is independent of the initial
status. This shows that (R∗, S∗) is globally asymptotically stable in RS-
plane.

In Figure 2, we have shown the effect of rate of transmission β of smok-
ing habit on smokers population we observe that smokers population in-
creases with increase in rate of transmission of smoking habit.

In Figure 3, we have shown that education parameter δ increases , the
number of smokers population decreases.

Figure 4, represent the effect of information dissemination rate η on
smokers population. This shows that by increasing the dissemination rate
of awareness programs, the number of smokers population decreases.
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Figure 3: Variation of smokers
population S with time for differ-
ent values of parameter δ.

Figure 4: Variation of smokers
population S with time for differ-
ent values of parameter η.

Figure 5: Variation of smokers
population S with time for differ-
ent values of parameter ε.

Figure 6: Variation of smokers
population S with time for differ-
ent values of parameter φ.

Figure 5, represent the effect of measure of determination ε increases,
the number of smokers population decreases.

In Figure 6, we have shown that proportionality constant φ represent
the rate at which the awareness campaigns by media are being implemented
increases, the number of smokers population decreases.

6 Conclusion

In this paper, we have introduced a mathematical model to study the effect
of education and awareness programs (run by media) on smokers popula-
tion. The global dynamics of this model has been studied. We have shown
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that there exists only two equilibrium points; the smoking-free equilibrium

(SFE) E1

(
µ
µ+δ , 0,

δ
µ+δ ,M0

)
, i.e. total elimination of smokers (as S = 0)

and the smoking present equilibirium E2 (P ∗, S∗, R∗,M∗) i.e. smoking will
persist. The (SFE) is locally asymptotically stable for reproductive number
S0 < 1 and the smoking present equilibrium exists for S0 > 1 and is globally
asymptotically stable under the conditions stated in Theorem 2. We have
also carried out numerical simulations to validate the analytical results. We
have shown that smokers population decreases as we increase the impact of
education on potential smokers increases. When individuals are educated
about the fatality of the diseases caused by smoking, they will refrain from
smoking in future and hence will move to removed class. We note that
of permanent quitters S0 = µβ

(µ+δ)(ηM0+µ+α) in order to eradicate smoking
we need to bring down S0 below one. This is possible by increasing edu-
cation and hence increasing education programs we can possibly eradicate
the smoking. Also, it is recommended that continuous health education
programs on smoking should be organized by institutions, associations and
societies with in and outsides the school collegs and other public places as
well because this will make them well informed towards hazards of smok-
ing and induce in them. Hence anti smoking campaigns by education and
media example play an important role to reduce the smoking.
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