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Abstract. This paper gives existence results for impulsive fractional semi-
linear differential inclusions involving Caputo derivative in Banach spaces.
We are concerned with the case when the linear part generates a semigroup
not necessarily compact, and the multivalued function is upper semicontin-
uous and compact. The methods used throughout the paper range over ap-
plications of Hausdorff measure of noncompactness, and multivalued fixed
point theorems. Finally, we provide an example to clarify our results.
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1 Introduction

Fractional differential equations and fractional differential inclusions have
gained considerable attention since two decades due to thier wide use as
mathematical modeling in various areas such as physics, biology, mechanics
and engineering, medical field, industry and technology. Moreover, frac-
tional differential equations and inclusions serve as an effective tool for the
description of hereditary properties of various materials and processes. For
more details, we refer to [15,18,22,25] and the references therein.
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In this paper, we shall be concerned with the following impulsive dif-
ferential inclusion with nonlocal condition:

(Q)


cDαx(t) ∈ Ax(t) + F (t, x(t)), t ∈ J = [0, b], t 6= ti, i = 1, . . . ,m,

x(t+i ) = x(ti) + Ii(x(ti)), i = 1, . . . ,m,

x(0) = g(x),

where cDα is the Caputo derivative of order α, A : D(A) ⊆ E → E is the
infinitesimal generator of a C0−semigroup {T (t), t ≥ 0} on a real separable
Banach space E, F : J ×E → 2E is an upper-Caratheodory multifunction,
2E is the power set of E, 0 = t0 < t1 < · · · < tm < tm+1 = b, for every
i = 1, 2, . . . ,m, Ii : E → E impulsive functions which characterize the jump
of the solutions at impulse points, g : PC(J,E)→ E, is a function related
to the nonlocal condition at the origin and x(t+i ), x(t−i ) are the right and
left limits of x at the point ti respectively and PC(J,E) will be specified
later.

Impulsive differential equations and impulsive differential inclusions have
played a significant role in development of modeling impulsive problems in
various areas; physics, technology, optimal control, and so forth. The rea-
son for this applicability arises from the fact that impulsive differential
problems are an appropriate modle for describing process which at certain
moments change their state rapidly and which cannot described using the
classical differential problems. For some applications, one can see [2,6,27].
Along with the applied development, the basic of general theory of im-
pulsive differential equations and inclusions has been discussed in details,
see the book of Benchohra et al. [8], the papers [10, 13] and the references
therein.

On the other hand, impulsive semilinear differential problems, with
nonlocal conditions are often motivated by physical problems, for instance
see [5,9,14]. The work of abstract nonlocal differential problems was firstly
investigated by Byszewski [9]. Nonlocal problems have received much more
attention after it was demonstrated that nonlocal conditions can be more
descriptive with better effects than the classical ones in applications, see
for example [12]. However, dealing with the compactness of the solution
operator at zero is the main difficulty of problems involving nonlocal condi-
tions. In this direction, various methods and techniques have been adopted
by some authors. We refer readers to [3, 10, 11, 13, 17, 19, 20, 23, 26, 29–31].
Among them, Wang et al. [30] introduced a new concept of PC-mild solu-
tions for (Q). They obtained existence results when F is a Lipschitz single-
valued function or continuous and maps bounded sets into bounded sets
and {T (t)}t>0 is compact.
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Using the Housdorff measure of noncompactness, Li [23] gave existence
results concerning nonlocal fractional differential equations, where the semi-
group is equicontinuous and the nonlocal term is compact. Moreover,
Ibrahim and Alsarori [19] established sufficient conditions which guaran-
tee the existence of mild solutions for the problem (Q) when the semigroup
is compact. Recently, Lian et al. [24] discussed the existence results of mild
solutions for (Q) without impulsive when the operator semigroup is not
necessarily compact.

Motivated by the importance of impulsive problems with nonlocal con-
ditions as a siginficant modeling tool in many fields as we mentioned before
as well as most of privous works contained the assumption of compactness
of the operator semigroup. We study such kind of problems in order to
prove the exitence of mild solution. In our study, we extend the results
shown in [24] to nonlocal differential inclusions undergoing impulse effects
scenario. Also we generalize the condition assumed by Ibrahim and Al-
sarori [19] on the semigroup {T (t)}t>0, that is, the compactness condition
is not necessary in our results.

After presenting some definitions and facts related to fractional calcu-
lus, the Hausdorff measure of noncompactness, and the set-valued analysis
in Section 2. Section 3 proceeds to prove the existence results of PC-mild
solutions for (Q), where PC-mild solutions as introduced in [30]. The re-
sults are derived by techniques and methods of noncompactness Hausdorff
measure, and multivalued fixed point theorems. In Section 4, An example
is given to demonstrate the applicability of our results.

2 Preliminaries and notations

During this section, we state some previous known results so that we can use
them later throughout this paper. Let C(J,E) be the space of E−valued
continuous function on J with the uniform norm ‖x‖ = sup{‖x(t)‖, t ∈ J},
L1(J,E) the space of E−valued Bochner integrable functions on J with the

norm ‖x‖L1(J,E) =
∫ b
0 ‖f(t)‖dt. We denote

Pb(E) = {B ⊆ E : B is nonemty and bounded},
Pcl(E) = {B ⊆ E : B is nonemty and closed},
Pk(E) = {B ⊆ E : B is nonemty and compact},

Pcl,cv(E) = {B ⊆ E : B is nonemty, closed and convex},
Pck(E) = {B ⊆ E : B is nonemty, convex and compact},

and conv(B) be the convex closed hull in E of subset B.
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Definition 1. ( [21]). The Hausdorff measure of noncompactness on E,
χ : Pb(E)→ [0,+∞) is defined as
χ(B) = inf{ε > 0 : B can be covered by finitely many balls of radius ≤ ε}.

Lemma 1. ( [21]). The Hausdorff measure of noncompactness on E sat-
isfies the following properties:

1. monotone if B0, B1 ∈ Pb(E), B0 ⊂ B1 implies χ(B0) ≤ χ(B1);

2. nonsingular if χ({a} ∪B) = χ(B), for every a ∈ E,B ∈ Pb(E);

3. invariant with respect to union with compact sets if for any compact
subset K ⊂ E and any B ∈ Pb(E), χ(B ∪K) = χ(B);

4. algebraic semiadditive if χ(B1 + B2) ≤ χ(B1) + χ(B2), for every
B1, B2 ∈ Pb(E); where B1 +B2 = {a+ b : a ∈ B1, b ∈ B2};

5. semiadditive if χ(B1 ∪B2) = max{χ(B1), χ(B2)}, for every B1, B2 ∈
Pb(E);

6. B is relatively compact if and only if χ(B) = 0, for every B ∈ Pb(E);

7. the Lipschitz property: | χ(B1) − χ(B2) |≤ h(B1, B2), for every
B1, B2 ∈ Pb(E); where h is the Hausdorff distance;

8. χ(tB) =| t | χ(B), t ∈ R, B ∈ Pb(E);

9. let L : E → E be a bounded linear operator. Then,
χ(L(B)) ≤ ‖L‖χ(B), for every B ∈ Pb(E).

Considering a partition on [0, b], i.e., a finite set {t0, t1, . . . , tm+1} ⊂ [0, b]
such that 0 = t0 < t1 < · · · < tm < tm+1 = b. Let J0 = [0, t1], Ji =]ti, ti+1]
and x(t+i ) = lims→t+i

x(s), i = 1, . . . ,m. For 0 ≤ i ≤ m, we define

PC(J,E) = {x : J → E and x|Ji
∈ C(Ji, E), x(t+i ) and x(t−i ) exist}.

Note that PC(J,E) with ‖x‖PC(J,E) = sup{‖x(t)‖ : t ∈ J} is a Banach
space. Also, let us consider the map χPC : Pb(PC(J,E))→ [0,∞[, defined
by

χPC(B) = max
i=0,1,...,m

χi(B|Ji
), B ∈ Pb(PC(J,E),

where χi is the Hausdorff measure of noncompactness on the Banach space
C(Ji, E) and

B|Ji
= {x∗ : Ji −→ E : x∗(t) = x(t), t ∈ Ji, x∗(ti) = x(t+i ), x ∈ B}.
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Note that B|J0
= {x|J0 : x ∈ B}. It is easy to see that χPC is the Hausdorff

measure of noncompactness on PC(J,E). For more information about
measure of noncompactness, we refer to [16,21].

Definition 2. According to the Riemann-Liouville approach, the fractional
integral of order α ∈ (0, 1) of a function f ∈ L1(J,E) is defined by

Iαf(t) =

∫ t

0

(t− s)α−1

Γ(α)
f(s)ds, t > 0,

provided the right side is defined on J, where Γ is the Euler gamma function
defined by Γ(α) =

∫∞
0 tα−1e−tdt.

Definition 3. The Caputo derivative of order α ∈ (0, 1) of continuously
differentiable function f : J → E is defined by

cDαf(t) =
1

Γ(1− α)

∫ t

0
(t− s)−αf (1)(s)ds = I(1−α)f (1).

Note that the integral appeared in the two previous definitions are taken
in Bochner sense and cDαIαf(t) = f(t) for all t ∈ J. For more details about
the fractional calculus, see [22,25].

Definition 4. A function x ∈ PC(J,E) is an impulsive mild solution for
(Q) if

x(t) =


Tα(t)g(x) +

∫ t

0
(t− s)α−1Sα(t− s)f(s)ds, t ∈ J0,

Tα(t)g(x) +

i=m∑
i=1

Tα(t− ti)yi +

∫ t

0
(t− s)α−1Sα(t− s)f(s)ds, t ∈ Ji,

where yi = Ii(x(t−i )), i = 1, 2, . . . ,m , f is an integrable selection for
F (·, x(·)),

Tα(t) =

∫ ∞
0

ξα(θ)T (tαθ)dθ, Sα(t) = α

∫ ∞
0

θξα(θ)T (tαθ)dθ,

ξα(θ) =
1

α
θ−1−

1
α$α(θ

−1
α ) ≥ 0,

$α(θ) =
1

π

∞∑
n=1

(−1)n−1θ−αn−1
Γ(nα+ 1)

n!
sin(nπα),

θ ∈ (0,∞) and ξ is a probability density function defined on (0,∞), that is∫∞
0 ξα(θ)dθ = 1.
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Remark 1. Since Tα(·) and Sα(·) are associated with the number α, there
are no analogue of the semigroup property, i.e. Tα(t+ s) 6= Tα(t)Tα(s) and
Sα(t+ s) 6= Sα(t)Sα(s).

In the following we recall the properties of Tα(·) and Sα(·).

Lemma 2. ( [31]).

(i) For any fixed t ≥ 0, Tα(t), Sα(t) are linear bounded operators.

(ii) For γ ∈ [0, 1],
∫∞
0 θγξα(θ)dθ =

Γ(1 + γ)

Γ(1 + αγ)
.

(iii) If ‖T (t)‖ ≤ M, t ≥ 0, then for any x ∈ E, ‖Tα(t)x‖ ≤ M‖x‖ and

‖Sα(t)x‖ ≤ M

Γ(α)
‖x‖.

(iv) For any fixed t ≥ 0, Tα(t), Sα(t) are strongly continuous.

(v) If T (t), t > 0 is compact, then Tα(t), Sα(t) are compact.

(vi) Both Tα(t) and Sα(t) are equicontinuous for t ∈ J if {T (t)}t≥0 is
equicontinuous.

Lemma 3. ( [10]) (Generalized Cantor’s intersection). If (Wn)n≥1 is
a decreasing sequence of bounded and closed nonempty subsets of E and
limn→∞χ(Wn) = 0, then ∩∞n=1Wn is nonempty and compact in E.

Lemma 4. ( [7]). If W ⊆ C(J,E) is bounded and equicontinuous, then
χ(W (t)) is continuous on J and χ(W ) = supt∈J χ(W (t)).

Lemma 5. ( [16]). If {un}∞n=1 ⊂ L1(J,E) is uniformly integrable, then
χ({un(t)}∞n=1) is measurable, and

χ({
∫ t

0
un(s)ds}∞n=1) ≤ 2

∫ t

0
χ({un(s)}∞n=1)ds.

Lemma 6. ( [24]). If B ⊆ E is bounded, then for each ε > 0, there is a
sequence {un}∞n=1 in B such that χ(B) ≤ 2χ({un}∞n=1) + ε.

Lemma 7. ( [4]). Let (Wn)n≥1 ⊂ W ⊂ E be a sequence of subsets where
W is a compact in the separable Banach space E. Then,

conv(lim sup
n→∞

Wn) = ∩N>0conv(∪n≥NWn).

Definition 5. ( [16, 21]). Let X and Y be two topological spaces. A
multifunction F : X → P (Y ) is said to be:
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1. Upper semicontinuous (u.s.c)if F−1(V ) = {x ∈ X : F (x) ⊆ V } is an
open subset of X for every open V ⊆ Y.

2. Closed if its graph ΓF = {(x, y) ∈ X × Y : y ∈ F (x)} is closed
subset of the topological space X × Y , that is, xn → x, yn → y and
yn ∈ F (xn) imply y ∈ F (x).

3. Completely continuous if F (B) is relatively compact for every bounded
subset B of X.

4. If the multifunction F is completely continuous with non empty com-
pact values, then F is u.s.c. if and only if F is closed.

5. F is said to have a fixed point if there is x ∈ X such that x ∈ F (x).

Remark 2. If U ⊂ X is closed, F (x) is closed for all x ∈ U , and F (U) is
compact, then F is u.s.c. if and only if F is closed.

Lemma 8. (Theorem 1.3.5, [21]). Let X,Y be (not necessarily separable)
Banach space, and let F : J ×X → Pk(Y ) be such that

(i) for every x ∈ X the multifunction F (·, x) has a strongly measurable
selection;

(ii) for a.e. t ∈ J the multifunction F (t, ·) is upper semicontinuous.

Then, for every strongly measurable function z : J → X there exists a
strongly measurable function f : J → Y such that f(t) ∈ F (t, z(t)) a.e..

Remark 3. (Theorem 1.3.1, [21]). For single-valued or compact valued
multifunction acting on a separable Banach space the notions measurability
and strongly measurable coincide. So, if X,Y be separable Banach spaces
we can replace strongly measurable with measurable in the previous lemma.

Definition 6. A sequence {fn : n ∈ N} ⊂ L1(J,E) is said to be semi-
compact if:

1. It is integrably bounded i.e. there is q ∈ L1(J,R+) such that ‖fn(t)‖ ≤
q(t) a.e. t ∈ J.

2. The set {fn : n ∈ N} is relatively compact in E a.e. t ∈ J.

Lemma 9. ( [21]). Every semi-compact sequence in L1(J,E) is weakly
compact in L1(J,E).

Lemma 10. ( [30], Lemma 2.10). For δ ∈ (0, 1] and 0 < e ≤ c, we have
|eδ − cδ| ≤ (c− e)δ.
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Theorem 1. ( [1]). If W is a bounded, closed, convex and compact
nonempty subset of E and the map G : W → 2W is upper semicontinuous
with G(x) is a closed and convex nonempty subset of W for each x ∈ W ,
then G has at least one fixed point in W .

3 Main results

By using the Hausdorff measure of noncompactness and multivalued fixed
point theorem we will prove the existence of mild solutions for the problem
(Q).

Theorem 2. Assume the following conditions:
(HA) The C0−semigroup {T (t) : t ≥ 0} generated by A is equicontinuous
and there exists a constant M > 0 such that supt∈J ‖T (t)‖ ≤M .
(HF) Let F : J × E → Pck(E) be a multifunction satisfies the following
hypotheses:

1. F is measurable to t for every x ∈ E and u.s.c. to x for a.e. t ∈ J .

2. There exists a function ς ∈ L
1
q (J,R+) with q ∈ (0, α) such that for

any x ∈ E, ‖F (t, x)‖ ≤ ς(t) for a.e. t ∈ J .

3. There exists a constant L > 0 with
4MLbα

Γ(1 + α)
< 1 such that for any

bounded subset D of E, we have χ(F (t,D)) ≤ Lχ(D) for a.e. t ∈ J .

(Hg) g : PC(J,E)→ E is continuous, compact and there exists a constant
N > 0 such that ‖g(x)‖ ≤ N for all x ∈ PC(J,E).
(HI) Ii : E → E for every i = 1, 2 · · · ,m is continuous, compact and
there exists a nondecreasing function hi : [0,+∞) → [0,+∞) such that
‖Ii(x)‖ ≤ hi‖x‖, x ∈ E.
(Hζ) There exists a function ζ ∈ C(J,R+) such that for each constant
$ ∈ (−1, 0), t ∈ J we have

MN +M
m∑
i=1

hi(ζ(ti)) +
αMt(1+$)(1−q)

Γ(1 + α)(1 +$)(1−q)
‖ς‖

L
1
q

([0,t],R+)

≤ ζ(t).

Then there exists at least one impulsive mild solution for the problem (Q).

Proof. From (HF)(1), Lemma 8 and Remark 3 the set

S1
F (·,x(·)) = {f ∈ L1(J,E) : f(t) ∈ F (t, x(t)) a.e.},
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is nonempty, for any x ∈ PC(J,E). Therefore, we can define a multifunction
G : PC(J,E)→ 2PC(J,E), as follows: y ∈ G(x) if and only if

y(t) =



Tα(t)g(x) +

∫ t

0
(t− s)α−1Sα(t− s)f(s)ds, t ∈ J0,

Tα(t)g(x) +

k=i∑
k=1

Tα(t− tk)Ik(x(t−k ))

+

∫ t

0
(t− s)α−1Sα(t− s)f(s)ds, t ∈ Ji, 1 ≤ i ≤ m,

(1)

where f ∈ S1
F (·,x(·)). Clearly, any fixed point for G is a mild solution for

the problem (Q). So, we will prove that G satisfies all the conditions of
Theorem 1. We will give the proof in six steps.
Step 1. We will prove that the values of G are convex subsets in PC(J,E).
Let x ∈ PC(J,E), y1, y2 ∈ G(x) and λ ∈ (0, 1). Let t ∈ J0, from the
definition of G we have

λy1(t) + (1−λ)y2(t) = Tα(t)g(x) +

∫ t

0

(t− s)α−1Sα(t− s)[λf1(s) + (1−λ)f2(s)]ds,

where f1, f2 ∈ S1
F (.,x(.)). Easily, one can see that S1

F (.,x(.)) is convex because

F has convex values. Then, [λf1+(1−λ)f2] ∈ S1
F (.,x(.)). Thus, λy1(t)+(1−

λ)y2(t) ∈ G(x), t ∈ J0. Similarly, we can prove that λy1(t) + (1− λ)y2(t) ∈
G(x) for t ∈ Ji, i = 1, 2, . . . ,m. Which means that G(x) is convex for each
x ∈ PC(J,E).
Step 2. We will show that G(x) is closed for every x ∈ PC(J,E).
Let x ∈ PC(J,E) and {zn}∞n=1 be a sequence in G(x) such that zn → z as
n → ∞. We need to prove that z ∈ G(x). From the definition of G, there
exists a sequence {fn}∞n=1 ⊂ S1

F (.,x(.)) such that

zn(t) =



Tα(t)g(x) +

∫ t

0
(t− s)α−1Sα(t− s)fn(s)ds, t ∈ J0,

Tα(t)g(x) +
k=i∑
k=1

Tα(t− tk)Ik(x(t−k ))

+

∫ t

0
(t− s)α−1Sα(t− s)fn(s)ds, t ∈ Ji, 1 ≤ i ≤ m.

(2)

By (HF)(2) we have for every n ≥ 1 and a.e. t ∈ J, ‖fn(t)‖ ≤ ς(t). So,
{fn : n ≥ 1} is integrable bounded. Also, {fn : n ≥ 1} is relatively compact
in E for a.e. t ∈ J since {fn(t) : n ≥ 1} ⊂ F (t, x(t)). Then, the set
{fn : n ≥ 1} semicompact. By Lemma 9, it is weakly compact in L1(J,E).
We can suppose that the sequence (fn)n≥1 converges weakly to a function
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f ∈ L1(J,E). By Mazur’s Lemma there is a sequence {vn}∞n=1 ⊆ conv{fn :
n ≥ 1} such that vn converges strongly to f . Because the values of F are
convex and compact, the set S1

F (·,x(·)) is convex and compact. Therefore,

{vn}∞n=1 ⊆ S1
F (·,x(·)) and f ∈ S1

F (·,x(·)). Also, by using Holder inequality it

can be shown that for all t ∈ J, s ∈ (0, t] and every n ≥ 1,

‖(t− s)α−1Sα(t− s)fn(s)‖ ≤ |t− s|α−1 Mα

Γ(α+ 1)
ς(s) ∈ L1(J,R+).

Therefore, by the Lebesgue dominated convergence theorem, taking n→∞
on both sides of (2), we get

z(t) =



Tα(t)g(x) +

∫ t

0
(t− s)α−1Sα(t− s)f(s)ds, t ∈ J0,

Tα(t)g(x) +
k=i∑
k=1

Tα(t− tk)Ik(x(t−k ))

+

∫ t

0
(t− s)α−1Sα(t− s)f(s)ds, t ∈ Ji, 1 ≤ i ≤ m,

(3)

which means that z(t) ∈ G(x).
Step 3. Let us set B0 = {x ∈ PC(J,E) : ‖x(t)‖ ≤ ζ(t), t ∈ J}, since
ζ ∈ C(J,R+), then B0 is a bounded subset of PC(J,E). Moreover, B0 is
closed and convex. We need to prove that G(B0) ⊂ B0. In fact, for fixed
y ∈ G(B0), let x ∈ B0 such that y ∈ G(x). Then, by using Lemma 2,
(HF)(2), (Hg), (Hζ) and Holder’s inequality for t ∈ J0, we have

‖y(t)‖ ≤ ‖Tα(t)g(x) +

∫ t

0
(t− s)α−1Sα(t− s)f(s)ds‖ ≤ ‖Tα(t)g(x)‖

+‖
∫ t

0
(t− s)α−1Sα(t− s)f(s)ds‖

≤ MN +
αM

Γ(1 + α)

∫ t

0
(t− s)α−1ς(s)ds

≤ MN +
αM

Γ(1 + α)

t(1+ω)(1−q)

(1 + ω)(1−q)
‖ς‖

L
1
q (J,R+)

≤ ζ(t),

where ω =
α− 1

1− q
∈ (−1, 0). Similarly, by using (HI) in addition and for

t ∈ Ji, i = 1, . . . ,m we get

‖y(t)‖ ≤MN +M

k=i∑
k=1

hk(ζ(tk)) +
αM

Γ(1 + α)

t(1+ω)(1−q)

(1 + ω)(1−q)
‖ς‖

L
1
q (J,R+)

≤ ζ(t).
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Which follows that y ∈ B0. Then, G(B0) ⊂ B0.
Step 4. We want to show that G(B0)|Ji

is equicontinuous for every i =

0, 1, . . . ,m, where

G(B0)|Ji
= {y∗ ∈ C(Ji, E) : y∗(t) = y(t), t ∈ Ji = (ti, ti+1],

y∗(ti) = y(t+i ), y ∈ G(B0)}.

Let y ∈ G(B0). Then there exists x ∈ B0 with y ∈ G(x). From (1), there
is f ∈ S1

F (.,x(.)) such that

y(t) =



Tα(t)g(x) +

∫ t

0
(t− s)α−1Sα(t− s)f(s)ds, t ∈ J0,

Tα(t)g(x) +
k=i∑
k=1

Tα(t− tk)Ik(x(t−k ))

+

∫ t

0
(t− s)α−1Sα(t− s)f(s)ds, t ∈ Ji, 1 ≤ i ≤ m.

We consider the following cases:
Case 1. When i = 0, let t, t+ τ ∈ J0 = [0, t1]. Then

‖y∗(t+ τ)− y∗(t)‖ = ‖y(t+ τ)− y(t)‖
≤ ‖Tα(t+ τ)g(x)− Tα(t)g(t)‖

+‖
∫ t+τ

0
(t+ τ − s)α−1Sα(t+ τ − s)f(s)ds

−
∫ t

0
(t− s)α−1Sα(t− s)f(s)ds‖

≤ G1 +G2 +G3 +G4,

where

G1 = ‖Tα(t+ τ)g(x)− Tα(t)g(t)‖,

G2 = ‖
∫ t

0
[(t+ τ − s)α−1 − (t− s)α−1]Sα(t+ τ − s)f(s)ds‖,

G3 = ‖
∫ t

0
(t− s)α−1[Sα(t+ τ − s)− Sα(t− s)]f(s)ds‖,

G4 = ‖
∫ t+τ

t
(t+ τ − s)α−1Sα(t+ τ − s)f(s)ds‖.

We will show that Gi → 0 as τ → o for i = 1, 2, 3, 4. By (HA) and Lemma
2 we have

lim
τ→0

G1 = lim
τ→0
‖Tα(t+ τ)g(x)−Tα(t)g(t)‖ ≤ N lim

τ→0
‖Tα(t+ τ)−Tα(t)‖ = 0,
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not dependent on x. For G2 and G4, one can see the proof in details in
Theorem 4 of [19]. For G3, from the equicontinuity of {Sα(t) : t ∈ J}, we
can get

G3 ≤
∫ t

0
‖(t− s)α−1[Sα(t+ τ − s)− Sα(t− s)]f(s)‖ds→ 0, as τ → 0.

Therefore,

lim
τ→0
‖y∗(t+ τ)− y∗(t)‖ = 0. (4)

Case 2. When t ∈ Ji, i ∈ {1, 2, · · · ,m}. Let t, t + τ two points in Ji,
according the definition of G we have

‖y∗(t+ τ)− y∗(t)‖ = ‖y(t+ τ)− y(t)‖ ≤ ‖Tα(t+ τ)g(x)− Tα(t)g(x)‖

+

k=i∑
k=1

‖Tα(t+ τ − tk)Ik(x(t−k ))− Tα(t− tk)Ik(x(t−k ))‖

+‖
∫ t+τ

0
(t+ τ − s)α−1Sα(t+ τ − s)f(s)ds

−
∫ t

0
(t− s)α−1Sα(t− s)f(s)ds‖.

Arguing as in the Case 1, we obtain

lim
τ→0
‖y∗(t+ τ)− y∗(t)‖ = 0. (5)

Case 3. When t = ti, i = 1, 2, · · · ,m. Let τ > 0 and δ > 0 such that
ti + τ ∈ Ji and ti < δ < ti + τ ≤ ti+1, then we have

‖y∗(ti + τ)− y∗(ti)‖ = lim
δ→t+i

‖y(ti + τ)− y(δ)‖.

From the definition of G, we obtain

‖y(ti + τ)− y(δ)‖ ≤ ‖Tα(ti + τ)g(x)− Tα(δ)g(x)‖

+

k=i∑
k=1

‖Tα(ti + τ − tk)Ik(x(t−k ))− Tα(δ − tk)Ik(x(t−k ))‖

+‖
∫ ti+τ

0
(ti + τ − s)α−1Sα(ti + τ − s)f(s)ds

−
∫ δ

0
(δ − s)α−1Sα(δ − s)f(s)ds‖.
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With similar argument as in Case 1, we have

lim
τ→0
δ→t+i

‖y(ti + τ)− y(δ)‖ = 0. (6)

From (4), (5) and (6) we conclude that G(B0)|Ji
is equicontinuous for every

i = 0, 1, · · · ,m, and thus G(B0) is equicontinuous on J .

Now, we define a sequence Bn = convG(Bn−1), n ≥ 1. From Step 1
and Step 2, we know that Bn is nonempty, closed and convex in PC(J,E).
Moreover, B1 = convG(B0) ⊂ B0. By induction, (Bn)∞n=1 is decreasing se-
quence of closed, bounded, convex and equicontinuous subsets of PC(J,E).
Set B = ∩∞n=1Bn. So, B is a closed, bounded, convex and equicontinuous
subset of PC(J,E) and G(B) ⊂ B. We want to prove that B is nonempty
and compact in PC(J,E). By light of Lemma 3, it is enough to show that
limn→∞ χPC(Bn) = 0, where χPC is the Housdorff measure of noncompact-
ness on PC(J,E) as defined in Section 2. By Lemma 6, for arbitrary ε > 0
there exist sequence {yk}∞k=1 in G(Bn−1) such that

χPC(Bn) = χPCG(Bn−1) ≤ 2χPC{yk : k ≥ 1}+ ε.

From the definition of χPC ,

χPC(Bn) ≤ 2 max
0≤i≤m

χi(v|Ji
) + ε,

where v = {yk : k ≥ 1} and χi is the noncompactness on C(Ji, E). By using
the equicontinuity Bn|Ji

, i = 0, 1, · · · ,m, we can apply Lemma 4 and we

get

χi(v|Ji
) = sup

t∈Ji
χ(v(t)),

where χ is the Hausdorff measure of noncompactenss on E. Therefore, by
using the nonsinglarity of χ we get

χPC(Bn) ≤ 2 max
i=0,1,··· ,m

[sup
t∈Ji

χ(v(t))] + ε = 2 sup
t∈J

χ(v(t)) + ε.

Then,

χPC(Bn) ≤ 2 sup
t∈J

χ{yk : k ≥ 1}+ ε. (7)

Since yk ∈ G(Bn−1), k ≥ 1 there is xk ∈ Bn−1 such that yk ∈ G(xk), k ≥ 1.
From the definition of G, there exist fk ∈ S1

F (·,xk(·)). So, (7) can be written
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as

χPC(Bn) ≤ 2 sup
t∈J

χ{yk : k ≥ 1}

≤


χ(Tα(t)g(xk)) + χ(

∫ t

0
(t− s)α−1Sα(t− s)fk(s)ds), t ∈ J0,

χ(Tα(t)g(xk)) +
r=i∑
r=1

χ(Tα(t− tr)Ir(xk(t−r )))

+χ(
∫ t
0 (t− s)α−1Sα(t− s)fk(s)ds), t ∈ Ji, 1 ≤ i ≤ m.

Since, g and Ii for every i = 1, 2, · · · ,m are compact, by Lemma 1 we have

χ{Tα(t)g(xk) : k ≥ 1} = 0, (8)

χ{Tα(t− tr)Ir(xk(t−r )) : k ≥ 1} = 0. (9)

Hence, by (8) and (9) for every t ∈ J we have

χPC(Bn) ≤ ε+ 2 sup
t∈J

χ{
∫ t

0
(t− s)α−1Sα(t− s)fk(s)ds : k ≥ 1}.

By Lemma 1, Lemma 5 and (HF)(3),

χPC(Bn) ≤ 4

∫ t

0
(t− s)α−1χ{Sα(t− s)fk(s) : k ≥ 1}ds+ ε

≤ 4αM

Γ(1 + α)

∫ t

0
(t− s)α−1χ(F (s,Bn−1(s)))ds+ ε

≤ 4αML

Γ(1 + α)

∫ t

0
(t− s)α−1χ(Bn−1(s))ds+ ε

≤ 4αML

Γ(1 + α)

∫ t

0
(t− s)α−1χPC(Bn−1)ds+ ε

≤ 4αML

Γ(1 + α)
χPC(Bn−1)

∫ t

0
(t− s)α−1ds+ ε

≤ 4MLbα

Γ(1 + α)
χPC(Bn−1) + ε.

Since ε is arbitrary, we find

χPC(Bn) ≤ rχPC(Bn−1),

where r =
4ML

Γ(1 + α)
< 1. Clearly, by means of finite number of steps we

can write

0 ≤ χPC(Bn) ≤ rn−1χPC(B1). (10)
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Now, if we take the limit as n→∞, we get

lim
n→∞

χPC(Bn) = 0.

Thus, it follows from Lemma 3 that B = ∩∞n=1Bn is nonempty and compact.
Step 5. We will prove that the graph of G|B : B → 2B is closed. Let
{xn}∞n=1 in B with xn → x as n→∞, yn ∈ G(xn) and yn → y as n→∞.
We need to show that y ∈ G(x). Because yn ∈ G(xn), for any n ≥ there
exists fn ∈ S1

F (·,xn(·)) such that

yn(t) =



Tα(t)g(xn) +

∫ t

0
(t− s)α−1Sα(t− s)fn(s)ds, t ∈ J0,

Tα(t)g(xn) +
k=i∑
k=1

Tα(t− tk)Ik(xn(t−k ))

+

∫ t

0
(t− s)α−1Sα(t− s)fn(s)ds, t ∈ Ji.

(11)

We know that for every n ≥ 1, ‖fn(t)‖ ≤ ς(t) for a.e. t ∈ J. This show
that the set {fn : n ≥ 1} is integrably bounded. Moreover, (HF)(3) and
convergence of {xn}∞n=1 implies that

χ{fn : n ≥ 1} ≤ χ(F (t, {xn(t) : n ≥ 1}) ≤ Lχ{xn(t) : n ≥ 1} = 0.

This means that the sequence {fn : n ≥ 1} is relatively compact in E for
a.e. t ∈ J . Therefore, the sequence {fn : n ≥ 1} is semicompact and
by Lemma 9 it is weakly compact in L1(J,E). We can assume that fn
converges weakly to a function f ∈ L1(J,E). Then by Mazur’s Lemma,
there is a sequence {un}∞n=1 ⊆ conv{fn : n ≥ 1} such that un converges
strongly to f . Since F is u.s.c. with convex and compact values, so by
Lemma 7 we get

f(t) ∈ ∩k≥1{un(t) : n ≤ k} ⊆ ∩k≥1conv{fn : n ≥ k}
⊆ ∩k≥1conv{∪n≥kF (t, xn(t))}
= conv lim

n→∞
supF (t, xn(t)) ⊆ F (t, x(t)).

Then, by continuity of g, Tα, Sα, Ii (i = 1, . . . ,m) and by the same argu-
ments used in Step 2, we conclude that

y(t) =



Tα(t)g(x) +

∫ t

0
(t− s)α−1Sα(t− s)f(s)ds, t ∈ J0,

Tα(t)g(x) +

k=i∑
k=1

Tα(t− tk)Ik(x(t−k ))

+

∫ t

0
(t− s)α−1Sα(t− s)f(s)ds, t ∈ Ji, 1 ≤ i ≤ m.
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Hence, y ∈ G(x). This means that the graph of G|B is closed.
Step 6. We will show that G is u.s.c. on B.
From Steps 1 - 5, we have that B is closed and G(x) is closed for every
x ∈ B. Moreover, the set G(B) ⊆ B is compact and G is closed. Therefore,
by Remark 2, we conclude that G is u.s.c..

At the end, by Theorem 1, G has at least one point x such that x ∈ G(x)
and x is mild solution for the problem (Q).

4 Example

We study the following impulsive partial differential system with nonlocal
conditions:

∂αt y(t, z) ∈ ∂2zy(t, z) +R(t, y(t, z)), t ∈ [0, 1], t 6= ti, i = 1, . . . ,m, z ∈ [0, 1],

y(t, 0) = y(t, 1) = 0,

y((
i

m+ 1
)+, z) = y(

i

m+ 1
, z) +

1

2i
, i = 1, . . . ,m, z ∈ [0, 1],

y(0, z) =

j=q∑
j=0

∫ 1

0

kj(z, v) tan−1(y(sj , v))dv, z ∈ [0, 1],

(12)

where q is a positive integer, 0 < s0 < s1 < · · · < sq < 1, kj ∈ C([0, 1] ×
[0, 1],R), j = 0, 1, . . . , q, ∂αt is the Caputo fractional partial derivative of
order α, where 0 < α < 1 and R : [0, 1]× E → P (E).

In order to rewrite (12) in the abstract form, we put E = L2([0, 1],R),

and A is the Laplace operator, i.e., A = ∂2

∂z2
on the domain D(A) = {x ∈

E : x, x′ are absolutely continuous, and x′′ ∈ E, x(0) = x(1) = 0}. From
[28], A is the infinitesimal generator of an analytic and compact semigroup
{T (t)}t≥0 in E. This implies that A satisfies the assumption (HA).

For every i = 1, . . . ,m define Ii : E → E by

Ii(x)(z) =
1

2i
, z ∈ [0, 1].

Note that the assumption (HI) is satisfied.
For every j = 0, 1, . . . , q, define Hj : E → E as

(Hj(x))(z) =

∫ 1

0
kj(z, v) tan−1(x(v))dv, z ∈ [0, 1].

Now take g : PC([0, 1], E)→ E as

g(x) =

j=q∑
j=0

Hj(x(sj)).
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Finally, let F (t, x)(z) = R(t, x(z)) and x(t)(z) = x(t, z), where z ∈ [0, 1].
Then, the system (12) can be rewritten as

cDαx(t) ∈ Ax(t) + F (t, x(t)), t ∈ J = [0, 1], t 6= ti, i = 1, . . . ,m,

x(t+i ) = x(ti) + Ii(x(t−i )), i = 1, . . . ,m,

x(0) = g(x),

If we put some conditions on F as in Theorem 2, then (12) has at least one
mild solution on [0, 1].

5 Conclusion

The present article discussed the existence of PC-mild solutions of non-
local impulsive differential inclusions in Banach space when the operator
semigroup is not necessarily compact. We used methods and results of
Hausdorff measure of noncompactness, and multivalued fixed point theo-
rems in order to establish sufficient conditions that guarantee the existence
of PC-mild solutions for (Q). The results presented in this paper developed
and extended some previous results. An example was presented to support
our main results.
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