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Abstract. This paper deals with a non-Markovian batch arrival bulk ser-
vice queue with unreliable server, re-service on server’s decision, Bernoulli
vacation schedule under multiple vacation and balking. We consider that
the server is unreliable and may stop working due to failure. When this
happens, the service is interrupted and restarted after repair. The service
time, vacation time, re-service time and repair time assume to follow a
general (arbitrary) distribution. In the proposed model, we derived the
probability distribution of queue size at a random and departure epoch
using supplementary variable techniques. Finally, some performance mea-
sures, particular cases and numerical results are obtained.
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1 Introduction

Batch arrival, bulk service vacation queues have wide applications in call
centres, manufacturing system, complex communication networks and pro-
duction systems, etc. At the point of service completion when no clients
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are available in the system, the server takes off for a long period of time,
which is known as vacation. Levy and Yechiali [I1] introduced a model
known as the multiple vacation policy under the assumption that, at the
end of a vacation the server takes sequence of vacations until he finds at
least one item is waiting in the system. One of the most important results
that concerns with such models is the Stochastic decomposition result.

A common model related to multiple vacation model is the Bernoulli
vacation. “After each service completion, the serve have an option to go for
a short vacation with probability ‘0(0 < 6 < 1)’ or starts a fresh service with
the probability ‘(1 — #)’ if the queue length is at least ‘a’ ”. This vacation
model was introduced by Keilson and Servi [9] in GI/G/1 queuing model.
Choudhury [6] studied a non-Markovian queue with a unreliable server, two
phase services, repair after delay and Bernoulli schedule multiple vacation
policy. Jeyakumar et al. [8] analysed bulk service queueing system with
server breakdown and multiple working vacations.

The study of queuing models with server breakdowns can be dated back
to the 1950s. In queueing theory, we termed these types of models as unreli-
able server queueing systems. In real life, we often come across a situation
where service stations fail and are repaired. Senthilnathan and Arumu-
ganathan [15] discussed an batch arrival non-Markovian retrial queue with
unreliable server, two phase service and two phase repair. Rajadurai [14]
studied a non-Markovian retrial G-queue with vacation interruption, un-
reliable server with different working vacation policy. Chang et al. [1] in-
vestigated a retrial queue with unreliable-server and customers feedback.
Impatient clients are a very common happening in the queuing system. Cus-
tomers arrive at the system, but may leave without joining the queue in the
system (balking) or clients may join the queue for some time, but may quit
the system without getting service (reneging). Choudhury and Medhi [7]
discussed Balking and Reneging in multi server Markovian queuing system.
Ayyappan and Shymala [3] analyzed the transient behavior of batch arrival
non-Markovian queuing model with balking, Bernoulli vacation and state
dependent arrival. Kailash C. Madan [13] explored a batch arrival queue
with service in three fluctuating modes, balking, random breakdown and
standby during breakdown periods. Recently, Binay Kumar [10] studied
bulk queueing model with optional service, balking, unreliable server under
Bernoulli vacation.

The concept of re-service in queueing model was introduced by Madan
[12]. He considered a single server non-Markovian queuing model, in which
the essential service was given to all clients in the system. “As soon as
the first service is completed, the clients have an option to take second
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service with probability ‘@’ or vacate the system with probability ‘(1—6)" .
Haridass et al. [7] analyzed a queuing system with setup, bulk service,
multiple vacations and a new concept of admitting re-service on server’s
choice. Ayyappan and Sathiya [!] discussed the transient behavior of batch
arrival queues with optional re-service and two stage regular service.

In queueing literature, there are very few papers discussed individually
service interruptions, Bernoulli schedule multiple vacation, re-service and
balking. Thus, in this work, we intend to study a queueing model that
combine these attributes together with a bulk service queueing system.
Moreover, another important characteristic is rendering re-service based
on server decision that makes the system more realistic. We also take into
consideration elapsed vacation time, the elapsed service time, elapsed re-
service time and elapsed repair time as supplementary variables.

The above queueing model can be effectively used as a model in pro-
duction system. Consider a production system, where the system does not
initiate the production until some predefined amount of raw materials are
accumulated. There are certain items that may require reprocessing service
(re-service) apart from regular service. If the reprocessing service is admit-
ted, then the raw materials waiting for production were increased. So, in
many cases the reprocessing service may be provided (or rejected) based on
certain constraints which does not affects the production system. At the
completion of the processing of raw materials, the process may be stopped
for maintenance of the system. This maintenance is considered as a vaca-
tion (phase I vacation) in our model. We consider that the raw material
arrives in batches of variable size. Moreover, the production process may
be disrupted due to breakdown and it is repaired immediately. On comple-
tion of each service, the system checks the amount of raw material, whether
or not to start the major production. If at that instant, no considerable
amount of raw material is found, then the system will perform an another
optional job (phase II vacation) for a random length of time until it finds
required availability of raw materials. Hence, our model can be estimated
by this production system.

We organized the paper as follows. Figure 1 illustrates the schematic
representation of the proposed model. The Mathematical analysis of the
model is briefly described in Section 2. Section 3 focuses on the queue size
distribution at a random epoch. PGF of queue size is obtained in Section
4. Stability condition and some particular cases are examined in Section 5
and Section 6. In Section 7, we derive the mean queue length and expected
waiting time of the clients. Section 8 concerns with distribution of queue
size at departure epoch. Numerical illustration, conclusions and further
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work are presented in Section 9 and Section 10 respectively.
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Figure 1: Schematic representation.

2 The Mathematical analysis of our model

We examine a batch arrival bulk service queueing system, where the cus-
tomers reach the system according to a compound Poisson process, with
arrival rate X\. Let X7, Xs,... be the size of consecutive arriving batches
which are identically independent random variables (i.i.d) with probability
mass function (p.m.f) m; = Pr{X = j};j > 1, and probability generat-
ing function M(z). Service follows the “General Bulk Service Rule”. The
service times {B. j,j > 1} of the clients are i.i.d. random variable with
distribution function (DF) Bj(g) and Laplace-Stieltjes Transform (LST)
Bi(s). After service completion, the dispatched batch of clients can re-
quest for re-service with probability ‘p’ and it is not essential to accept it;
the server concedes the request with probability ‘m’. On each service com-
pletion, the server has a choice to go for a vacation with probability ‘0’ and
start fresh service with probability ‘1—6’. The re-service time {By;,j > 1}
of the clients is i.i.d. random variable with DF By(g) and LST Ba(s). While
the server is doing the regular service (or re-service), it may downfall at
any moment with a rate ‘n’ and the service channel will stop working for
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a short period of time and it is repaired immediately. The repair times
{Re,,j =1} and {Ry;,j > 1}, of the server are i.i.d random variable with
distribution functions Ri(y), Ra(y) and LST Ri(s), Ra(s). After, the re-
pair is completed, the server starts its remaining service (or re-service) to
the batch of clients whose service was interrupted due to breakdown. After
each service completion, the server takes phase-I vacation with probabil-
ity ‘0’ or may carry on his service to the next unit, if any, with probability
‘1—0’ (i.e) the server acquire Bernoulli vacation. The phase-I vacation time
random variable {Q. j,j > 1} with DF Q1(g) and LST Q:(s). Now, for
further development, we introduce the approach of multiple vacation policy,
where after each service or re-service or phase-I vacation completion, the
server takes vacation sequentially until he finds at least ‘a’ clients in the
queue called phase-II vacation (i.e) we have established multiple vacation
policy after phase-I vacation. The phase-II vacation time random variable
{Qy,,J = 1} of the server expect to follow a general (arbitrary) distribution
with DF Q2(g) and LST Q2(s). The decision of taking phase-II vacation
after each service or re-service or phase I vacation are independent.

3  Queue size distribution

In this section, we obtain the PGF of server’s state and number of customers
in the queue (the number in the queue excluding the batch being served, if
any) at a random epoch.

Let S(t) be the queue length (size), BY(t), BY(t) be the elapsed service
and re-service time, Q{(¢), Q3(t) be the elapsed phase-I and phase-II vaca-
tion time and R1%(t), R2°(¢) be the elapsed repair time during breakdown
while rendering regular and re-service in the system at time ‘t’.

We define

1, the server is doing regular service at time ‘t’,

2, server is rendering re-service at time ‘t’,

3, server is on phase-I vacation at time ‘t’,

4, server is on phase-II vacation at time ‘t’,

5, server is breakdown and under repair while
rendering the regular service at time ‘t’,

6, server is breakdown and under repair while

rendering the re-service at time ‘t’.

Thus, the supplementary variables BY(t), BJ(t), QJ(t), Q3(t), R1°(t) and
Ry°(t) are imported in order to attain a bivariate Markov process {S(t), D(t)}
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where

D(t) = BY(t) if Q(t) =1, D(t) = B(t) if Q(t) = 2,

D) = QU1) if Q1) = 3, D(t) = QY1) if (1) = 4,

D(t) = RY(t) if Q(t) =5, D(t) = R3(t) if Q(t) =6

Now, we illustrate the following probabilities:

e B, (g,t) represents the probability of exactly ‘j’ clients in the queue

at time ‘t’, excluding the batch under service and the server is busy
with regular service with elapsed service time is ‘g’.

e By i(g,t) represents the probability of exactly ‘j’ clients in the queue

at time ‘¢’, excluding the batch under re-service and the server is pro-
viding re-service with the elapsed re-service time is ‘g’.

® ()¢ ;(g,t) represents the probability of exactly ‘j’ clients in the queue

at time ‘¢’ and the server is on phase-I vacation with the elapsed va-
cation time is ‘g’.

e Qs ;(g,t) represents the probability of exactly ‘j’ clients in the queue

at time ‘¢’ and the server is on phase-II vacation and with the elapsed
vacation time is ‘g’.

e R j(g,v,t) represents the probability of exactly ‘j’ clients in the

queue at time ‘¢’, with elapsed service time is ‘g’ and the elapsed
repair time is ‘v’.

e Ry i(g,v,t) represents the probability of exactly ‘j’ clients in the

queue at time ‘¢’, with elapsed re-service time of the batch of clients
‘g’ and the elapsed repair time is ‘v’.

For the process,

Be j(9)dg = lim

By j(9)dg = lim
Qe,j(9)dg = lim
Qy,i(g)dg = lim

t—o00

Pr(S(t) = j, D(t) = BY(t); g < BY(t) < g+dgl; g >0, j >0,
PriS(t) =4, D(t) = B3(t); g < B3(t) < g+dg]; g >0, j >0,
Pr(S(t) = j, D(t) = Q(t); g < QV(t) <g+dgl; >0, j >0,
PriS(t) =3, D(t) = Q5(1); g9 < Q5(t) < g+dgl; >0, j>0,

and for fixed value of g and j > 0,

Re (g, v)dv = lim PriS(t) = j, D(t) = R (1)

v < RY(t) <v+dv/BY(t) = gl; (9,v) > 0,

Ry;(g,v)dv = lim Pr(S(t) = j, D(t) = R5(t);

v < Ry(t) < v +dv/B3(t) = gl; (9,v) > 0.
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Further, it is assumed that
B1(0) = Ba(0) = Qu(0) = @2(0) = Ry(0) = Ra(0) =0,
and
Bi(00) = Ba(00) = Qi(09) = Qa(00) = Ba(oc) = Ra(oc) = 1.

Bi(g), Ba(g), Q1(g), Q2(g) are continuous at g = 0 and Ry (v), Ra(v) are

continuous at v = 0, so that

_ _dBi(g) _ dBs(9) _ dQi(g) )
_dQa(g) Do — dRy(v) and (v)dy — dR2( )

are the hazard rates of Bi(g), B2(g), Qi(g), Q2(g), Ri(v) and Ra(v),
respectively.
The Kolmogorov forward equations in transient state:

O B (91 + (A 6(g) + 1) Bes(9:1) = A1~ 6;0)

0
= Beg(0,0)+

dg
J 0
> Bussla.)+ [ Relooso)de, 320, (1)
0

k=1

0 0

J )
chBfJ—k(g,t) +/0 Rﬁj(g,’l),t)C(’U)d’U, ]Z Oa (2)

k=1

(%Qe,j(g, t) + %Qe,j(% t) + (A +11(9)Qe,i(9,t) = A(1 = 6;,0)(1 = B)Qe,5(9, 1)

J
+5AZCer,j—k(gat)a j 2 07 (3)

(%Qf,j(g,t) + %Qf,j(g,t) + (A +12(9)Qy,5(9:1) = A1 = 05,0)(1 — B)Qy,5(9,t)

J
+ BN ekQrj-k(g:t), 5 >0, (4)
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0 0
%Reyj(g,v,t) + aRe,j(gvvvt) + (>‘ + C(v))Re’j(g,y,t)

J
=M1 =80) Y cxRejr(g,v,t), 5>0,  (5)
k=1
0
aRf,j (gv U, t) + (>‘ + C(U))Rf»j(gﬂ U, t)
J
= A(1 - 5j,0) chRf,j—k(ga Uat)v ] Z 07 (6)
k=1

0
%Rf’j(g7v7t) +

where d,, ; denotes Kronecker’s function.
Boundary conditions at g = 0:

b o) b 00
Beo(0,) = (1—0)1—p) Y. /0 Ber(9.0)6(g)dg + 3 /O Qe.(9. )1 (9)dg
r;a N 7";@ N
o -m / Ber(g:)6(0)dg + 3 / Q1.-(9,t)v2(9)dg
(1-¢ Z/ By (g.t)a(g)dy, (7)

B.;(0,t)=(1-6)(1-p / Be jib(g,t dg+/ Qe,j+b(g,t)1(9)dyg
+(1—9)p(1—ﬂ)/ Be j(g,t)9( d9+/ Qyr,j+v(9,t)2(g9)dg
0
+(1-0) / By (g alg)dg, §> 1, (8)
By ;(0,1) = pr / Bej(9:0)6(g)dg, § >0, )

oo

Qui(0.1) = 0(1 - p) / OoBexg, H6(g)dg + 6p(1 — ) / B..;(9.)6(g)dg

0

+9/ By.i(g,t)a(g)dg, j >0, (10)

Qs5(0,8) = (1-0)(1 — p) / B, ;(g.)é(g)dg + /OOOQe,j@,t)ul(g)dg

0

+(1-0)p 1—7r/ B ;( g7t)¢(g)dg+/ Qy.j(g,t)v2(g)dg

(1-6 / By i(g,t)a(g)dg, 7=0,1,2,...,a—1, (11)

QfJ(O?t) - Oa j Z CL, (12)
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and at v = 0 and fixed value of ‘¢’
Re,j(gv Ovt) = nBe,j(gvt)a J =0,
Ry,i(9,0,t) =nBy;(g,t), j = 0.

The initial conditions are:

B j(0) = By,;(0) = Qc,;(0) = Qy,;(0) = Re,;(0) = Ry,;(0) = 0,

i=0,1,2,....

The normalizing condition is:

]go/() Be,j(g)dg + ]:ZO/O Bf,j(g)dg + ]:ZO/O Qe,j(g)dg

00 00 o 00 00

+Z/ Qf,j(g)dg+2/ / Re j(g,v)dgdv
=070 —oJo Jo

+ Z/ / Ry (g, v)dgdv = 1.
—oJo Jo

Probability generating functions for |z| < 1:

Be(g,2,t) = ZzBe]g, , Be(0,2,t) szBejOt
t(g,2,t) = Zz]ij g,t), B#(0,2,t) = szBfJOt

g,z t ZZ]Qe,] g, Qe 0 2, t Zz Qe,j O t

Qf(g) 2, t) = Z ZJQf,j(ga t)a Qf(07 Z, t) = Z Z]Qf,J(O’ t)v
j*O =0

e(g,v.2,t) ZZJRH (9,v,t), Re(g,0.2,t) = szReJ(g,O.t),

J=0

R¢(g,v.2,t) = szRfj g,v,t), Rs(g,0.2,t) = szRf,j(g,O.t),

j=0
The Laplace transform of h(t) is:

/ e h(t)dt, R(s) > 0.
0

221

(15)

(16)

(17)
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By applying the Laplace transform technique on both sides of the equations
(1) to (14) and using equation (15), we get

5o Bes(0:) (54 A+ 6(0) + 1Byl 5) = ML= 8500 Y- cuBis-nlg. )
k=1
/ Re j(g,v,s8)¢(v)dv, j >0, (19)

0 _
angJ(gv s)+ (s +A+alg) +1)By;(g,5) = A1 =80 ZCka,j—k-(g’S)
k=1

/ Ry i(g,v,8)¢(v)dv, j >0, (20)

J

%Qe,j(ga 8) + (s + A8 +11(9))Qe,j (9, 5) = BA(1 — 50) ZCer,j—k(ga s),

k=1
j=>0, (21)
o - _ L
a*ng,j(g’ 8)+ (s + A+ 12(9)Qr5(9,8) = BAL = 6jm0) Y cxQri—k(g,9),
k=1

j=0, (22)

J
7R€»]'(ga v,s)+(s+ A+ C(U))RGJ (9,v,8) =A(1— 5]30) Z CkRe,j—k(g, v, s),
k=1

j>0, (23)
0 _ I
7o ltri(9,0,8) + (s + A+ C(v) Ry (9,0, 8) = AL = Jj0) > erRyj-k(g,v,9),
k=1

j>0, (24)
b e b oo

Beo(0.5) = (1= 0)(1—p) 3. / Bes(g,9)6(g)dg + Y / Qe.r(g: 511 (9)dg
T’b—a 007 ’I"b—a 007

Ha-on-m 3 / Berlo. o)y + Y [ Qpola.s)nlady

(16 Z/ By 1 (9. $)o(a)dg. (25)

Bmmw>u9x1z»AwBM%@Jw@mg+AWQM%@mem@
+u—9>1—wt/ Bm%@v)@MQ+AMQM%@ﬁWﬂ@@

(1- / By jyu(g,9)a(g)dg, j > 1, (26)
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Bm@ﬁ%ﬂﬂAmewﬁW@Mmjza
Q.;(0,5) = 01— p) / " Be(g,9)6(9)dg
(1 — ) / " B (g 5)6(g)dg

0
+ 9/ By i(g,s)a(g)dg, j >0,
0

Q_f,j(oa 8) = (1 - 9)(1 _p)/o BE,j(ga 8)¢(g)dg + /OC>O Qe,j(.% 8)V1(g)dg

223

(27)

(28)

(- 01— ) / " Bu(g.5)6(g)dg + / " Q10 5)alg)dg

oo
+(1-0) [ Bryle.salo)dg, =012 a1,
0
Qf,j(078) = 07 .] 2 a,
Re’j(g707s) = nBe,j(gvs)v .7 2 07

Ry ;(9,0,5) =nBy;(g,s), j > 0.

5o Be(0.2.8) % [s 4 ML= M(2) + 6(0) + 1] Belg. .5)
= ; R.(g,v,2,5)¢(v)dv,
5o Br(8.509) + [ M1 = M) + alg) + 1] By (9. 5,5)

g @e(9:2:5) + [s £ A1 = M(2) + 11(9)] Qel,2,5) =0,

5o Qr(0:55) + [ AB(1 = M(2) + 12(9)] Qs(g,2.5) =

(,%Re(g,v, z,8) + [s +A1-M(2))+ C(v)} R.(g,v,2,5) =0,

(,%Rf(g, v,2,8) + {s + A1 - M(2))+ C(v)} R¢(g,v,2,s) =0.

(29)
(30)
(31)

(32)

Multiplying equations (19) to (24) by 27, and then taking summation over
all possible values of j, (j =0,1,2,...) and using (17), we get

(33)

(34)
(35)
(36)
(37)

(38)

Multiplying equations (25) to (32) by appropriate powers of ‘z’ and take
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summation over all possible values of ‘j’ and using PGF, we get
oo b—1 oo
bBeoa ’ = Be )<y d Ber ) b Tda
50,20 = [ [ Bl 9600s + 3 [ B0, )000) g
a—1 00 00
S [ Berle- 900 ds] =001 m) 4 [ Quloz ooy
o] a—1 oo
+a-of &@%@megaézﬁammww@
b—1 o) 0o
B r\Y> b_gr d 2 [ d
3 [ Brato )~ ig] + [ Qstazomatads
a—1 0o o]
3| | @utasm@zdg+ [ Qsila.shnta)z g

b—1 o o
+Z(Zb _ZT)[A an“(gvs)VQ(g)dg_F/O Qe,r(978)V1(g)dg} (39)
@mzazméma@%@wwm (40)

QJQaﬁ=9ﬂ—wﬂAWBAmA@Mm@+94w3mwwmwﬂm (41)

QﬂQaﬁ=%1—@ﬂ—pﬂ§i/w3w@£wwkwg
r=0 0

a—1 oo a1 .
+rz_;)/0 Qe,r(g;S)Vl(g)Zrdg+;A Qf,f‘(gvs)VQ(g)Zrdg

a—1 Jove)
+(1-0 [ Brilg.s)ale)z"dy (42)
r=0"0
Re(g,0,275) :UBe(QaZ75)7 (43)
Rf(g707275) :an(g,z,s). (44)
Integrating equations (35) to (38), we get
Qe(g,2,8) = Qe(0, 2,)(1 = Qu(g))e~ N9, (45)
Qs(9,2,8) = Q(0, 2,8)(1 = Qa(g))e 1NN, (46)
Re(g,v,2,5) = Re(g,0,2,8)(1 = Ry (v))e” 2, (47)

Ry(9,0,2,5) = Ry(9,0,2,5)(1 = Ry(v))e” U1, (48)
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where Hy(z) and Ha(z) are given in Appendix.
Multiplying both sides of the equations (45) and (46) by v1(g) and v2(g) and
further integrating over ‘g’, we get

Q_e(g,z,s)yl(g)dg = QG(O,Z,S)Ql[Hl(Z)L (49)

Qf(g,zas)VQ(g)dg: Qf(O,Z,S)QQ[Hl(Z)] (50)

0\8 0\8

Multiplying both sides of the equations (47) and (48) by ((v) and then integrating
over ‘v’, we obtain

R.(g,v,2,5)¢(v)dv = R.(g,0,z,5) R [H2(2)], (51)

Rf(g, v,2,8)((v)dv = Rf(g, 0,2, 8)Ro[Ho(2)]. (52)

0\8 0\8

Again integrating equations (45) to (48), we obtain

| @000 = Qo) = Q0,20 [ RUED], (53
| Qo510 = Qs = Qs 0.09) [F= R (54)
| Rulavzisio = Ralgn9) = R0, [F O )
/ (9,02, 8)dv = Ry(g,2,8) = Ry (9,0, 2,5) [1_};;;5)2(2))] . (56)

Utilizing equations (43) and (51) in equation (33) on simplification, we obtain

%Bxg,z,smswu— M(2)) + 6(g) + 1) Belg, 2, 5) = nis (Ha(2)) Be(g, 2, 5).

On integrating the above equation, we get
Be(ga Z, S) = Be(oa 2, S)(l - Bl(g))ei{wl(@}ga (57)

where 11 (2) is given in Appendix.
Multiplying both sides of (57) by ¢(g) and integrating over ‘g’, we get

o0

/ Bu(g, 2 5)6(a)dg = B (0, 2 5) Br[tn (=) (58)

0
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Again integrating equation (57), we get

/Ooo Be(g,2,8)dg = Be(z,5) = B.(0, 2, ) {1—5)1215)1(2))] .

Utilizing equations (44) and (52) in equation (34) on simplification, we obtain

(59)

(%Bm 2,8) + (s + ML — M(2)) + alg) + 1) By (9,2, 5) = nRa(Ha(2))Br (g, 2, ).

On integrating the above equation, we get
By(g,2,) = By(0,2,5)(1 = By(g))e” (209, (60)

Multiplying both sides of (60) by a(g) and integrating over ‘g’, we get
| Brto.2.5)al9)dg = By(0.2,9) Balua(2)] (61)
0

Again integrating equation (60), we get

. = Baa(a))
/0 Bf(g,2,s)dg = By(z,s) = By(0,z2,s) [ Un(2) } :

Utilizing equations (49), (58) and (61) in equation (39), we obtain

(62)

[az_:: 42" (Q2(H3(2)) — 1) + 121 wp (2 — ZT)}
[z — B1(¢3(2))Y (2)] :

where Y (2), ¢, and w, are given in Appendix.
From equation (55),

B.(0,z2,8) =

(63)

1 — Ry (Ha(2))

R.(z,8) = /0°° Re(g,2,5)dg = /0°° Re(9,0,25) [ Hy(2)

} dg.
Using equations (43) and (59) in the above equation, we get

1- iiﬁffw] [1 — }255)2(2))} _

Rule9) = 1,029 |

From equation (56),

Ry(z,8) = /0°° Ry(g,2,8)dg = /000 R¢(g,0,2,5) [1_1;{22(5)2(2))] d

Similarly, by using equations (40), (44) and (62) in the above equation, we get
1— By(¥2(2)) ] [1 — Ro(Ha(2))
. (65)
P2 (2) Hy(z)

Thus Be(z,s), Bf(2,5), Qe(z,5), Qs(2,8), Re(z,8) and Ry(z,s) are completely
determined from equations (59), (62), (53), (54), (64) and (65) where B, (0, z, s) is
given in equation (63).

Ry(.5) = Ba( (DB.(0.5.5) |
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4 Probability generating function of queue size

By applying Tauberian property, the PGF of the queue size at an arbitrary
time epoch in steady state is given as

lim sh(s) = lim h(t). (66)

s—0 t—o0

Therefore, in steady state, the PGF of queue size when the server is busy, on
vacation and repair are given below:

[1— Bius()]x
[qu [Q2(Hs(2)) — 1] —l—ZwT (20— 2" ] (67)
B = T O B
B~ Bl
[qu [Q2(Hs(2)) — 1] —l—Zwr (20— 2" } (68)
51 = T R RO - BVl
BB (1 = (L = Balel — Bala(D](e)
[Z% [Q2(H3(2)) — 1] +Zw, L } } (69)
%= = TG = B sV )
(S 0l - Qa2 -
Qr(z) = 500 )
it = RaH )1~ B )
[ZW [Q2(Hz(2)) - 1] +Zwr (2 — 2" ]} (71)
Rele) = T~ BV 0]
B4l = Rl = Bl
[qu [Q2(H3(2)) — 1] +Zwr &) ] (72)
Ry(z) =

Hay(2)a(2)[2" (Bl(wa( )Y (2)]

Finally, the PGF of queue size is

P(z) = Be(2) + Qe(2) + Qf(2) + Bf(2) + Re(2) + Ry (2). (73)
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Substituting equations (67) to (72) in equation (73), we get

r a—1 b—1
[0 (@a(Hs(2)) = 1)+ Y (" = )] x |[L = Bu(ws(2))
r=0 r=a
$a(2)H3(2)[Ha(2) +n(1 — Ri(Ha(2))] + prBi(¥3(2))3(2) Ha(2)

(1= Ba(wa(2)) [Ha(2) + (1 = Ra(Ha(2)))] + (1 - Q1 (Ha(2)

x 0B1(¥3(2)) (1 — pr(1 — Ba(v4(2)))) 3 (2) 4 (2) Ha(2)

a—1

+ 302 2" = Bi(#s(2))(1 — pm(1 — Ba(tu(2)))

r=0

P(z) === (1 =001 — Qi(Hz(2)))[¥3(2)a(2) Ha(2) (1 — Q2(H3(2))) |

Ha(2) Ha(2) s (2)6a(2) [20 = Ba (s ()Y (2)]

(74)
where w; , gr, ¥3(2), ¥a(2), Hs(2), Ha(2) are given in Appendix .

Equation (74) gives the PGF of the queue size involving ‘0’ unknowns. By
Rouche’s theorem of complex variables, “[z* — B;(11(2))Y ()] has ‘b’ zeroes out
of which ‘b — 1’ zeroes inside and one on the unit circle |z| = 1. Since P(z) is
analytic, the numerator must vanish at these points and gives ‘b’ equations with
‘b’ unknowns”. These equations can be solved by using MATLAB.

5 Stability condition

The PGF should satisfy P(1) = 1. Now, apply L’Hopital rule and equating the
expression to 1 results in

a—1 b—1
NBE(X)E(Q2) ) ar + ) _wr(b—1)][E(B)(1+nE(Ry)) + prE(Bz)

a—1

x (L+0E(Rs)) + E(Q1)0] + E(Q2) Y a,[b = AE(X)(E(B1))

r=0

x (1 +nE(R1)) + prE(B2)(1 + nE(Rs) + 08E(Q1)]
= [b = AB(X)[E(B1)(1 + nE(Ry)) + prE(Ba)(1 + nE(Ra)) + 08E(@Q)]],

since w;., ¢, are probabilities of ‘r’ clients in the queue, it follows that P(1) =1 is
satisfied if [2* — By (¥3(2))Y (2)] > 0. If

p=AE(X)[E(B1)(1+nE(R:1)) + prE(B2)(1 + nE(Rz)) + 0BE(Q1)]/b,

then p < 1 is the condition to be convinced for the existence of steady state for
the model under consideration.
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6 Particular cases

Case (i): When there is no Bernoulli vacation, no server breakdown the equation
(74) reduces to

b—1
Y wn(z’ = 2") [(Bl(H4(z)) — 1) + (B2(Ha(z)) — )pm

@www+§%dmmww0w—m
r=0

(—Ha(2))[z* — Bi(Ha(2))]

which is the PGF of Haridass and Arumuganathan [7] for a bulk service queueing
system with server choice of admitting re-service under multiple vacation, without
server breakdown and setup.

P(z) =

Case (ii): If no bulk service, no Bernoulli vacation and no breakdown and balking,
the equation (74) reduces to

Loz = 1)(QO = AM (=) — 1)]

P(z) = (=X +AM(2))[z — B(A =AM (2))]

which exactly coincides with PGF of Ayyappan and Sathiya [2] for a batch ar-
rival non-Markovian queueing model with multiple vacation, single type of service,
without breakdown and no restricted admissibility.

7 Performance measures

7.1 Expected queue size

The average queue length L, at an arbitrary time epoch is obtained by differenti-
ating P(z) at z = 1 and is given by

I [D(V)(l) NVD (1) - NVI(1) DVD(1) (75)

’ 6(DVI(1))? ’
where
D(VI)(l) = 360X§ [2X2R11R12(b — P13) + X1R11R12A
+(b— P13)(Ri2P11 + Ri1P12)),
NYI(1) = 120X! B8Ry Riz | Pa(BiRuy + prBaRiz + Q1)
a—1
+Q2) qr(b— P13)} ;
r=0

DY) (1) = 120X} BR11 Ri2[b — Pisl,
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and

NYD(1) = 360X33 | Ri1[RiaPy(X18R11 By + Pa(R12Ps + R12B1 Py

+B1R11P5)] + prR12[X18R11 R12B2 Py + Po(R11Ps + BoR11 Pr
+R19BoPs)] + 0]Q1X18R11 R12 P + Pa(2X7Ry1 R12Q1 Py
+R11R12P1o + Q1(Ri2P11 + R11P12))] + RiiRi12 P (b — Pi3)

a—1

+X1R11 R12Qa Y g [b-(b —1) = 208X7Q1(B1 R + prR12Bs)
r=0

—2X?pnB1BaRi1 Ria — X?BsR3, — B1(XaoR11 +nX{R3)
—X?Buypr R}y — prBa(XoRi2 + nX7Ry) — 08(X: Qs + X2Q1)}

a—1

+Q2 Z ¢r(b — P13)(XoRi1 Riz2 + Ri1 Pra + RiaPr1)
r=0

)

where all the notations used above are given explicitly in Appendix A.

7.2 Expected waiting time in the queue

By Little’s formula, the mean waiting time of the batch of clients (customers) in

the queue is given as, W, = where L, is given in equation (75).

Lq
M (1)

7.3 System state probabilities

Pr[the server is engaged in regular service and re-service] is

P5(B1 + prBs)

P(B) = b P

Pr[the server is on vacation(phase I and phase II)] is

a—1
Q1P + Q2 > q-(b— P13)

P(Q) = b j:POB ’

Pr[the server is under repair while rending regular service and re-service] is

nPy(R11B1 + prBaRy2)
P(R) = oL .

8 Queue size distribution at departure epoch

In this section, we derive the PGF of the limiting distribution of queue size at
departure point. Let Pf be the steady state probability that ‘i’ clients are left
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back in the system at a departure point. Thus, we have
[ee]
Pr=E [ Pl iz
0

where E is the normalization constant. Using this relationship, the PGF of P;"
can be attained:

Pz = E / S Py(0)6lg)2idg = EB.(2,0)B(A— AM(2)).
From P*(1) =1, we have

b Bi(b— Pi3)

a—1
[(b—Pi3) = 0Q:1 P> — Q2 Y _ (b — Pis)

r=0
— p’]TBQPQ — ﬂRllBl_PQ — 77P7TB2R12P2]
From the relation

Be(0,2)[1 — Bi(A = AM(2))]

Ple)y= N AM(2) !
we get
PH(z) = Bi(b— P13)H4§Z)131(H4(z))36(z) |
[(b— Pi3) — 0Q1 P2 — Q2 ; ¢ (b— Piy)

— pﬂ'BQPQ — ’I]RllBlPQ — ’I]p?TBgRlQPng — B(H4(Z))]

9 Numerical illustration

The unknown probabilities of the PGF of the queue size are deliberated using nu-
merical techniques. Using MATLAB, the roots of the function [2°— By (¥3(2))Y (2)]
are obtained and simultaneous equations are solved.

A numerical example is evaluated with the following assumptions and nota-
tions:
1. Service time follows k-Erlang distribution with k = 2.
2. Re-service time follows k-Erlang distribution with k£ = 2.
3. Batch size distribution of the arrival is considered as Geometric with mean 2.
4. Phase- I and phase-II vacation time are assumed to follow Exponential distri-
bution with parameter vy and vy .
5. Repair time are assumed to follow Exponential distribution with parameter (.
6. Minimum service capacity a = 3 and maximum service capacity b = 6.
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The performance measures are fixed such that it satisfies the stability condi-
tion. The utilization factor p, mean queue length L,, expected mean time in the
queue W, are calculated for various service and arrival rate and the outcomes are
tabulated.

From Tables 1, 2 and Figure 2, 3 we observe that:
1. The mean queue length, mean waiting time and p increases , when the arrival
rate A increases.
2. The mean queue length, mean waiting time and p decreases, when the service
rate ¢ increases.
3. Figure 3, shows that when the service rate ¢ increases, the mean queue length
(Exponential(L,1) and Erlang-2 distribution (L,2)) decreases.

From Tables 3, 4, and Figures 4, 5 we observe that:
1. As arrival rate A increases, the probability of busy period P(B), probability of
repair period P(R) increases but the probability of vacation period P(Q) decreases.
2. As the probability of admitting re-service ‘w’ increases, the probability of busy
period P(B), probability of repair period P(R) increases but the probability of
vacation period P(Q) decreases.

Table 1: Arrival rate vs performance measure.
a=3,b=6,0=5(=3, =3, nn=4n=1a=3, 7m=04,
0 =0.5,5=05and p=0.6

A |p L, Wy

2.0 | 0.3044 | 0.1007 | 0.0252
2.1 | 0.3197 | 0.3915 | 0.0932
2.2 | 0.3349 | 0.7015 | 0.1594
2.3 | 0.3501 | 1.0328 | 0.2245
2.4 | 0.3806 | 1.7697 | 0.2892
2.5 | 0.3653 | 1.3880 | 0.3539
2.6 | 0.3958 | 2.1811 | 0.4194
2.7 1 0.4110 | 2.6258 | 0.4863
2.8 | 0.4262 | 3.1080 | 0.5550
2.9 | 0.4414 | 3.6323 | 0.6263
3.0 | 0.4567 | 4.2042 | 0.7007
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Table 2: Service rate vs performance measure.

a=3b=6A=2(=3,rn=3,1r=4n=1a=3,

T=04,0=0.5,=0.5, and p=10.6

p

Erlang-2

Exponential

LQl

W‘] 1

Lfl2

WQ2

3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7

0.4230
0.4134
0.4044
0.3960
0.3881
0.3806
0.3736
0.3669

2.1253
1.9280
1.7499
1.5883
1.4408
1.3057
1.1814
1.0667

0.5313
0.4820
0.4375
0.3971
0.3602
0.3264
0.2954
0.2667

0.7447
0.6211
0.5085
0.4055
0.3109
0.2236
0.1427
0.0675

0.1862
0.1553
0.1271
0.1014
0.0777
0.0559
0.0357
0.0169

Table 3: Arrival rate vs Servers state.
a=3,b=6,(=3,11=3,nm=4n=1a=2,
m=04,0=0.58=0.5 and p = 0.6

A

P(B)

PQ)

P(R)

2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0

0.1608
0.1695
0.1783
0.1871
0.1961
0.2050
0.2140
0.2231
0.2322
0.2414
0.2507

0.7856
0.7740
0.7623
0.7505
0.7386
0.7266
0.7146
0.7025
0.6904
0.6781
0.6658

0.2144
0.2260
0.2377
0.2495
0.2614
0.2734
0.2854
0.2975
0.3096
0.3219
0.3342

10 Conclusion

233

In this paper, we have studied the transient and steady state behavior of a non-
Markovian batch arrival bulk service queue with the following features: unreliable
server, server choice of admitting re-service, Bernoulli vacation schedule under
multiple vacation and balking. We investigate the queue size distributions at a
random epoch as well as at a departure epoch. We have obtained the following
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Table 4: Effects of admitting clients vs Servers state
a=30=6,(=3, =3, n=4n=1a=2,
A=2,0=0.5,=0.5, and p=0.6

T | P(B) | P(Q) | P(R)

0.1 | 0.1114 | 0.8515 | 0.1485
0.2 | 0.1275 | 0.8301 | 0.1699
0.3 | 0.1439 | 0.8081 | 0.1919
0.4 | 0.1608 | 0.7856 | 0.2144
0.5 ] 0.1780 | 0.7626 | 0.2374
0.6 | 0.1956 | 0.7391 | 0.2609
0.7 | 0.2137 | 0.7151 | 0.2849
0.8 | 0.2321 | 0.6906 | 0.3094
0.9 | 0.2509 | 0.6655 | 0.3345
1.0 | 0.2701 | 0.6399 | 0.3601

* O

Q%Qb*b ||

(p) and (Lg) and (Wq)

| |
2 22 24 26 28 3

Arrival rate ()

Figure 2: Arrival rate (vs) performance measure.

results: expected queue length, expected waiting time of the batch of clients in the
queue. Some particular cases, system state probabilities and numerical illustration
were found. To obtain these results, we apply supplementary variable technique.
The present model can be extended with the concept of random setup with N-
policy and closedown.



An M*/G(a,b)/1 queue with unreliable server 235

T I
. o p
— 2 | ) ¢ qu [
qc« . —a— L,
~ ¢
g 1.5} . a
& .
—~ ¢
S -
=
g
0.5 ) I
=
0 - |
! !

| |
3 3.2 3.4 3.6

Service rate (¢)

Figure 3: Service rate (vs) performance measure.

0.8 [ o [ J
¢

P
L
e W

0.6 |- .
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2 2.2 2.4 2.6 2.8 3
Arrival rate ()

Figure 4: Arrival rate (vs) Servers state.

Acknowledgements

The authors would like to thank the referees and editor in chief for their helpful
comments and suggestions, which brings the paper to the present form.



236 G. Ayyappan, M. Nirmala

| o
0.8 | B ST o L, H
LARTIN -a— W,

o,

0.6 |- .

Q

[}

(P(B)) and (P(Q)) and (P(R))

| | | |
0.2 0.4 0.6 0.8 1
Effects of admitting clients ()

Figure 5: Effects of admitting clients (vs) Servers state.

Appendix
The following expressions are used throughout this work

Py =2X1QaX0 2 rar + XTQuBYL ) ar + X2Q2X0 " ar,
Py = X1Q28%0qr + S0 wr(b—7), P3 = (X1)?BsR?, + X2B1R11 + nX1B1Rs,
Py = XoR11 +nX$Rs, Ps= Ri12X2+ X2 +nX?Rs +nX2R12,
Ps = X?B4R3y + X2BaR12 + nX{R4B2, Pr=2X{B1R11R12 + X2R12 = nX{ Ry,
Pg = Ri1X2 + X2 +nX?R3 + nX2R11, Po = BiRi1 +prBaRi2, Pio=8XQs+2X2Q1,
P =Xo + nX%Rs +nXoR11, Pi2=Xo+ anRAL +nX2Ri2,
P13 = X1(B1R11 + prB2R12 +08Q1), Ri1 =1+nE(R1), Ri2 =1+nE(R2),
Ry = E(R1), R2=E(R2), Rs=E(R?), Ry=E(R3), Bi=E(B)), B:=E(B2),
By = E(Bf), Bi=E(B3), Qi=E(Q), Q=E(Q2), Qs=EQ]), Qi=E(Q3),
Hi(z) =s+A8(1—M(z), Ha(z)=s+A1-M(2)), Hs(z)=2A3(1-M(z)),
Hy(z) = M1 = M(2)), 1(2) = [H2(2) +n(1 — R1[H2(2))],
¥a(z) = [Ha(z) + n(1 — Ra[Ha(2))], ¥3(z) = [Ha(z) +n(1 — R1[Ha(2))],
Ya(z) = [Ha(z) + (1 — R2[Ha(2))], Y(z) = (1 —pr(l — B2(¥a(2)))(1 — 6(1 — Q1(H3(2))),
o = /O 1= 0)(1 = pm)Benr(9)0(9) + (1 — 0) By, (9)al9)
+ Qe,r(9)v1(9) + Qy r(9)v2(g)ldg, 0<7r<a—1,
v = [T10= 00 = pmBe@)010) + (1 = 081, (9)a0)

+ Qe,r(9)v1(9) + Qrr(g)va(g)ldg, a<r<b-1,
M'(1) = E(X) and M"(1) = E(X?).
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