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Abstract. Incoming calls are arrive at the service system according to
compound Poisson process. During the idle time, the server making an
outgoing call with an exponentially distributed time. If the incoming call
that finds the server busy will join an orbit. Here we use mixed priority
services i.e., an arriving call may interrupt the service of an outgoing call
or join the retrial queue (orbit). The server takes Bernoulli vacation. The
server may become inactive due to normal as well as abnormal breakdown.
After the completion of service, vacation and repair the server is in idle
state. We consider reneging to occur at the orbit. Using supplementary
variable technique, the stability condition is derived.
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1 Introduction

Retrial queues are paid much attention because they have wide applications
in performance analysis of various systems such as call centers, computer
networks and tele-communication systems. Retrial queues are characterized
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by the fact that the customers (i.e., calls) that cannot receive service upon
arrival enter into an orbit and retry for service again after some time.

In most literature on retrial queues, the server only serves incoming
calls. After serving a call, the server waits either for the next arrival or for
a retrial call. However, there exist real life situations where the servers have
a chance to make outgoing phone calls. This queueing feature is known as
the models of two way communication. Artalejo and Phung-Duc ( [1], [2])
describes about Markovian retrial queues with two way communication.
Bhulai and Koole [4] propose a multi-server queueing model with infinite
buffer for call centers where incoming and outgoing calls follow the same
exponential distribution. Phung-Duc et al. [13] develop the retrial queues
with balanced call blending analysis of single-server and multi-server model.

As we already know that the priority queueing system can be broadly
classified into two categories such as non-pre-emptive and pre-emptive pri-
ority queueing system. Both priorities are used in real world queueing sys-
tem. An arriving high priority customer may interrupt the ongoing service
of the low priority customer(pre-emptive) or wait till the service comple-
tion of the low priority customer(non-preemptive) which is known as mixed
priority services. Dimitriou [8] studied about the mixed priority queueing
system with negative arrival.

Several authors studied about priority queueing system with retrial,
where the customers are joined the orbit and retry for their service. The
perfectly reliable servers are not possible in real world phenomena. In our
paper, we have assumed that the server fails only in the operational state.
The breakdown may cause due to normal as well as abnormal breakdown.
The abnormal breakdown may cause due to negative arrival. It not only
breakdown the system but also removes the positive customer currently
in service. It is otherwise known as G-queue. It was first introduced by
Gelenbe [9] in neural networks. Recently Bhagat and Jain [3] and Li and
Zhang [12] extended the study about G-queues. During the normal break-
down period, the customer is in service station will get the remaining service
at a slower rate. Ye and Liu [15] studied about the MAP/M/1 queue with
working breakdowns. Recently, Li and Zhang [11] discussed discrete-time
Geo/Geo/1 queue with negative customers and working breakdowns. Cus-
tomer impatience can be viewed as a potential loss of customers. Yang and
Wu [14] dealt with impatient customers.

The motivation for two way communication queueing model comes from
call centers where an operator not only serves incoming calls but also makes
outgoing calls when the server is free, as well as from other daily life situ-
ations arising when the server is a telephone attended by a person who is
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Figure 1: Two way communication.

also able to make his own calls. The schematic representation of two-way
communication with single outgoing call is described in Figure 1.

In this paper, the term two way communication refers to the fact that
the server is able to make outgoing calls while it is not engaged in conversa-
tion. We assume a retrial queue with constant retrial rate for incoming calls.
We consider a single server mixed priority retrial queueing system with two
way communication, working breakdown and Bernoulli vacation. Incom-
ing calls arrive at the server according to general(arbitrary) distribution.
If the server is idle, it starts making an outgoing call in an exponentially
distributed time. Service times of these calls follow general distribution.
An arriving call that finds the server is being busy with incoming call joins
an orbit and retries to enter the service system after some general dis-
tributed time. Here we have used mixed priority services i.e. the arriving
call may interrupt (pre-emptive) the service of an outgoing call or join (non
pre-emptive) the retrial queue. The server takes vacation under Bernoulli
vacation schedule. The server may become inactive when it is in operation
due to normal as well as abnormal breakdown. During the normal break-
down period, the call currently in service will get the remaining service in
a lower service rate. After completing this working breakdown period the
repair process starts immediately. On completion of service, vacation and
repair the server becomes idle. We consider reneging to occur at the orbit.

The summary of the paper is as follows. Section 1 is an introduction to
mixed priority retrial queueing discipline and comprises literature review.
Section 2 deals with model description, notations used, mathematical for-
mulation and governing equations of the model. Section 3 elucidates the
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steady state solutions of the system. Section 4 demonstrates the perfor-
mance measures of the model and concentrate on some special cases. In
Section 5, the numerical results are computed and graphical studies are
shown following which the conclusion is given.

2 Model description

The basic operation of the model is described in Figure 2:

Arrival and retrial process: Incoming calls arrive at the server accord-
ing to compound Poisson process with arrival rate λ(> 0). Let λci dt
(i = 1, 2, 3, . . .) be the first order probability that a batch of ‘i’ customers
arrives at the system during a short interval of time (t, t + dt), where for

0 ≤ ci ≤ 1,

∞∑
i=1

ci = 1. If the server is busy with an outgoing call then

the arriving call may interrupt (pre-emptive) the service of an outgoing call
with probability p or join (non pre-emptive) the retrial queue with prob-
ability 1-p. The incoming call on finding the server is being busy with an
incoming call, are routed to a retrial queue (orbit) and they follow constant
retrial policy that attempts to get the service. The retrial time is generally
distributed with distribution function I(s) and the density function i(s).
Let η(x)dx be the conditional probability of completion of retrial during
the interval (x, x+ dx] where x is the elapsed retrial time.

Service process: During server’s idle time, the server can make an outgo-
ing call which is exponentially distributed with mean 1/π. The service times
of the incoming and outgoing calls are generally distributed with distribu-
tion functions Bi(s) and the density functions bi(s), i = 1, 2 respectively.
Let µi(x)dx be the conditional probability of completion of the high prior-
ity and low priority customer’s service during the interval (x, x+dx], where
x is the elapsed service time.

Bernoulli Vacation: After completing every service the server may take
a vacation with probability θ. Vacation time is generally distributed with
distribution function V (s) and the density function v(s). Let β(x)dx be
the conditional probability of completion of vacation during the inter-
val (x, x+ dx] where x is the elapsed vacation time.

Breakdown state: The server may become inactive during busy period
due to normal (with rate α) as well as abnormal breakdown (with rate λ).
The abnormal breakdown causes due to the negative arrival. The negative
arrival not only removes the positive customer but also destroys the server.
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Figure 2: Flowchart of the model description.

Working breakdown state: If the server is inactive due to normal break-
down, then the call currently present in the service station will get the
remaining service as a lower service rate. This state is known as working
breakdown state.

Repair Process: After completing working breakdown state, the repair
process starts immediately so as to regain its functionality. Repair time is
exponentially distributed with rate γ.

Reneging: An incoming call may renege the system exponentially with
rate ξ.

Idle State: After completing service, vacation and repair the server re-
mains idle in the system.

2.1 Definitions and equations governing the system

Let N(t) be the orbit size at time t, B0
1(t),B0

2(t), V 0(t)and I0(t) be the
elapsed service time of the incoming, outgoing calls, elapsed vacation time
and retrial time respectively at time t. Let S(t) denote the state of the
server
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S(t) =



0, if the server is idle;
1, if the server is in retrial state;
2, if the server is providing an incoming service;
3, if the server is providing an outgoing service;
4, if the server is on vacation;
5, if the server is on working breakdown;
6, if the server is on repair;.

We have I(x), Bi(x), V (x) and M(x) is continuous at x = 0, and

η(x)dx =
dI(x)

1− I(x)
, µi(x)dx =

dBi(x)

1−Bi(x)
, i=1,2, β(x)dx =

dV (x)

1− V (x)
,

are the first order differential (hazard rate) functions of I(.), Bi(.) and V(.)
respectively.

Since the service time, vacation time and retrial time are not exponen-
tial, the process {S(t), N(t)} is non Markovian. In such case we introduce
supplementary variables corresponding to elapsed times to make it Marko-
vian Cox [7]. Joint distributions of the server state and orbit size are defined
as,

I0(s, t) = Pr{S(t) = 0, N(t) = 0}, (1)

Im(x, s, t)dx = Pr{S(t) = 1, N(t) = m ≥ 1}, (2)

P
(1)
m (x, s, t)dx = Pr{S(t) = 2, x < B0

1(t) ≤ x+ dx,N(t) = m ≥ 0}, (3)

P
(2)
m (x, s, t)dx = Pr{S(t) = 3, x < B0

2(t) ≤ x+ dx,N(t) = m ≥ 0}, (4)

V m(x, s, t)dx = Pr{S(t) = 4, x < V 0(t) ≤ x+ dx,N(t) = m}, (5)

Qm(s, t) = Pr{S(t) = 5, N(t) = m ≥ 0}, (6)

Rm(x, s, t) = Pr{S(t) = 6, N(t) = m ≥ 0}. (7)

2.2 Kolmogorov equations

The Kolmogorov forward equations which governs the model:

1. The server is providing the service to the incoming call:

∂

∂t
P (1)
m (x, t) +

∂

∂x
P (1)
m (x, t) = −(λ+ α+ λ+ ξ + µ1(x))P (1)

m (x, t)

+ λ

m∑
i=1

ciP
(1)
m−i(x, t) + ξP

(1)
m+1(x, t); m ≥ 0, (8)
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2. The server is providing the service to the outgoing call:

∂

∂t
P (2)
m (x, t) +

∂

∂x
P (2)
m (x, t) = −(λ+ α+ λ+ ξ + µ2(x))P (2)

m (x, t)

+ λ(1− p)
m∑
i=1

ciP
(2)
m−i(x, t) + ξP

(2)
m+1(x, t); m ≥ 0, (9)

3. The server is on vacation state:

∂

∂t
Vm(x, t) +

∂

∂x
Vm(x, t) = −(λ+ ξ + β(x))Vm(x, t)

+ λ
m∑
i=1

ciVm−i(x, t) + ξVm+1(x, t);m ≥ 0, (10)

4. The server is in working breakdown state with an incoming call:

d

dt
Q(1)
m (t) = −(λ+ µ3 + ξ)Q(1)

m (t) + λ

m∑
i=1

ciQ
(1)
m−i(t)

+ ξQ
(1)
m+1(t) + α

∫ ∞
0

P (1)
m (x, t)dx;m ≥ 0, (11)

5. The server is in working breakdown state with an outgoing call:

d

dt
Q(2)
m (t) = −(λ+ µ4 + ξ)Q(2)

m (t) + λ
m∑
i=1

ciQ
(2)
m−i(t)

+ ξQ
(2)
m+1(t) + α

∫ ∞
0

P (2)
m (x, t)dx;m ≥ 0, (12)

6. The server is in repair process:

d

dt
Rm(t) = −(λ+ γ + ξ)Rm(t) + λ

m∑
i=1

ciRm−i(t)

+ µ3Q
(1)
m (t) + µ4Q

(2)
m (t) + ξRm+1(t)

+ λ
{∫ ∞

0
P (1)
m (x, t)dx+

∫ ∞
0

P (2)
m (x, t)dx

}
; m ≥ 0, (13)

7. The server is in retrial state:

∂

∂t
Im(x, t) +

∂

∂x
Im(x, t) = −(λ+ π + η(x))Im(x, t); m ≥ 1, (14)
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8. The server is in idle state:

d

dt
I0(t) = −(λ+ π)I0(t) +

∫ ∞
0

V0(x, t)β(x)dx+ γR0(t)

+ (1− θ)
{∫ ∞

0

P
(1)
0 (x, t)µ1(x)dx+

∫ ∞
0

P
(2)
0 (x, t)µ2(x)dx

}
. (15)

The above set of equations are to be solved under the following bound-
ary conditions at x = 0:

Im(0, t) =

∫ ∞
0

Vm(x, t)β(x)dx+ (1− θ)
∫ ∞
0

P (1)
m (x, t)µ1(x)dx

+ (1− θ)
∫ ∞
0

P (2)
m (x, t)µ2(x)dx+ γRm(t); m ≥ 1, (16)

P (1)
m (0, t) =

∫ ∞
0

Im+1(x, t)η(x)dx+ λ

m∑
i=1

ci

∫ ∞
0

Im+1−i(x, t)dx

+ λcip

∫ ∞
0

P
(2)
m+1−i(x, t)dx+ λcm+1I0(t); m ≥ 0, (17)

P (2)
m (0, t) = π

∫ ∞
0

Im(x, t)dx; m ≥ 0, (18)

Vm(0, t) = θ
{∫ ∞

0

P (1)
m (x, t)µ1(x)dx+

∫ ∞
0

P (2)
m (x, t)µ2(x)dx

}
; m ≥ 0. (19)

We assume that initially there are no customers in the system and the
server is idle. Then the initial conditions are,

P (i)
m (0) = Vm(0) = Q(i)

m (0) = Rm(0) = Im(0) = 0 and I0(0) = 1, (20)

for m ≥ 0 and i = 1, 2.

The Probability Generating Function(PGF) of this model is

A(x, z, t) =

∞∑
m=1

zmAm(x, t),

where A = I, V, P (i), Q(i) and R, for i = 1, 2.
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By taking Laplace transforms from equation (8) to (15) and solving the
equations

I0(x, s, z) = I0(0, s, z)[1− I(ϕ(a, s))]e−ϕ(a,s)x, (21)

P
(1)

(x, s, z) = P
(1)

(0, s, z)[1−B1(ϕ1(s, z))]e−ϕ1(s,z)x, (22)

P
(2)

(x, s, z) = P
(2)

(0, s, z)[1−B2(ϕ2(s, z))]e−ϕ2(s,z)x, (23)

V (x, s, z) = V (0, s, z)[1− V (ϕ3(s, z))]e−ϕ3(s,z)x, (24)

Q
(1)

(s, z) =
αP

(1)
(0, s, z)[1−B1(ϕ1(s, z))]e−ϕ1(s,z)x

ϕ4(s, z)
, (25)

Q
(2)

(s, z) =
αP

(2)
(0, s, z)[1−B2(ϕ2(s, z))]e−ϕ2(s,z)x

ϕ5(s, z)
, (26)

R(s, z)

=


{
λ
{
P

(1)
(0, s, z)[1−B1(ϕ1(s, z))]e−ϕ1(s,z)x + P

(2)
(0, s, z)

× [1−B2(ϕ2(s, z))]e−ϕ2(s,z)x
}

+ µ3Q
(1)

(s, z) + µ4Q
(2)

(s, z)
}


zϕ6(s, z2)
, (27)

where

ϕ(a, s) = s+ λ+ π,

ϕ1(s, z) = s+ λ[1− C(z)] + α+ λ+ ξ[1− 1

z
],

ϕ2(s, z) = s+ λ[1− (1− p)C(z)] + α+ λ+ ξ[1− 1

z
],

ϕ3(s, z) = s+ λ[1− C(z)] + ξ[1− 1

z
],

ϕ4(s, z) = s+ λ[1− C(z)] + µ3 + ξ[1− 1

z
],

ϕ5(s, z) = s+ λ[1− C(z)] + µ4 + ξ[1− 1

z
],

ϕ6(s, z) = s+ λ[1− C(z)] + γ + ξ[1− 1

z
].

By solving the above equations, we get,

P
(1)

(0, s, z) =


(1− (s+ λ+ π)I0(s))ζ1(s, z) + λC(z)I0(s)

× [1− π[
1− I(ϕ(a, s))

ϕ(a, s)
]ζ3(s, z)]

{
z
{

1− π[
1− I(ϕ(a, s))

ϕ(a, s)
]ζ2(s, z)

}
−ζ1(s, z)ζ2(s, z)

} (28)
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P
(2)

(0, s, z) =


π
{

(1− (s+ λ+ π)I0(s))ζ1(s, z) + λC(z)I0(s)

× [1− π[
1− I(ϕ(a, s))

ϕ(a, s)
]ζ3(s, z)]

}
{

z
{

1− π[
1− I(ϕ(a, s))

ϕ(a, s)
]ζ2(s, z)

}
−ζ1(s, z)ζ2(s, z)

} (29)

I(0, s, z) =

{
(1− (s+ λ+ π)I0(s))z + λC(z)I0(s)ζ2(s, z)

}{
z
{

1− π[
1− I(ϕ(a, s))

ϕ(a, s)
]ζ3(s, z)

}
−ζ1(s, z)ζ2(s, z)

} (30)

V (0, s, z) = θP
(1)

(0, s, z)B1(ϕ1(s, z)) + θP
(2)

(0, s, z)B2(ϕ2(s, z)). (31)

where

ζ1(s, z) = I(ϕ(a, s)) + λC(z)
1− I(ϕ(a, s))

ϕ(a, s)

{
1 + pπ

1− I(ϕ(a, s))

ϕ(a, s)

}
,

ζ2(s, z) = [1− θ + θV (ϕ3(s, z))]B1(ϕ1(s, z)) + [
1−B1(ϕ1(s, z))

ϕ1(s, z)ϕ6(s, z)
](
λ

z
+

αµ3γ

zϕ4(s, z)
),

ζ3(s, z) = [1− θ + θV (ϕ3(s, z))]B2(ϕ2(s, z)) + [
1−B2(ϕ2(s, z))

ϕ2(s, z)ϕ6(s, z)
](
λ

z
+

αµ4γ

zϕ5(s, z)
).

2.3 Stability condition

Theorem 1. The inequality

P (1)(1) + P (2)(1) +Q(1)(1) +Q(2)(1) = ρ < 1,

is a necessary and sufficient condition for the system to be stable and un-
der this condition the marginal PGF of the server’s state and orbit size
distributions are given by

I(s, z) = I(0, s, z)[
1− I(ϕ(a, s))

ϕ(a, s)
], (32)

P
(1)

(s, z) = P
(1)

(0, s, z)[
1−B1(ϕ1(s, z))

ϕ1(s, z)
], (33)

P
(2)

(s, z) = P
(2)

(0, s, z)[
1−B2(ϕ2(s, z))

ϕ2(s, z)
], (34)

V (s, z) = θ
{
P

(1)
(0, s, z)B1(ϕ1(s, z)) + P

(2)
(0, s, z)B2(ϕ1(s, z))

}
× [

1− V (ϕ3(s, z))

ϕ3(s, z)
], (35)

Q
(1)

(s, z) =
αP

(1)
(0, s, z)[1−B1(ϕ1(s, z1))]e−ϕ1(s,z)x

ϕ4(s, z)
, (36)
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Q
(2)

(s, z) =
αP

(2)
(0, s, z)[1−B2(ϕ2(s, z1))]e−ϕ2(s,z)x

ϕ5(s, z)
, (37)

R(s, z)

=


{

(λ
{
P

(1)
(0, s, z)[1−B1(ϕ1(s, z))]e−ϕ1(s,z)x + P

(2)
(0, s, z)

× [1−B2(ϕ2(s, z))]e−ϕ2(s,z)x
}

+ µ3Q
(1)

(s, z) + µ4Q
(2)

(s, z)
}


zϕ6(s, z2)
. (38)

3 Steady state analysis

By applying the well-known Tauberian property,

lim
s→0

sf(s) = lim
t→∞

f(t),

to the above equations, we obtain the steady- state solutions of this model.
In order to determine I0, we use the normalizing condition

P (1)(1) + P (2)(1) + V (1) +Q(1)(1) +Q(2)(1) +R(1) + I(1) + I0 = 1.

For this, let Pq(z) be the probability generating function of the queue size
irrespective of the state of the system. Then adding all the steady state
equations, we obtain,

Pq(z) = P (1)(z) + P (2)(z) + V (z) +Q(1)(z) +Q(2)(z) +R(z) + I(z),

(39)

Pq(z) = P (1)(0, z)
ψ1(z)

ω1(z)
+ I(0, z)[

1− I(ϕ(a))

ϕ(a)
]
ψ2(z)

ω2(z)
,

where

ψ1(z) =
{

[1−B1(ϕ1(z))]ϕ3(z)
{
zϕ4(z)ϕ6(z) + λϕ4(z) + αzϕ6(z)

+ αγµ3
}

+ θB1(ϕ1(z))(1− V (ϕ3(z)))zϕ1(z)ϕ4(z)ϕ6(z)
}
,

ψ2(z) =
{
zB2(ϕ2(z))ϕ2(z)ϕ5(z)ϕ6(z)[πϕ3(z) + θ(1− V (ϕ3(z)))]

+ zϕ2(z)ϕ3(z)ϕ5(z)ϕ6(z) + +[1−B2(ϕ2(z))]ϕ3(z)

×
{
αzϕ6(z) + λϕ5(z) + αγµ4

} }
,

ω1(z) = ϕ1(z)ϕ3(z)ϕ4(z)ϕ6(z), ω2(z) = zϕ2(z)ϕ3(z)ϕ5(z)ϕ6(z).

In order to obtain the probability of idle time I0, we use the normalizing
condition, Pq(1) + I0 = 1, from which we can have,

I0 =
ω′1(1)ω′2(1)

ω′1(1)ω′2(1) + P (1)(0, 1)ψ′1(1)ω′2(1) + I(0, 1)ψ′2(1)ω′2(1)
. (40)
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4 Performance measures

Theorem 2. If the system is in steady state condition, then we have
(i) The probability that the server is idle = I0,0, where I0,0 has been found
above.
(ii) The probability that the server is being busy

P (1)(1) + P (2)(1) +Q(1)(1) +Q(2)(1) =
(α+ µ3)P

(1)(0, 1)[1−B1(α+ λ)]

(α+ λ)µ3

+
(α+ µ4)P

(2)(0, 1)[1−B2(λp+ α+ λ)]

(λp+ α+ λ)µ4
,

(iii) The probability that the server is on vacation

V (1) = θE(V )
{
P

(1)
(0, 1)B1(λ+ α) + P

(2)
(0, 1)B2(λp+ λ+ α)

}
.

Proof. Note that

P (1)(1) + P (2)(1) = lim
z→1

[P (1)(z) + P (2)(z)],

V (1) = lim
z→1

V (z),

Q(1) = lim
z→1

Q(z),

and by direct calculation we get the above formulae.

4.1 The average orbit length and waiting time

The Mean number of customers in the orbit under the steady state condition
is

Lq =
d

dz
Pq(z)|z=1. (41)

then Lq = Nr
Dr , where

Nr = 2ω′1(1)ω′2(1)
{

6P (1)(0, 1)ψ′1(1)ω′2(1) + 3P (1)(0, 1)ψ′1(1)ω′2(1)

+3P (1)(0, 1)ψ′1(1)ω′2(1) + 6I(0, 1)ψ′2(1)ω′2(1) + 3I(0, 1)ψ′2(1)ω′2(1)

+I(0, 1)ψ′2(1)ω′2(1)
}
−
{

3ω′′1(1)ψ′1(1)2(ω′1(1))2 + 3ω′2(1)ψ′′2(1)

−ω′′2(1)ψ′2(1)
}{

3P (1)(0, 1)ψ′1(1)ω′2(1) + 6I(0, 1)ψ′2(1)ω′2(1)
}
,

Dr =
{

3(ω′2(1))ω′1(1)2
}
.
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By Little’s Law, average waiting time of a customer in the orbit is

Wq =
Lq
λ
. (42)

4.2 Particular cases

Case: 1 M/G/1 Queueing model:
If there is no outgoing call, no vacation, no working breakdown, no reneging,
the retrial rate tends to infinity and the arrival is single, then the model
under study becomes classical M/G/1 queueing system. In this case, the
PGF of the busy state is given as,

P (z) =
(1−B(λ− λz))I0
B(λ− λz)− z

. (43)

The result coincides with the result of Gross and Harris [10].

Case: 2 M/G/1 Queueing model with single vacation:
If there is no outgoing call, no working breakdown, no reneging, retrial
rate tends to infinity and the arrival is single, then the model under study
becomes classical M/G/1 queueing system with vacation. In this case, the
PGF of the busy state and vacation state are given as,

P (z) =
(1−B(λ− λz))I0

B(λ− λz)(1− θ + θV (λ− λz))− z
(44)

V (z) = θ
B(λ− λz)(1− V (λ− λz))I0

B(λ− λz)(1− θ + θV (λ− λz))− z
(45)

Case: 3 MX/G/1 Retrial Queueing model:
If there is no outgoing call, no working breakdown, no reneging and no
vacation, then the model under study becomes classical MX/G/1 retrial
queueing system. In this case, the PGF of the busy state and retrial state
are given as

P (z) =
(1−B(λ− λz))I0Iλ

B(λ− λz)[C(z)(1− Iλ) + Iλ]− z
,

I(z) =
[z − C(z)B(λ− λz)](1− I(λ)I0

B(λ− λz)[C(z)(1− Iλ) + Iλ]− z
. (46)

The result coincides with the results of Corral [6].
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Case: 4 MX/G/1 Retrial queueing model with vacation:
If there is no outgoing call, no reneging, no working breakdown and no
negative arrival then our model reduces to M [X]/G/1 retrial queueing
system with general retrial times under Bernoulli vacation for unreliable
server and repair.

I(z) =
I0{z − C(z)B(φ[z])[1− θ + θV (ψ[z])]}[1− I(λ)]

B(φ[z])[1− θ + θV (ψ[z])]{C(z)[1− I(λ)] + I(λ)} − z
, (47)

P (z) =
λI0I(λ)[1− C(z)]{1−B(φ[z])}

Dr
, (48)

V (z) =
θλI0I(λ)[1− C(z)]B(φ[z]){1− V (ψ(z))}

Dr
, (49)

where, Dr =[B(φ[z])[1 − θ + θV (ψ[z])]{C(z)[1 − I(λ)] + I(λ)} − z]φ[z].
If we add the delaying repair variable and the repair time is in general
distribution, then the result coincides with Choudhury and Ke [5].

5 Numerical results

In order to see the effect of different parameters on the different states of
the server we compute some numerical results. We consider the service
time, vacation time and retrial time to be exponentially distributed to
numerically illustrate the feasibility of our results. By giving the following
suitable values for the parameters which satisfy the stability condition, we
compute the table values.

For Table 1 we choose that π takes the values 1.1 to 2.0 with increment
0.1, λ = 4, µ1 = 4, µ2 = 5, µ3 = 1, µ4 = 3, η = 5, θ = 0.3, α = 1, λ = 1,
γ = 1, ξ = 0.2, —β = 0.5 and p = 0.5.

For Table 2 we choose that η takes the values 1 to 10 with increment
1, λ = 5, µ1 = 5, µ2 = 5, µ3 = 3, µ4 = 3, π = 8, θ = 0.75, α = 3, λ = 0.5,
γ = 1, ξ = 10, β = 10 and p = 0.8.

For Table 3 we choose that λ takes the values 1.1 to 2 with increment
0.1, η = 1, µ1 = 20, µ2 = 1, µ3 = 0.5, µ4 = 0.5, π = 1, θ = 0.5, α = 1, λ =
1, γ = 1, ξ = 0.1, β = 1 and p = 0.5.

Table 1 and Figure 3 clearly shows that as long as the outgoing call rate
increases the servers idle time decreases. And the average queue length for
incoming call increases. Simultaneously the utilisation factor is increases.
Table 2 and Figure 4 reveals that as long as the retrial rate increases the
servers idle time decreases. Simultaneously the utilisation factor is increases
and the average queue length for incoming calls are decreases. Table 3 and
Figure 5 clearly shows that as long as the incoming call rate increases the
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Table 1: Effect of Outgoing call rate.

π I0 ρ Lq Wq

1.1 0.1064 0.8936 3.7834 0.9459
1.2 0.0915 0.9085 4.0957 1.0239
1.3 0.0799 0.9201 4.3270 1.0817
1.4 0.0706 0.9294 4.5008 1.1252
1.5 0.0629 0.9371 4.6326 1.1581
1.6 0.0565 0.9435 4.7327 1.1832
1.7 0.0512 0.9488 4.8087 1.2022
1.8 0.0466 0.9534 4.8657 1.2164
1.9 0.0426 0.9574 4.9076 1.2269
2.0 0.0392 0.9608 4.9375 1.2344
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Figure 3: Average orbit size Vs Outgoing call rate π.

servers idle time decreases. And the average queue length for incoming call
increases. Simultaneously the utilisation factor is increases.

6 Conclusion

In this paper we have analysed mixed priority retrial system under Bernoulli
vacation subject to two way communication, working breakdown, negative
arrival, repair and Bernoulli vacation also investigated. A practical problem
arising in the call center literature is that incoming calls have priority over
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Table 2: Effect of Retrial rate.

η I0 ρ Lq Wq

1 0.0099 0.9901 9.3105 1.8621
2 0.0099 0.9901 9.2145 1.8429
3 0.0098 0.9902 9.1305 1.8261
4 0.0098 0.9902 9.0562 1.8112
5 0.0098 0.9902 8.9902 1.7980
6 0.0097 0.9903 8.9310 1.7862
7 0.0097 0.9903 8.8778 1.7756
8 0.0097 0.9903 8.8295 1.7659
9 0.0097 0.9903 8.7857 1.7571
10 0.0097 0.9903 8.7456 1.7491
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Figure 4: Average orbit size Vs Retrial rate η.

the outgoing calls. The server does not know how many calls are present
in the orbit. As a result, the server may make an outgoing call even when
there are some incoming calls in the orbit. This comment shows that the
incoming calls preserve some priority over the outgoing calls. In addition,
the effect of impatient behaviour of the customer on a service system is
studied. Numerical examples have been carried out to observe the trend of
the mean number of customers in the system for varying parametric values.
This paper analyzes a single-server retrial queue with constant retrial policy.
The novelty of this investigation is the discussion of the constant retrial
policy, mixed priority service, two way communication with retrial queueing
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Table 3: Effect of Incoming Call rate.

λ I0 ρ Lq Wq

1.1 0.0480 0.9520 2.2042 2.0038
1.2 0.0472 0.9528 2.5022 2.0852
1.3 0.0466 0.9534 2.8150 2.1654
1.4 0.0460 0.9540 3.1450 2.2464
1.5 0.0454 0.9546 3.4936 2.3291
1.6 0.0449 0.9551 3.8620 2.4138
1.7 0.0444 0.9556 4.2508 2.5005
1.8 0.0440 0.9560 4.6603 2.5891
1.9 0.0436 0.9564 5.0909 2.6794
2.0 0.0432 0.9568 5.5426 2.7713
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Figure 5: Average orbit size Vs Incoming call rate λ

system. This makes the system more complex though realistic.
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