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Abstract. Despite the importance of fuzzy data and existence of many
powerful methods for determining crisp outliers, there are few approaches
for identifying outliers in fuzzy database. In this regard, the present article
introduces a new method for discovering outliers among a set of multidi-
mensional data. In order to provide a complete fuzzy strategy, first we
extend the density-based local outlier factor method (LOF), which is suc-
cessfully applied for identifying multidimensional crisp outliers. Next, by
using the left and right scoring defuzzyfied method, a fuzzy data outlier
degree is determined. Finally, the efficiency of the method in outlier detec-
tion is shown by numerical examples.
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1 Introduction and background

Identifying outlier data is a considerable and remarkable concept
in discovering rare events, fraud, diversion of the majority or identifying

∗Corresponding author.
Received: 23 July 2017 / Revised: 2 March 2018 / Accepted: 10 June 2018.
DOI: 10.22124/jmm.2018.8102.1108

c© 2018 University of Guilan http://jmm.guilan.ac.ir



124 A. Fakharzadeh Jahromi and Z. Ebrahimi Mimand

special cases; for example, a typical business application such as: analyz-
ing market management, analyzing market basket, objective marketing,
understanding costumer’s behavior, risk analysis and management, fraud
discovery including: telephone frauds, insurance fraud, credit cards fraud,
fraud in bank data, data mining: such as text clarification (emails, news
groups, etc.), medical such as: discovering malignant tumors in data set
relating to benign and malignant tumors, DNA arrangement analysis, med-
ical images, web mining such as proposing related pages, improving search
machines, discovering crime in electronic industry, discovering suspicious
accounts in accounting and leveling data related to designs and image pro-
cessing [2, 4, 5, 8].

In spite of the large variety of methods for outlier detection in Crisp
data and the importance of fuzziness real world, there are few methods
on discovering fuzzy outliers among a set of fuzzy high dimensional data.
Since among existing approaches, LOF is one of the most effective methods
in detecting high dimensional data ( [2, 4]) providing an extension of LOF
method for identifying outliers in a fuzzy database, would be the aim of
this paper.

It is necessary to remind that most early studies in the field of outlier
discovering data are done in the statistics domain. These studies can be
classified in two categories: distribution and depth. In the first category,
outlier data detection methods have been based on possible unknown main
distribution [3]. The second category is not effective for high dimensional
data, because it relies on convex shell space distribution (that has a lower
bound distribution); Knorr and Ng suggested a discovering outlier data
concept, based on the space [9]. According to them, using distribution
basic methods have had better result, and of course more complexity, in
comparison with the depth basic methods. Even in [9] discovering outliers
by using the concept of K-neighborhood is developed, but it also was based
on spaces as well.

LOF is an outlier detection method in which, as being introduced by [2],
it became the basic method in identifying outlier data based on density;
indeed, a newer and more developed versions of it were provided for LOF
in 2003. For instance, LOF′ and LOF′′ techniques were provided two new
definitions of outlier factor, and also GridLOF method was an algorithm,
that adds one step to the previous LOF algorithm [4]. It should be noted
that although other density based methods such as LOCI (Local Corre-
lation Integral) [10] were introduced after LOF, but still the known LOF
method is the most functional density-based methods for identifying out-
liers. Regarding the aim of this paper, it is necessary to remind that even
recently, some attempts for using fuzzy methods have been done, (see, for
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instance [7]) but they never used the LOF method. By considering the
powerful ability of LOF outlier detection method, in this paper we are go-
ing to extend this useful method, so that it is able to identify the outliers
in a multi-dimensional fuzzy data set. The rest of the paper is organized
as follow. In Section 2, we review some basic fuzzy concepts, which are
very useful in our discussions. In Section 3, by extending the LOF method,
the new algorithm is presented. To show the efficiency of our algorithm,
some numerical results are presented in Section 4. Finally, some concluding
remarks are given in Section 5.

2 Preliminary and basic concepts

In this section first some basic concepts and definitions are given; then the
right and left scoring method (using for fuzzy elimination) is introduced.
Finally, we discuss about a way to display fuzzy numbers by using α-cuts.
More details on the topics of this section can be found in [2,6,9,11,13,14].

2.1 Some definitions

To explain the new method for discovering outliers in fuzzy data set, it is
necessary to have a common language and concepts. In this subsection we
present the prerequisite definitions and concepts from [2]. Also, we explain
some important fuzzy concepts that we will use in rest of this paper.

Definition 1. (k-distance): For any positive integer k, the k-distance of
object p, denoted by k-distance (p), is the distance d(p, o) between p and
an object o ∈ D such that:

(i) for at least k objects o′ ∈ D \ {p} we have d(p, o′) ≤ d(p, o);

(ii) for at most k − 1 objects o′ ∈ D \ {p} we have d(p, o′) < d(p, o).

Definition 2. (k-distance neighborhood): The k-distance neighborhood
of p contains every object whose distance from p is not greater than the
k-distance, i.e.

Nk − distance(p) =
{
q ∈ D \ {p}| d(p, q) ≤ k − distance(p)

}
;

These objects q are called the k-nearest neighbors of p.

Definition 3. (reachability distance): For k ∈ N the reachability distance
of object p with respect to object o is defined as:

reach− distk(p, o) = max
{
k − distance(o), d(p, o)

}
.
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Definition 4. (local reachability density): The local reachability density of
p is defined as

lrdminpts(p) =
|Nminpts(p)|∑

o∈Nminpts(p)
reach− distminpts(p, o)

.

Definition 5. (outlier factor): The (local) outlier factor of p is defined as

LoFminpts(p) =

∑
o∈Nminpts(p)

lrdminpts(o)
lrdminpts(p)

|Nminpts(p)|
.

To illustrate the fuzzy concepts and definitions, it is supposed that
the readers are familiar with fuzzy set, fuzzy numbers and membership
functions (for more detail please see [14]).

Definition 6. For 0 ≤ α ≤ 1, an α-cut of a fuzzy set Ã, Aα is defined
as Aα =

{
x : µÃ(x) ≥ α

}
, where µÃ is the membership function of Ã;

since µÃ is bounded, an α-cut actually is an interval on the x-axis, like

Aα =
[
a
(α)
1 , a

(α)
2

]
.

Definition 7. Addition and subtraction operations of two fuzzy numbers
Ã and B̃ in terms of α- cuts are defined as follows:

(Ã)α + (B̃)α =
[
a
(α)
1 , a

(α)
2

]
+
[
b
(α)
1 , b

(α)
2

]
=
[
a
(α)
1 + b

(α)
1 , a

(α)
2 + b

(α)
2

]
;

(Ã)α − (B̃)α =
[
a
(α)
1 , a

(α)
2

]
−
[
b
(α)
1 , b

(α)
2

]
=
[
a
(α)
1 − b(α)1 , a

(α)
2 − b(α)2

]
.

Definition 8. The minimum of numbers Ã and B̃, Ã ∧ B̃. and the maxi-
mum of them, Ã ∨ B̃ , are defined in terms of α-cuts as follows:

(Ã)α ∨ (B̃)α =
[
a
(α)
1 , a

(α)
2

]
∨
[
b
(α)
1 , b

(α)
2

]
= [min{a(α)1 , b

(α)
1 },min{a(α)2 , b

(α)
2 }];

(Ã)α ∧ (B̃)α =
[
a
(α)
1 , a

(α)
2

]
∧
[
b
(α)
1 , b

(α)
2

]
=
[
max{a(α)1 , b

(α)
1 },max{a(α)2 , b

(α)
2 }

]
.

Definition 9. A triangular fuzzy number like M̃(l,m, u) is illustrated with
the following membership function:

µM̃ (x) =


x−l
m−l , l < x < m,
(u−x)
(u−m) , m < x < u,

0, otherwise,

where l and u are the lower and upper bounds for M̃ , respectively.
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Also some algebraic operations between triangular numbers M̃ = (l.m.u)
and Ñ = (a, b, c), are introduced as follow: Reverse of the triangular fuzzy
number M : M̃−1 = ( 1

u ,
1
m ,

1
l ).

Multiplication of the two triangular fuzzy numbers:

if M̃ < 0, Ñ < 0, then M̃ × Ñ = (uc,mb, la);

if M̃ < 0, Ñ > 0, then M̃ × Ñ = (lc,mb, ua);

if M̃ > 0, Ñ > 0, then M̃ × Ñ = (la,mb, uc).

Definition 10. Suppose Ãi = (ai1, a
i
2, a

i
3) (i = 1, 2, . . . , n) is a set of trian-

gular fuzzy numbers; a weighted average for Ãi’s could be defined as:

ÃAve =

(
1

n

n∑
i=1

ai1,
1

n

n∑
i=1

ai2,
1

n

n∑
i=1

ai3

)
.

Also another weighted average of triangular fuzzy numbers for weights Wi’s
in [0, 1], where

∑n
i=1Wi = 1, is introduced as follow [11,12]:

ÃWAve =
( n∑
i=1

Wia
i
1,

n∑
i=1

Wia
i
2,

n∑
i=1

Wia
i
3

)
(i = 1, 2, . . . , n).

Note: Let M be a set containing the triangular fuzzy numbers Ãi (i =
1, 2, . . . , n), such that any Ãi is an m-dimensional fuzzy vector where its
components are symmetric triangular fuzzy numbers ãij (j = 1, 2, . . . , n);
then we can write:

M =


Ã1

Ã2
...

Ãn

 =


ã11 ã12 . . . ã1m
ã21 ã22 . . . ã2m
...

...
. . .

...
ãn1 ãn2 . . . ãnm



=


(a111 , a

11
2 , a

11
3 ) (a121 , a

12
2 , a

12
3 ) . . . (a1m1 , a1m2 , a1m3 )

(a211 , a
21
2 , a

11
3 ) (a221 , a

22
2 , a

22
3 ) . . . (a2m1 , a2m2 , a2m3 )

...
...

...
(an11 , a

n1
2 , a

n1
3 ) (an21 , a

n2
2 , a

n2
3 ) . . . (anm1 , anm2 , anm3 )

 .
Therefore, we have:

(Ã1)Ave
(Ã2)Ave

...

(Ãn)Ave

 =


(
∑

jW
1
j a

1j
1 ,
∑

jW
1
j a

1j
2 ,
∑

jW
1
j a

1j
3 )

(
∑

jW
2
j a

2j
1 ,
∑

jW
2
j a

2j
2 ,
∑

jW
2
j a

2j
3 )

...

(
∑

jW
n
j a

nj
1 ,
∑

jW
n
j a

nj
2 ,
∑

jW
n
j a

nj
3 )

 ,
where each W i = (W i

1,W
i
2, . . . ,W

i
n)T , i = 1, 2, . . . , n, is a weight vector

such that W i
j ∈ [0, 1] and

∑n
j=1W

i
j = 1.
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Figure 1: A graphical determination values of the left and right points.

2.2 Fuzzy removal left and right scoring method

In order to transfer a fuzzy number into a crisp one (defuzzyfied), several
methods are introduced, for instance center of gravity maximum member-
ship function, or fuzzy number right and left scoring. Due to the use of
continuous membership function, in this study, the right and left scoring
method is applied for fuzzy elimination.

To explain this method, assume that Ã = (α,m, β) is a triangular fuzzy
number; Figure 1 shows the necessary values for the left and right scoring
of Ã graphically [1]:

For the biggest bound of number U , in this figure, x1 is a cross-section
of µmax = 1

U x in the right half and x2 is cross-section of µmin = 1− 1
U x in

the left half; in this regard µL(Ã) is called the left score, µR(Ã) is called
the right score and µT (Ã), is called the total score which are defined as
follows:

µR(Ã) =
m+ β

U + β
, µL(Ã) = 1− m

U + α
, µT (Ã) =

µR(Ã) + 1− µL(Ã)

2
.

In this regard, one may use the amount of µT (Ã) as the defuzziness score
of Ã.

2.3 α-Cut performance of a fuzzy number

Before introducing the extended version of LOF algorithm for identifying
fuzzy outlier data, we need to discuss about a way to display fuzzy num-
bers by using α-cuts. We prefer to start this discussion by providing an
example; Figure 2 displays a symmetric triangular fuzzy number which
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is approximately 3. Hence, a membership function for this number is as
follows:

µ3̃(x) =


1
2x−

1
2 , 1 ≤ x ≤ 3,

−1
2x+ 5

2 , 3 ≤ x ≤ 5,
0 otherwise.

On the other hand, the membership function can be shown by α-cuts

Figure 2: Presentation of the symmetric triangular fuzzy number 3̃.

(intervals [a
(α)
1 , a

(α)
2 ]) in a parametric representation, as shown in Figure 3,

where 0 < α < 1 is a parameter. In this manner, when α1 < α2, we have

[a
(α2)
1 , a

(α2)
2 ] ⊂ [a

(α1)
1 , a

(α1)
2 ]; in fact, we have different intervals for different

amounts of α (see Figure 3). In this order, the mentioned intervals for 3̃
can be determined for different values of α as follows.

α = 0 : [1, 5]; α = 0.1 : [1.2, 4.8]; α = 0.2 : [1.4, 4.6]; α = 0.3 : [1.6, 4.4];

α = 0.4 : [1.8, 4.2]; α = 0.5 : [2, 4]; α = 0.6 : [2.2, 3.8];

α = 0.7 : [2.4, 3.6]; α = 0.8 : [2.6, 3.4]; α = 0.9 : [2.8, 3.2]; α = 1 : [3, 3].

Therefore, in discretization scheme, we can display the approximated
fuzzy number 3̃ by the following set:

(1.2, 0.1), (1.4, 0.2), (1.6, 0.3), (1.8, 0.4), (2, 0.5), (2.2, 0.6)
(2.4, 0.7), (2.6, 0.8), (2.8, 0.9), (3, 1.0), (3.2, 0.9), (3.4, 0.8)

(3.6, 0.7), (3.8, 0.6), (4, 0.5), (4.2, 0.4), (4.4, 0.3), (4.6, 0.2), (4.8, 0.1)

 .

Note: As we see, the α-cut arithmetic if repeatedly performed in an equa-
tion will accumulate the fuzziness of all fuzzy numbers involved. This
property can be observed in complex systems when performed for each
fuzzy interval. Therefore, in order to reduce fuzzy accumulation, the ap-
proximate fuzzy arithmetic operations adopt the weakest t-norm arithmetic
operations with different values. The weakest t-norm operations can get
more exact performance, which means smaller fuzzy spreads, under uncer-
tain environment.
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Figure 3: Presentation of the symmetric triangular fuzzy number 3̃.

3 The extended LOF algorithm

Regarding the presented definition in Section 2, here, we are going to
present an extended LOF algorithm for detecting the fuzzy outliers in a
multidimensional database. First of all, we have to introduce the ordinary
LOF algorithm for determining the crisp outlier data briefly. To this end,
based on [2], the ordinary LOF algorithm is as follows:

Step 1) Introduce minpts parameter and data set D.
Step 2) For any p ∈ D, calculate minpts − dist(p) and Nminpts−dist(p)
using Definitions 1 and 2.
Step 3) Obtain reach−distminpts(p, o) (for every o ∈ Nminpts−dist(p) using
Definition 3.
Step 4) Calculate lrdminpts(o) (for every o ∈ Nminpts−dist(p) using Defini-
tion 4.
Step 5) Calculate LoFminpts coefficient by using Definition 5.
Step 6) Compute LOF coefficient for total data set as p (outlier factor).

Data with a big coefficient is considered as an outlier data (One may
compare the obtained factors with a given threshold bound the outliers
could be identified).

Now let D be a database including some n-vector with symmetric tri-
angular fuzzy numbers. We know that the LOF coefficient of a symmetric
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triangular fuzzy data can be obtained by using Definitions 1 to 5; the only
difference is in using fuzzy equivalent mathematical concept instead of the
used mathematical terms in ordinary LOF; for example, we use triangu-
lar fuzzy numbers operations instead of the crisp one. To do this, first,
we show any symmetric triangular fuzzy number by different amount of α
level with an interval in x axis, and then, we apply fuzzy relations on this
interval to allocate an exact coefficient to each interval by left and right
scoring method. When LOF coefficients of the data set are computed in
this way, by regarding this exact value we follow the LOF procedure in the
crisp case to discuss whether it is an outlier or not.

Now, based on the above discussion, we present the following modified
LOF algorithm for determining the multidimensional symmetric triangular
fuzzy outliers; here p̃ is a data being studied and the one which we want
to obtain its inconsistency coefficient, and õi’s are the other data. The
main idea of the algorithm is as follows: first by using average weighted
method,p̃ is transferred into a one dimensional symmetric fuzzy number;
then this number is shown by an α-cuts for given α. Calculating the dis-
tance of p̃ to the other õi’s and arranging them by pairwise comparison
help us to compute the LOF factor as a fuzzy number. Then, defuzzyfying
this number helps us to create the outliers by using the same manner as
explained in [2]. The steps of the new algorithm can be presented as follow:

Step 1) Present the associated weight vector and determine the average
weight of every fuzzy multidimensional number by using Definition 10.
Step 2) Express fuzzy numbers of step 1 by α-cuts.
Step 3) For any fuzzy number p̃ calculate the distance of the interval p̃
data to the other fuzzy data by using the concept of fuzzy subtraction
(Definition 7).
Step 4) Arrange the obtained fuzzy distance from the previous steps by
pairwise comparison [6].
Step 5) Calculate the fuzzy LOF factor for every p̃. according to [2] and
the given minpts parameter as follow based on Definitions 3 and 4:

LOF (p̃) =
1

|Nminpts(p)|
×

∑
o∈Nminpts(p)

lrd(o)× lrd(p)−1.

Step 6) Use the left and right scoring defuzzyfication, for every fuzzy LOF
factor to allocate an exact amount to each data and then arrange them as an
array. Thus, priority is given according to the amount of LOF coefficients,
as the mentioned manner for them in [2].
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4 Simulations and discussion

To create the general data for testing, initially we produced symmetric
fuzzy numbers (l,m, u) randomly; first the mean m is selected randomly
by Matlab software in an closed interval. The number β in (0, 2) is selected
to produce (m − β,m,m + β) as a fuzzy randomly produced number. In
this manner, by producing 9 of them, a nine-dimensional data is created.

According to the weight conditions
∑n

i=1Wi = 1 and Wi ∈ [0, 1], we
suppose the weight vector as W = ( 1

n , . . . ,
1
n), but any weight vector can

be selected by decision maker. Thus, a decision maker has the option to
give appropriate weight to obtain acceptable results.
Case 1: We examined the above algorithm for a set of 9-dimensional fuzzy
data that had been selected randomly by using Matlab 2010 software as
explained above; this set was consisted of 100 data in which the mean of 90
of them were selected randomly in the range of 50 to 60. The mean of other
10 data (outliers) were selected in range of 40 to 45 randomly. Results have
been recorded for high outlier factor in Table 1 and their defuzzyfied factor
are plotted in Figure 4. If we consider Figure 4, we will see that the results
are consistent with Table 1. The important fact is that in both cases, the
presented algorithm is worked efficiently and defects all the outliers pre-
cisely in an easy manner. One can produce these numbers by the following
algorithm:

Algorithm 1. The Algorithm for the Case 1:
Step 1: Take random numbers mij ∈ (52, 58), i = 1, 2, . . . , 90, j =
1, 2, . . . , 9
Step 2: Take random numbers mij ∈ (42, 43), i = 91, 92, . . . , 100, j =
1, 2, . . . , 9
Step 3: Take random numbers βij ∈ (0, 2), i = 1, 2, . . . , 100, j = 1, 2, . . . , 9
Step 4: Take random numbers wij ∈ [0, 1] so that for each i,

∑9
j=1wij = 1

when i = 1, 2, . . . , 100, j = 1, 2, . . . , 9 (one may put wij = 1
9 , i =

1, 2, . . . , 100, j = 1, 2, . . . , 9)

Step 5: Set Ãi =
(∑9

j=1wij(mij − βij),
∑9

j=1wijmij ,
∑9

j=1wij(mij + βij)
)
,

i = 1, 2, . . . , 100, j = 1, 2, . . . , 9.

Case 2: For 100 nine-dimensional data that were selected randomly in
the range of 2 to 20, we repeated the test; thus, in this case, the outliers
are not predetermined. The results are provided in Table 2 and outlier
factor according to the data number is plotted in Figure 5. In fact, for the
threshold amount 1.2 the results show that 10 data are the most outlier
one. Note that, we select data in range of 40 to 45 randomly. One can
produce these numbers by the following algorithm:
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Table 1: Weighted average and LOF factor of the 20 last data in case 1.

Number Weighted Average LOF factor Prioritize
of data

67 (53.2103,54.1905,55.1707) (0.0743,1.0075,13.1476) 81

89 (53.1942,54.3964,55.5985) (0.0742,1.0011,13.2560) 82

37 (53.3093,54.2516,55.1940) (0.0738,1.0024,13.2604) 83

26 (53.3237,54.3868,55.4498) (0.0734,1.0067,13.2416) 84

73 (53.2764,54.2595,55.2426) (0.0739,1.0059,132886) 85

72 (52.8809,54.1850,55.4892) (0.0744,1.0065,13.2990) 86

75 (53.1554,54.2960,5.4365) (0.0740,1.0118,13.3508) 87

30 (53.1505,54.2628,55.3751) (0.0740,1.0134,13.3743) 88

46 (53.0506,54.2381,55.4257) (0.0737,1.0123,13.4047) 89

52 (52.9373,54.2482,55.5592) (0.0738,1.0128,13.4906) 90

100 (42.1369,43.1879,44.2389) (1.2795,2.5281,10.7009) 91

92 (41.9587,43.0742,44.1897) (1.2833,2.5419,10.7768) 92

99 (41.7388,42.7076,43.6763) (1.3215,2.5864,10.8724) 93

96 (41.7919,42.5192,43.2466) (1.3532,2.6093,10.8515) 94

93 (41.6254,42.2969,42.9685) (1.3739,2.6362,10.9234) 95

95 (4.2202,42.5989,43.9776) (1.3000,2.5996,11.0918) 96

97 (41.4039,42.3522,43.3004) (1.3497,2.6295,11.0164) 97

91 (41.0176,42.1822,43.3468) (1.3468,2.6501,11.1805) 98

94 (40.6102,41.9714,43.3327) (1.3484,2.6757,11.3539) 99

98 (40.6405,41.8820,43.1234) (1.3638,2.6866,11.3418) 100

Figure 4: Outlier factors of fuzzy 9 dimensional numbers in case 1.
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Table 2: Weighted average and LOF factor of the 20 last data in case 2.

Number Weighted Average LOF factor Prioritize
of data
18 (10.2482,11.0734,11.8985) (0.0742,0.9983,13.2750) 81
47 (9.539,10.9866,12.2194) (0.0739,1.0086,13.2851) 82
81 (10.1937,11.0458,11.8980) (0.0743,1.0020,13.3077) 83
32 (10.0244,11.0587,12.0929) (0.0744,1.0075,13.3077) 84
35 (9.9533,11.1077,12.2621) (0.0739,1.0075,13.4368) 85
21 (9.8981,11.0948,12.2914) (0.0741,1.0075,13.4804) 86
29 (9.7612,11.0561,12.3511) (0.3555,1.2919,109.4159) 87
84 (9.4679,10.8620,12/2562) (0.0745,1.0063,13.6147) 88
90 (9.7574,11.0791,12.4008) (0.0743,1.0068,13.6541) 89
56 (9.5082,10.9389,12.3696) (0.0735,1.0031,13.7013) 90
67 (9.7145,11.0747,12.4349) (0.0743,1.0061,13.7118) 91
2 (6.0423,6.9917, 7.9411) (0.0266,0.7186,78.9359) 92
73 (6.0420,6.8094,7.5767) (0.0670,0.7548,79.8700) 93
88 (7.4460,8.2798,9.1136) (0.2729,1.1531,103.1452) 94
40 (7.2324,8.2236,9.2147) (0.2761,1.1749,1052073) 95
65 (4.1071,5.0980,6.0889) (0.2990,1.2135,107.5364) 96
64 (6.7821,7.6518,8.5216) (0.3422,1.2781,109.2714) 97
23 (6.7085,7.5261,8.3436) (0.3555,1.2919,109.4159) 98
53 (6.8233,7.8086,8.7939) (0.3273,1/2729,110.0384) 99
7 (6.8490,8.1554,9.4617) (0.2973,1.2424,111.3451) 100

Algorithm 2. The Algorithm for the Case 2:
Step 1: Take random numbers mij ∈ (4, 18), i = 1, 2, . . . , 100, j =
1, 2, . . . , 9
Step 2: Take random numbers βij ∈ (0, 2), i = 1, 2, . . . , 100, j = 1, 2, . . . , 9
Step 3: Take random numbers wij ∈ [0, 1] so that for each i,

∑9
j=1wij =

1 when i = 1, 2, . . . , 100, j = 1, 2, . . . , 9 (one may put wij = 1
9 , i =

1, 2, . . . , 100, j = 1, 2, . . . , 9 for simplicity)

Step 4: Set Ãi =
(∑9

j=1wij(mij − βij),
∑9

j=1wijmij ,
∑9

j=1wij(mij + βij)
)
,

i = 1, 2, . . . , 100, j = 1, 2, . . . , 9.

5 Conclusions

LOF is an easy method to apply with achievable results and enough accu-
racy without passing the complex steps that makes compatible in identi-
fying crises outlier data. Therefore, this method is extended for detecting
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Figure 5: Outlier factors for case 2.

multidimensional fuzzy outliers data. To perform a new algorithm, first
LOF factor for each data is calculated; then, by using defuzzyfied left and
right scoring, a crisp outlier rate has been calculated for each fuzzy data.
Thus by considering a suitable threshold which can be identified by the
decision makers, the outliers are detected. More than presenting a new
density based method, for detecting fuzzy outliers, a very important ad-
vantages of the new method is the fuzzy discipline identification way for
high dimensional space. Also based on the testing examples, this algorithm
performed efficiently to identify outliers in a directed manner (like case 1)
and in undirected and unpredictable manner (like case 2). The obtained
theoretical and numerical results show that the presented method is very
accurate and successful in determining multidimensional outliers in fuzzy
data set.

Some interesting topics for further research could be as: numerical com-
parison of this algorithm with other existing methods such as LOCI and
LOoP, when they extended for fuzzy data, and, studying results of this al-
gorithm on real fuzzy data sets, such as confirmed medical and accounting
data.
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