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Abstract. This paper successfully applies the Adomian decomposition
and the modified Laplace Adomian decomposition methods to find the
approximate solution of a nonlinear fractional Volterra-Fredholm integro-
differential equation. The reliability of the methods and reduction in the
size of the computational work give these methods a wider applicability.
Also, the behavior of the solution can be formally determined by analytical
approximate. Moreover, the paper proves the convergence and uniqueness
of the solution. Finally, this study includes an example to demonstrate the
validity and applicability of the proposed techniques.
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1 Introduction

In this paper, we consider the nonlinear Caputo fractional Volterra-Fredholm
integro-differential equations of the form:

cDαy(x) = g(x) +

∫ x

0

K1(x, t)F1(y(t))dt+

∫ 1

0

K2(x, t)F2(y(t))dt, (1)
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with the initial condition

y(i)(0) = δi, i = 0, 1, 2, . . . , n− 1, (2)

where n− 1 < α ≤ n and n ∈ N, y : [0, 1] −→ R be the continuous function which
has to be determined, g : [0, 1] −→ R and Ki : [0, 1]× [0, 1] −→ R, are continuous
functions. Fi : R −→ R, i = 1, 2 are nonlinear terms and Lipschitz continuous
functions. Here cDα stands for the Caputo fractional derivative.

The fractional integro-differential equations have attracted much more interest
of mathematicians and physicists which provides an efficiency for the description
of many practical dynamical arising in engineering and scientific disciplines such
as, physics, biology, electrochemistry, chemistry, economy, electromagnetic, control
theory and viscoelasticity [2,7,13–15,17,18]. In recent years, numerous papers have
been concentrating on the development of numerical and analytical techniques for
fractional integro-differential equations. For instance, Al-Samadi and Gumah [2]
applied the homotopy analysis method for the fractional SEIR Epidemic Model,
Yang and Hou [17] applied the Laplace decomposition method to solve the frac-
tional integro-differential equations, Mittal and Nigam [14] applied the Adomian
decomposition method to approximate solutions for fractional integro-differential
equations, and Ma and Huang [13] applied hybrid collocation method to study
integro-differential equations of fractional order. Moreover, several authors exam-
ined properties of the fractional integro-differential equations [5, 15,18].

The main objective of the present paper is to study the behavior of the solution
that can be formally determined by analytical approximated methods such as the
Adomian decomposition method and the modified Laplace Adomian decomposi-
tion method. Moreover, the paper proves the uniqueness and convergence of the
solution of nonlinear fractional Volterra-Fredholm integro-differential equation.

The rest of the paper is organized as follows: Section 2 recalls some pre-
liminaries and basic definitions related to fractional calculus and Laplace trans-
form. In Section 3, Adomian Decomposition Method is constructed for solving
fractional Volterra-Fredholm integro-differential equations. In Section 4, modi-
fied Laplace Adomian Decomposition Method is constructed for solving Volterra-
Fredholm integro-differential equations of fractional order. Section 5 proves the
convergence and uniqueness of the solution. Section 6 presents an analytical exam-
ple to illustrate the accuracy of the methods used in this study. The final Section
7 gives a report on the paper along with a brief conclusion.

2 Preliminaries

The mathematical definitions of fractional derivative and fractional integration
are the subject of different approaches. The most frequently used definitions of
the fractional calculus involve the Riemann-Liouville fractional derivative, Caputo
derivative, Riesz derivative and Grunwald-Letnikov fractional derivative [5, 8, 14,
17,18]. This study uses the Caputo’s definition of fractional derivative.

Definition 1. (Riemann-Liouville fractional integral). The Riemann-Liouville
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fractional integral of order α > 0 of a function f is defined as

Jαf(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt, x > 0, α ∈ R+,

J0f(x) = f(x), (3)

where R+ is the set of positive real numbers.

Definition 2. (Caputo fractional derivative). The fractional derivative, in-
troduced by Caputo in the late sixties, is called Caputo fractional derivative. The
fractional derivative of f(x) in the Caputo sense is defined by

cDα
t f(x) = Jm−αDmf(t)

=


1

Γ(m−α)

∫ x
0

(x− t)m−α−1 d
mf(t)
dtm dt, m− 1 < α < m,

dmf(x)

dtm
, α = m, m ∈ N,

(4)

where the parameter α is the order of the derivative and is allowed to be real or
even complex. In this paper, only real and positive α will be considered.

Hence, we have the following properties:

• JαJvf = Jα+vf, α, v > 0.

• Jαxβ = Γ(β+1)
Γ(α+β+1)x

α+β , α > 0, β > −1, x > 0.

• JαDαf(x) = f(x)−
m−1∑
k=0

f (k)(0+)
xk

k!
, x > 0, m− 1 < α ≤ m.

Definition 3. (Riemann-Liouville fractional derivative). The Riemann-
Liouville fractional derivative of order α > 0 is normally defined as

Dαf(x) = DmJm−αf(x), m− 1 < α ≤ m, m ∈ N. (5)

Definition 4. The Laplace transform of a function f(x), x > 0 is defined as

L[f(x)] = F (s) =

∫ +∞

0

f(x)e−sxdx, (6)

where s can be either real or complex.

Definition 5. Given two functions f and g, we define, for any x > 0,

(f ∗ g)(x) =

∫ x

0

f(t)g(x− t)dt. (7)

The function f ∗ g is called the convolution of f and g.

Theorem 1. (The convolution theorem).

L[f ∗ g] = L[f(x)] · L[g(x)]. (8)

Theorem 2. The Laplace transform L[f(x)] of the Caputo derivative is given as

L[cDαf(x)] = sαF (s)−
n−1∑
k=0

sα−k−1f (k)(0), n− 1 < α ≤ n. (9)
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3 Adomian Decomposition method

We consider the equation (1) where the operator cDα was defined in (5).
Operating with Jα on both sides of the equation (1), we get:

y(x) =

n−1∑
k=0

yk(0+)
xk

k!

+Jα
(
g(x) +

∫ x

0

K1(x, t)F1(y(t))dt+

∫ 1

0

K2(x, t)F2(y(t))dt

)
(10)

The Adomian’s method defines the solution y(x) by the series

y =

∞∑
n=0

yn, (11)

and the nonlinear function F is decomposed as

F1 =

∞∑
n=0

An, F2 =

∞∑
n=0

Bn, (12)

where An and Bn are the Adomian polynomials given by

An =
1

n!

[
dn

dφn
(F1

n∑
i=0

φiyi)

]
φ=0

, (13)

Bn =
1

n!

[
dn

dφn
(F2

n∑
i=0

φiyi)

]
φ=0

. (14)

The Adomian polynomials were introduced in [1, 3, 6, 11,12,14,16] as:

A0 = F1(y0),

A1 = y1F
′

1(y0),

A2 = y2F
′

1(y0) +
1

2
y2

1F
′′

1 (y0),

A3 = y3F
′

1(y0) + y1y2F
′′

1 (y0) +
1

3
y3

1F
′′′

1 (y0),

... (15)

and

B0 = F2(y0),

B1 = y1F
′

2(y0),

B2 = y2F
′

2(y0) +
1

2
y2

1F
′′

2 (y0),

B3 = y3F
′

2(y0) + y1y2F
′′

2 (y0) +
1

3
y3

1F
′′′

2 (y0),

... (16)
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The components y0, y1, y2,. . . are determined recursively by

y0 =

n−1∑
k=0

yk(0+)
xk

k!
+ Jαg(x), (17)

yk+1 = Jα
(∫ x

0

K1(x, s)Akds+

∫ 1

0

K2(x, s)Bkds

)
. (18)

Having defined the components y0, y1, y2,. . . , the solution y in a series form
defined by (11) follows immediately. It is important to note that the decomposition
method suggests that the 0th component y0 be defined by the initial conditions and
the function g(x) as described above. The other components namely y1, y2,. . . ,
are derived recurrently.

4 Modified Laplace decomposition method

We apply the Laplace transform to both sides of Eq. (1):

L[cDαy(x)] = L[g(x)] +L[

∫ x

0

K1(x, s)F1(y(s))ds+

∫ 1

0

K2(x, s)F2(y(s))ds]. (19)

Using the differentiation property of the Laplace transform (9) we get

sαL[y(x)]−c = L[g(x)]+L[

∫ x

0

K1(x, s)F1(y(s))ds+

∫ 1

0

K2(x, s)F2(y(s))ds], (20)

where c =
∑m−1
k=0 xα−k−1y(k)(0). Thus, the given equation is equivalent to

L[y(x)] =
c

sα
+

1

sα
L[g(x)]

+
1

sα
L[

∫ x

0

K1(x, s)F1(y(s))ds+

∫ 1

0

K2(x, s)F2(y(s))ds]. (21)

Substituting (11) and (12) into (21), we will get

L

[ ∞∑
n=0

yn

]
=

c

sα
+

1

sα
L [g(x)] +

1

sα

×L

[∫ t

0

K1(x, s)

∞∑
n=0

Ands+

∫ 1

0

K2(x, s)

∞∑
n=0

Bnds

]
. (22)
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Matching both sides of (22) yields the following iterative algorithm [4,8–10,17]:

L[y0] =
c

sα
+

1

sα
L [g(x)]

L[y1] =
1

sα
L
[∫ x

0

K1(x, s)A0ds+

∫ 1

0

K2(x, s)B0ds

]
,

L[y2] =
1

sα
L
[∫ x

0

K1(x, s)A1ds+

∫ 1

0

K2(x, s)B1ds

]
,

... (23)

L[yn+1] =
1

sα
L
[∫ x

0

K1(x, s)Ands+

∫ 1

0

K2(x, s)Bnds

]
,

5 Uniqueness and convergence

In this section, we shall give existence and uniqueness of the solution for equation
(1) with the initial condition (2) and prove it. Before starting and proving the
main results, we introduce the following hypotheses:

(A1) There exists two constants LF1
, LF2

> 0 such that, for any y1, y2 ∈ C(J,R)

|F1(y1(x))− F1(y2(x))| ≤ LF1 |y1 − y2| ,

and

|F2(y1(x))− F2(y2(x))| ≤ LF2 |y1 − y2| ;

(A2) There exists two functions K∗1 ,K
∗
2 ∈ C(D,R+), the set of all positive and

continuous functions on D = {(x, t) ∈ R× R : 0 ≤ t ≤ x ≤ 1} such that

K∗1 = sup
x∈[0,1]

∫ x

0

|K1(x, t)| dt <∞, K∗2 = sup
x∈[0,1]

∫ x

0

|K2(x, t)| dt <∞;

(A3) The function g : J → R is continuous.

Lemma 1. If y0(x) ∈ C(J,R), then y(x) ∈ C(J,R+) is a solution of the problem
(1)− (2) iff y satisfies

y(x) = c+
1

Γ(α)

∫ x

0

(x− s)α−1g(s)ds+
1

Γ(α)

∫ x

0

(x− s)α−1

×
(∫ s

0

K1(s, τ)F1(y(τ))dτ +

∫ 1

0

K2(s, τ)F2(y(τ))dτ

)
ds,

for x ∈ J.

Our first result is based on the Banach contraction principle.
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Theorem 3. Assume that (A1), (A2) and (A3) hold. If(
K∗1LF1

+K∗2LF2

Γ(α+ 1)

)
< 1, (24)

then there exists a unique solution y(x) ∈ C(J) to (1)− (2).

Proof. By Lemma 1 we know that a function y is a solution to (1) − (2) iff y
satisfies

y(x) = c+
1

Γ(α)

∫ x

0

(x− s)α−1g(s)ds+
1

Γ(α)

∫ x

0

(x− s)α−1

×
(∫ s

0

K1(s, τ)F1(y(τ))dτ +

∫ 1

0

K2(s, τ)F2(y(τ))dτ

)
ds.

Let the operator T : C(J,R)→ C(J,R) be defined by

(Ty)(x) = c+
1

Γ(α)

∫ x

0

(x− s)α−1g(s)ds+
1

Γ(α)

∫ x

0

(x− s)α−1

×
(∫ s

0

K1(s, τ)F1(y(τ))dτ +

∫ 1

0

K2(s, τ)F2(y(τ))dτ

)
ds.

We can see that, If y ∈ C(J,R) is a fixed point of T , then y is a solution of (1)−(2).
Now we prove that T has a fixed point y in C(J,R). For that, let y1, y2 ∈

C(J,R) and for any x ∈ [0, 1] such that

y1(x) = c+
1

Γ(α)

∫ x

0

(x− s)α−1g(s)ds+
1

Γ(α)

∫ x

0

(x− s)α−1

×
(∫ s

0

K1(s, τ)F1(y1(τ))dτ +

∫ 1

0

K2(s, τ)F2(y1(τ))dτ

)
ds,

and

y2(x) = c+
1

Γ(α)

∫ x

0

(x− s)α−1g(s)ds+
1

Γ(α)

∫ x

0

(x− s)α−1

×
(∫ s

0

K1(s, τ)F1(y2(τ))dτ +

∫ 1

0

K2(s, τ)F2(y2(τ))dτ

)
ds.

Consequently, we get

|(Ty1)(x)− (Ty2)(x)|

≤ 1

Γ(α)

∫ x

0

(x− s)α−1

( ∫ s
0
|K1(s, τ)| |F1(y1(τ))− F1(y2(τ))| dτ

+
∫ 1

0
|K2(s, τ)| |F2(y1(τ))− F2(y2(τ))| dτ

)
ds

≤ K∗1LF1

Γ(α+ 1)
|y1(x)− y2(x)|+ K∗2LF2

Γ(α+ 1)
|y1(x)− y2(x)|

=

(
K∗1LF1

+K∗2LF2

Γ(α+ 1)

)
|y1(x)− y2(x)| .
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From the inequality (24) we have

‖Ty1 − Ty2‖∞ ≤ ‖y1 − y2‖∞ .

This means that T is contraction map. By the Banach contraction principle, we
can conclude that T has a unique fixed point y in C(J,R).

Theorem 4. Suppose that (A1)-(A3), and (24) hold. If the series solution

y(x) =
∞∑
i=0

yi(x),

and ‖y1‖∞ < ∞ obtained by the m-order deformation is convergent, then it con-
verges to the exact solution of the fractional Volterra-Fredholm integro-differential
equation (1)− (2).

Proof. Denote as (C[0, 1], ‖.‖) the Banach space of all continuous functions on J,
with |y1(x)| ≤ ∞ for all x in J .

First, we define the sequence of partial sums sn. Let sn and sm be arbitrary
partial sums with n ≥ m. We are going to prove that

sn =

n∑
i=0

yi(x),

is a Cauchy sequence in this Banach space. To do so,

‖sn − sm‖∞ = max
∀x∈J

|sn − sm|

= max
∀x∈J

|
n∑
i=0

yi(x)−
m∑
i=0

yi(x)|

= max
∀x∈J

|
n∑

i=m+1

yi(x)|

= max
∀x∈J

|
n∑

i=m+1

(
1

Γ(α)

∫ x

0

(x− t)α−1[

∫ t

0

K1(t, s)Ai(s)ds

+

∫ 1

0

K2(t, s)Bi(s)ds]dt)|

= max
∀x∈J

| 1

Γ(α)

∫ x

0

(x− t)α−1[

∫ t

0

K1(t, s)

n−1∑
i=m

Ai(s)ds

+

∫ 1

0

K2(t, s)

n−1∑
i=m

Bi(s)ds)]dt|.
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From (11) and (12), we have

n−1∑
i=m

Ai = F1(sn−1)− F1(sm−1),

n−1∑
i=m

Bi = F2(sn−1)− F2(sm−1),

n−1∑
i=m

yi = y(sn−1)− y(sm−1).

So,

‖sn − sm‖∞ = max
∀x∈J

(|
∫ t

0

K1(t, s)(F1(sn−1)− F1(sm−1))ds

+

∫ 1

0

K2(t, s)(F2(sn−1)− F2(sm−1))ds]dt|),

≤ max
∀x∈J

(
1

Γ(α)
[

∫ t

0

|K1(t, s)||(F1(sn−1)− F1(sm−1))|ds

+

∫ 1

0

|K2(t, s)||(F2(sn−1)− F2(sm−1))|ds]dt),

≤ 1

Γ(α+ 1)
[K∗1LF1

‖sn−1 − sm−1‖∞ +K∗2LF2
‖sn−1 − sm−1‖∞],

=

(
K∗1LF1 +K∗2LF2

Γ(α+ 1)

)
‖sn−1 − sm−1‖∞,

= δ‖sn−1 − sm−1‖∞,

where

δ =

(
K∗1LF1 +K∗2LF2

Γ(α+ 1)

)
.

Let n = m+ 1, then

‖sn − sm‖∞ ≤ δ‖sm − sm−1‖∞
≤ δ2‖sm−1 − sm−2‖∞
...

≤ δm‖s1 − s0‖∞,

so,

‖sn − sm‖∞ ≤ ‖sm+1 − sm‖∞ + ‖sm+2 − sm+1‖∞
+ · · ·+ ‖sn − sn−1‖∞

≤ [δm + δm+1 + · · ·+ δn−1]‖s1 − s0‖∞
≤ δm[1 + δ + δ2 + · · ·+ δn−m−1]‖s1 − s0‖∞

≤ δm(
1− δn−m

1− δ
)‖y1‖∞.
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Since 0 < δ < 1, we have (1− δn−m) < 1, and then

‖sn − sm‖∞ ≤
δm

1− δ
‖y1‖∞.

But ‖y1(x)‖∞ <∞, so, as m −→∞, then

‖sn − sm‖∞ −→ 0.

We conclude that sn is a Cauchy sequence in C[0, 1], therefore

y = lim
n→∞

yn.

Then, the series is convergence and the proof is complete.

6 Illustrative example

In this section, we present the analytical techniques based on ADM and
MLADM to solve fractional Volterra-Fredholm integro-differential equation.

Example 1. Consider the following fractional Volterra-Fredholm integro-differential
equation.

cD0.75[y(t)] +
t2et

5
y(t) =

6t2.25

Γ(3.25)
+

∫ t

0

etsy(s)ds+

∫ 1

0

(4− s−3)y(s)ds,

with the initial condition

y(0) = 0, (25)

and the the exact solution is y(t) = t3.

Firstly, we apply the Adomian decomposition method. Applying the operator
Jα to both sides of Eq. (25) gives

y(t) =

m−1∑
k=0

dy(0)

dtk
tk

k!
+

6

Γ(3.25)
Jα(t2.25)− 1

5
Jα(t2ety(t))

+Jα
(∫ t

0

etsy(s)ds+

∫ 1

0

(4− s−3)y(s)ds

)
.
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Then,

y0(t) =

m−1∑
k=0

dy(0)

dtk
tk

k!
+

6

Γ(3.25)
Jαt2.25

= 0 +
6

Γ(3.25)

Γ(9/4 + 1)

Γ(9/4 + 3/4 + 1)
t(9/4+3/4)

= t3,

y1(t) = −1

5
Jα(t2ety0(t)) + Jα(

∫ t

0

etsA0(s)ds+

∫ 1

0

(4− s−3)B0(s)ds)

= −1

5
Jα(t2ety0(t)) + Jα(

∫ t

0

ets4ds+

∫ 1

0

(4− s−3)s3ds)

= −1

5
Jα(t2ety0(t)) + Jα(

1

5
ett5 + 0)

= −1

5
Jα(t2ety0(t)) +

1

5
Jα(ett2y0(t))

...

yn(t) = 0. (26)

Therefore, the obtained solution is y(t) = t3.

Secondly, we employ the modified Laplace Adomian decomposition method.
We apply the Laplace transform to both sides of (25)

L
[
cD0.75y(t)

]
= L

[
(− t

2et

5
)y(t)

]
+ L

[
6t2.25

Γ(3.25)

]
+L

[∫ t

0

etsy(s)ds+

∫ 1

0

(4− s−3)y(s)ds

]
.

Using the property of Laplace transform and the initial conditions (25), we get

s
3
4L [y(t)] = L

[
(− t

2et

5
)y(t)

]
+ L

[
6t2.25

Γ(3.25)

]
+L

[∫ t

0

etsy(s)ds+

∫ 1

0

(4− s−3)y(s)ds

]
,

and

L [y(t)] =
1

s
3
4

(L
[
(− t

2et

5
)y(t)

]
+ L

[
6t2.25

Γ(3.25)

]
+L

[∫ t

0

etsy(s)ds+

∫ 1

0

(4− s−3)y(s)ds

]
).
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Substituting (11) and (12) into above equation, we have

L

[ ∞∑
n=0

yn(t)

]
=

1

s
3
4

(L

[
(− t

2et

5
)

∞∑
n=0

yn(t)

]
+ L

[
6t2.25

Γ(3.25)

]

+L

[∫ t

0

ets

∞∑
n=0

Ands+

∫ 1

0

(4− s−3)

∞∑
n=0

Bnds

]
).

By matching both sides of above equation, we have the following relations

L [y0(t)] =
1

s
3
4

L
[

6t2.25

Γ(3.25)

]
L [y1(t)] =

1

s
3
4

(
L
[
(− t

2et

5
)y0(t)

]
+ L

[∫ t

0

etsA0ds+

∫ 1

0

(4− s−3)B0ds

])
.

...

L [yn+1(t)] =
1

s
3
4

(
L
[
(− t

2et

5
)yn(t)

]
+ L

[∫ t

0

etsAnds+

∫ 1

0

(4− s−3)Bnds

])
.

By applying the inverse Laplace transform to above equations we get

y0(t) = t3,

y0(t) = L−1(
1

s
3
4

(L
[
(− t

2et

5
)y0(t)

]
+

1

s
3
4

L
[∫ t

0

ets4ds+

∫ 1

0

(4− s−3)s3ds

]
)) = 0.

...

yn(t) = 0.

Therefore, the obtained solution is y(t) = t3.

7 Conclusion

This paper successfully applied the Adomian decomposition method and the
modified Laplace Adomian decomposition method to find the approximate solu-
tion of nonlinear fractional Volterra-Fredholm integro-differential equation. The
reliability of the methods and reduction in the size of the computational work
give these methods a wider applicability. The methods are very powerful and
efficient in finding analytical as well as numerical solutions for wide classes of lin-
ear and fractional Volterra-Fredholm integro-differential equations. They provide
more realistic series solutions that converge very rapidly in real physical problems.
Finally, the behavior of the solution can be formally determined by analytical ap-
proximate. The proposed methods can be applied to other nonlinear fractional
differential equations, systems of differential and integral equation.
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