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Abstract. As we know the approximation solution of seventh order two
points boundary value problems based on B-spline of degree eight has only
O(h?) accuracy and this approximation is non-optimal. In this work, we ob-
tain an optimal spline collocation method for solving the general nonlinear
seventh order two points boundary value problems. The O(h®) conver-
gence analysis, mainly based on the Green’s function approach, has been
proved. Numerical illustration demonstrate the applicability of the pur-
posed method. Three test problems have been solved and the computed
results have been compared with the results obtained by recent existing
methods to verify the accurate nature of our method.
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1 Introduction

We consider the general nonlinear seventh order two point boundary value
problems (BVPs) of the following form:

Ly =y'D(@) = f(a,y(2),y (2),....y(2)) =0, a<az<b, (1)
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with the boundary conditions,

6

By = (cijyV(a) + By (b)) =mi, 0 <i <6, (2)
7=0

where «;j, B;; and n; are given real constants, f is a continuous function,
y(z) is an unknown function, and L and B are differential operators.

The formulation of many mathematical models in engineering and other
branches of sciences are in the form of differential equations with initial
or boundary conditions and boundary value problems generally. Obtaining
the analytic solution for these problems is impossible, because of this, many
authors attempt to use different numerical methods such as finite difference,
Galerkin and Sinc collocation methods [12, 14, 15].

The literature on the numerical solution of seventh order two point
boundary value problems is seldom. These problems are generally arise in
modelling induction motors with two rator circuits. Behaviour of such mod-
els have been studied by Richards and Sarma [18]. The solution of seventh
order BVPs based on variational iteration and differential transformation
method are given by Siddiqi et al. [21, 22]. In [23] the authors used the
homotopy analysis method for solving higher order BVPs. Reproducting
kernel method for the solution of seventh order BVPs has been studied in
[3].

Many researchers applied the collocation methods for solution of BVPs
[2, 4, 19]. The spline functions has been applied to solve BVPs in [5], with
order O(h?). After that many authors [1, 7, 8, 20] examined the collocation
method based on cubic spline for BV Ps.

An optimal cubic spline collocation method at grid points was developed
by Danial and Swatrz in [6], which gives O(h*) accuracy. In [10] the authors
used optimal collocation method on midpoints based on quadratic spline
for approximate the solution of second order BVPs. Irodotou-Ellina and
Houstis applied the optimal quintic spline collocation method for solving
linear fourth order two point BVPs which lead to an O(h®) approximation[11].

In [16] Rashidinia et al. developed an optimal method based on sextic
spline at the grid points for solving of nonlinear fifth order two point BVPs.
Also, Rashidinia and Ghasemi [17] applied an optimal sextic spline at the
midpoints for the numerical solution of sixth order nonlinear two point
BVPs.

In this paper we applied optimal collocation method based on B-spline
of degree eight at the nodal points of the interval [a,b] and obtained O(h®)
approximation for the numerical solution of boundary value problems (1) —
(2). The approximation is assumed to satisfy a high order approximation
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of the problem. In Section 2, we obtain the consistency relations for spline
of degree eight at the nodal points of the partition. In Section 3, the
description of the method based on spline for the solution of (1) — (2) is
explained. The convergence analysis of the presented method is given in
detail, in Section 4. In Section 5, numerical experiments are conducted
to demonstrate the applicability of the proposed method computationally.
Conclusion is presented in Section 6.

2 Spline interpolation

We define the spline of degree eight as basis functions to construct an
interpolant S(x), satisfying certain end conditions and then derive several
relations that are useful in the formulation of the optimal spline collocation
method.

Now let A = {a =zy < z1 < --- < z, = b} be a uniform partition of
the interval [a,b] with the step size h = IFT“. We consider smooth spline
of degree eight S(x), that is an element of Sps(A) = {q(z)|q(z) € C7[a, b]}
and ¢(x) is a polynomial of degree at most 8 on the partition A. The set
of B-splines {Bk(x)}lgiﬁ#, form a basis for Spg(A), so we can define our

spline of degree eight in the following form:

n+4

S(:U) = Z CkBk(:U), T € [.Ti,:vi+1],
k=—3

that satisfies the following interpolatory conditions:

S(zi) = y(w;), 0<i<n, (3)
associated with the end conditions:
) ™) o) R e s
S (wi) =y (@) — Y (i) + 210 (i) — 60137 (i),  (4)

fori =0,1,2,3,n —2,n — 1,n. By using linear dependence relations, we
have the following consistency relations for spline of degree eight and its
first seventh derivatives for 4 < ¢ <n — 3 at the grid points: [9, 24]

40320

(a) FSZ(7) = T(:Fsi—él,i-l-?; + 78342 F 215,241 £ 35S5;—1,),
(b) FS,(G) = %(&—4,%3 —58i-3i42 +9Si—2i41 — 5Si—1,4),

(c) FSZ@ = %(?&4,#3 + S 342195211 F255i-1,),

(d) rs® = @(sz}?iw + 78342 — 27S; 2,41 +195;_1),

) h4
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336
(e) TS = &3 (FSi-sits F 2351342 £ 95i-211 £ 955i-14),
56
(f) ]'_‘Szz) = ﬁ(5i74,z'+3 + 558 _3,i42 + 1898 241 — 245S5;_1),
8
(9) TS;Y = - (FSi-aies F 119Si 342 F 107LS; 2001 F 12255 1,),

(h) T'g;, = (gz’—47i+3 + 24791;37142 + 429391;27141 + 156199i71,i)7 (5)

where the discrete operator I' is defined for any function g on the inter-
val [a,b]. For sake of convenience we set S; = S(z;), S = §7(;), i =
0,1,...,n, j = 1,2,...,7 where ¢@) = DUWg. In order to obtain the er-
ror bounds for spline of degree eight S and its derivatives S’,...,S ) we

present the next theorem.

Theorem 1. Let S(x) be the spline of degree eight, satisfying (3) — (4) and
interpolating the function y € C'4[a, b], then fori = 0,1,...,n the following
relations hold,

(@) SY =y 1 omd),
B S =@ o),

6
() 88 =& _ 04 o),

t 30240
(@ s =y + %y@ +0(n%),
(f) 8=y~ 2’240@/51” + 3324 'Y+ o),
(9) 87 =y - %yf” + 2770 - %y?‘”” +O(h),  (6)

and we have the following error bounds,
I (S—y)® = 0h**), k=1,2....7. (7)

Proof. First we need to prove relation (6g). Using Taylor’s series expansion
and taking into account the interpolatory condition S; = y;, ¢ =0,1,...,n,
in the relation (5a) we have

1S = 40320y" — 20160y + 1680012y"" — 6720n3y"”) + 319211y

?
20,6 13 320
3

—1064R5y"? + =y Ty L O(h8), (8)
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for 4 < i < n—3. Further, using Taylor’s series expansion, for any function
g € C®a,b] we obtain

Tg; = 40320g; — 20160hg! + 20160h2g!> — 8400h3¢!> + 4704h*¢Y

—168017g\") + 688h°¢\" — 21517¢\ + O(B®), 4 <i<n—3.(9)

Setting g(x) = ylm — ]f—;ygg) + %ygn) — %%(13)’ we have the following

relation

h? o) hY any RS g

g = T(y!" — L@ 2 00 2 (
= 40320y\") — 20160hy*) + 168001%y" — 672013y + 31921%y M)
112 2
= —1064n%y") + Tohﬁygm - %fﬂyl{“) +O(h). (10)

By subtracting Eq. (8) from (10), we obtain

2 4 6
@ _ M e b an BT a8y o8y g <<
I'(S;" —y; "’12%’ 510V +6048yi )=0(h°), 4<i<n-3. (11)

Denoting R; = Slm - yzm + ’f—;yf’) — %ygn) + %%@3)7 then by associating
the Eq. (4) and consistency equation (11), we get the following system of
equations,

IR, =0M) |y ||, 4<i<n-—3,

Ry=Ry=Ry=Rs=Ry 9=Ry 1 =R, =0. (12)

Since the coefficient matrix of the above system is positive definite, it is
nonsingular and its inverse has a finite norm. Thus we have R; = O(h®),
i =0,1,...,n, this concludes the proof of relation (6g).

To prove relation (6b) consider the following relations, which can be
easily obtained via long straightforward calculations for any spline of degree
eight at the interior grid points x;,

6 _  —
S0 = 40320h6[

+806400S; 5 — h7(2015957 + 4007257, + 3577957, + 2016057,
+4541507), + 24857 4 5], 0<i<n—6,

3 3 3

—4032081',1'4,_6 + 24192051'4_17@'4_5 — 60480051'4_27@'4_4
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¥ = Joagone 1 16081280S; 7 ; F 8126092805, 5,1 & 24379488005 5,
7)

T40634496005; 4; 3 + 17 (287957 + 71111257, + 123592995
+449625605.7, + 4494694157, + 123237685'"), + 67104157,

7 13

~172808.")], T<i<n.

Using relation part (g) of Eq. (6) in the above relations and applying
Taylor’s series expansion of yz(i)l for k=10,7,9,11 we get

h* h®
SZ(G) _ Z/z@ (10 |

o (12) ] <<
510Yi + O(h%), 0<i<n.

3024
In a similar manner applying some appropriate consistency relations we
can prove the other relations in this Theorem. U

To improve the order of numerical solution of the system of equations
(1)—(2) we need to donate the following discrete operators for convenience:

Aogi = gi-3,i+3 — 6gi—2,i12 +15g;—1;42 —20g;, 3 <i<n-—3

1 .
g = —g[gi—3,i+3 —12g;_242 +39gi—1,i+1 — 56g;], 3<i<n-—3

1
_E[
A3gi = gi—1 — 29; + git1, 3 <1<n-—3,

Aogi = Gi—3,i+3 — 18gi—2i42 + 63gi—1,i11 — 92¢;], 3<i<n-—3

These operators define the relations of eight degree spline S with respect

to the higher derivatives y(9), ... y(13),

Lemma 1. Ify € C'[a,b], then using the above operators we have

. )\S(r—ﬁ)
()_0z7+@(h2), 9<r<13,3<i<n-3,

Yy, = 16

ygr):%Jr@(h‘l), 9<r<10,3<i<n-3,
g1 = Aﬁn LOMY, 3<i<n-3

u” = A?’,ig?) +O(1), 1<i<n-L

Proof. The proof is state forward by using Lemma 2.1 and Theorem 2.1. [
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Corollary 1. Let S be the spline of degree eight which used to interpolate
y € C'[a,b] then for i = 3(1)n — 3, the following relations hold
1

M _ o, Ly ocm_ 1 om (7) 8
vio = S A - et g St O,

6, 1, g6 _ 1 (6) 8
it g gt F O,

G _ o) _ Ly g, 1 (5) 8
Y, = Sz 720)‘1’51 + 3024>\OS7, +O(h ),

1
u!) = 51— s+ 0,

S
=
I
n
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3) _ o) 1 (3) 8
S = 5+ o)
9 = s+ o)

Now we need to obtain the similar relations at the boundary and its
neighbour points, so that we conclude the following Corollary 2.

Corollary 2. Let y € C'[a,b], denoting the index oj = j, j = 0,1,2 for
the grid points, near the left end point and o =n—j, j =n—-2,n—1,n for
the grid points, near the right end point, then the following approximations
to the higher order derivatives of y hold at the boundary and its neighbour
points,

s (2055;;4) — 458504 :L; 36551 1055;4)) oM, r—9.10
FAEPWEL SLLIE At 2 Sk~ R Y
) = (488’;‘4) - 6552‘4)};: 4557 — 552_4)) oMY, =910,

WD = (655,? — 1580 4 2055,2;2— 1555 + 6557 — SS,?) +O0),

A0 3, (2055,? — 4557 f; 36557 — 1055,?) + o),

yet = AQ(losg’) - 205&)}; 1953 - 4S‘(’?) +O(h),

) < (SO o,

yir) = A0(4S‘(’g_6) };35‘(’2_6)) + 0%, r=09,10,11,12,13,

yir) = A0(3S‘(’276) ];255’26)) +O(h?), r=29,10,11,12,13,

yir) = AO(ZS‘(’Z_G)hg S‘(’Z_G)) +O(h?), r=29,10,11,12,13.

3 Description of the method

For solution of system of boundary value problems (1) —(2) by using S(z) €
Spg(A) and to achieve an O(h®) optimal order method. We approximate
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y', ...,y by their spline relations, which prescribe in Theorem 1, Lemma
1 and Corollaries 1 and 2. Finally this approach lead to the following
nonlinear system:

>\3
S + (GSU 158 + 2080 — 1557 + 6550 — 8{7))
A? () _ 4590 (™ _ 105 (7) _ 55(7)
525 (2085 — 455(7) + 365() — 105()) + 6048(45 35(7)
Ao
_ LSS (3) _ 390)
f(xmeSUou ScrmS S + 30240 (4S 3504 )7
A
)~ v a8t~ 3s(Y),
SG) ;210 (205%) — 4555 + 365 — 105 + 3324< 485 —350)),
Al
©) 4 (6) _ 455(6) ©) _105©) (6) _ 35(6)
5% + 5 40(205 455() +365() —105)) — o5 4(45 35%9))
+O(h%), i=0,n, (13)
S+ 2250 210@05( ) 208 + 1555 — 45D)
A
6028 (380 —28) = f(x5y,S05,, 5%, S,
A Ao
(3) 0_(35() _ 25(3)) 5 _ (1) _ 9500
o+ Soaap 35es — 2500, 5, 6048(3S Soi):
A A
S — : 210 (108%) — 2085 + 1553 — 48P + 5 0; i (38%) — 280,
Ay
S5 + 240(1()5() 2059 + 15559 — 48{9)) — 3024(3S<> 25(9)))
+0(h®), i=1,n—1, (14)
A A A
(0 4 2250 _ 22 (4500 _ 650 1 480D — 500 0_(9g(7) _ g(7)
S5 + Ty 980 — 5 (485 — 6557 + 485D — 50)) + (255 — 557)
Ao
= f(x0'27SUZ7S(,727S(,7{27S(S'Z) + 30240(25( ) S(g'i))7
Ao
559 — oo (250 — 5),
A A
() _ M 450) _650) L 450) _ g(5) 0_(95() _ g5
88 — 75g (455 — 655 + 450) — 8 + 5572 (25 — S,
A A
(©) 4 AL (45(6) _ 55(6) 4 46(6) _ g6 0_(95(6) _ g(6)
S8 + 535 (45%) — 655 + 451 — 88)) — o5 (255 — S1)))

+O(RY), i=2n-2, (15)
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§0 4 B g _ 22 gn) | Ao g0

127 240 ° 6048 *

r oo o3) Ao o(3)
[z, 8:,8;,5;,5; +30240,S'Z ,

@) A0 (@) o) _ AL o3) Ao o(5)
S 604SS’ i 7205Z 3024SZ ’
§O 4 M gO _ A0 g6y L op8) 3<i<n—3, (16)

240 °* 3024 °

associated with the boundary formulas,

BS = ;080 + i 1S + i 25 + i s(SP + 30/\220 (45 — 35%)y)
Faga(85) — 0 (455 — 35())
+ais (S5 - ?210 (2055 — 4558 + 365> — 105%))
+oras? — 35)
ta6(SY + 2%(20% ) — 455 + 365 —105))
3324 (455 = 35)) + BioSn + Bi1 S + BiaSE
+Bi3(SP + 302040( sy —387))
(s — 015D, — 35(0))
+Bi5(SP) — 72—10(205@ — 458, + 3659, — 1089
"‘38\%(455?3 - 355574))
+Bi6(SE + ;410(205(62 — 4589, + 3659, — 1089
—%(4556,3 —389 )y =m, i=0,1,...,6. (17)

Let L' be the approximation of L defined as follows,

1
L'g =g{" + —/\39,(7)
Ly m

24029 +6048

w_ L@ e 1y e, 1,

9 " Goas 0% 9 T 7™ T 5094709
g 1 (e 1 (6)

+ 209 T 3093709 )

3 1 3
Ang( ) f(xi?giag;mg;,agyg ) + MAOQE )a



An O(h®) optimal B-spline collocation for higher order BVPs 37

and let B’ be the approximation of B defined in (17), and S(z) be the
spline of degree eight which is the solution of the system (1) — (2), then the
following relations hold,

L'S; = O(h®), 0<i<n,

B'S = O(1). (18)

For the convergence analysis first we need to recall and prove the following
Lemmas.

Lemma 2. If p = {pij} is an m x m matriz and p;; > Z;’nzl,i;éj lpij| + €,

fori=1,2,....,m, where ¢ >0, then we have ||p~!{|co < et

Proof. See Lemma 4 in [13]. O
Lemma 3. If the coefficients matriz of Sim in the equation L'S; = O(h?),
i =0,1,...,n, is denoted by Q7, then Q7 is nonsingular and ||Q; || is
bounded.

Proof. Using relations (13) — (16) we can obtain the (n+ 1) x (n + 1) co-
efficients matrix ()7 as
Q7 = 5515 %

91180 —144855 327246 —466043 --- 4482248 —291687 124918  —32853
5280 46000 26715  —52434 ... TAOTT  —64992 35493  —11402
104 3272 58404  —12709 --- 23054  —18771 9656  —2971

31 —438 6513 48268 .- 6513 —438 31 0

0 31 —438 6513  --- 48268 6513 —438 31

: : : : . : : : : :

0 0 31 438 .- 6513 48268 6513 —438

0 0 0 31 S 438 6513 48268 6513
21 4625  —2971 9656  --- —18771 23054  —12709 58404
—84 1827  —11402 35493  --- —64992 74077  —52434 26715
—9210 4536 32853 124918 ... —291687 4482248 466043 327246

Let E;, be the i-th row of Q7. Then by using the following elementary row
operations, this matrix can be converted to a strictly diagonally dominant:

1 1 1
Ey+ -FEs—-E,+-F E
2-1—2 377 4+4 5 — L,

1
E — §E2 + E3 —1.4F, 4+ 1.35E5 — 0.833FEs + 0.333FE7 — FEj,

0.1Ep +0.314E; — 0.847E5 + 1.61E3 — 1.56 E4 + 1.172E5

—0.4859E6 + 0.1666 E7 + 0.0407E3 — Ej,

1 1 1
En—2 + §En—3 - ZETL—4 + ZEn—5 — En—27
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By — %En_Q + By_3—1.4E,_4 + 1.35E,_5 — 0.833E,_g
10.333E, 7 — E, 1,

0.1E, + 0.314E,_1 — 0.847E,_o + 1.61E,_5 — 1.565,_4 + 1.172E,_5
—0.4859E,,_¢ + 0.1666 E,,_7 + 0.0407E,,_g — E,,

Hence, the matrix ()7 is strictly diagonally dominant and positive definite.
Therefore, using Lemma 2 we can conclude that ||Q; ||« is finite. O

4 Convergence analysis

We prove the convergence of the presented method via Green’s function
scheme. If we assume that the boundary value condition y(7) = 0 subjected
to homogeneous boundary conditions By = 0, has a unique solution, it
implies that there is a Green’s function G(z,t) for this problem [19]. Let
y(D = ¢ and S = 1, be the exact and the spline solutions of the problem
(1) which satisfy the boundary conditions (2). Then y(z) and S(z) and its
first sixth derivatives can be obtained as follows:

b 9z » b 9 (g
v0w = [ g, 30w - [ EEE Dy,

for+=0,1,...,6. We define the operators F,,, M,,,k and R as:
Fy: Cla,b] — R™1Y, Fog = [g(x0),.-.,g(z)]",
M, : R**! — C[a,b],  via piecewise linear interpolation at {z;}2,
k:Cla,b) = Cla,b], kg= f(z,Gpo(z),Gpi(x),...,Gpe(x)),

R: C[a7 b] - C[a7 b]7 Rg = f(xa QOFnGp,O(x)a sy QGFRGP,G(m))a

b 5i
t
where g € Cla,b], G, i(z) = / 3%127(2?7)9(75)6#7 i=0,1,...,6 and
o x
Qi = { Iontnxint), , 0<i<2,
’ The coefficients matrix of S@ in Eq. (18), 3 <i<T.

With the introduced notations, we can rewrite Eqs. (1) and (13)-(16)
respectively as:

y(7) - f(ac,y(:r),y'(x), s 7y(6)(x)) =¢—ko= (I - k)qs =0, (21)
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Q7F, S — f(2,QoFnS, Q1 F,S', ..., Qe FS®) = Q:F, 8V — F,Ryp = 0.

Since Q)7 is nonsingular and S (x) is a linear polynomial, therefore we
have the following relations:

F8O — Q7' FRyp = 0 = M, F, 87 — M, Q7' FyRyp = 0,

S - M,Q7'F,Ry = (I - MuQ7 'FuR)Y = (I —puR)p =0, (22)

where p,, = Manan. Notice that p,, is an operator from Cfa, b] into the
continuous piecewise linear functions with grid points z;.

Lemma 4. Let {A} be a sequence of partitions of the interval [a,b]. Then
the sequence of operators p, = MnQ;an converges to the identity operator
as h approaches zero.

Proof. We want to show that |p,g — g| — 0 for each g € Cla,b]. To do so,
we have

Ipng = gl < IMnQ; ' Frg — M, Frg]
< IMLIIQ7 I Frg — QrFugl|
< C*Han - Q?anH
< C*w(g, 10h),

where C* is a finite constant and w(g, €) = sup{|g(z+€')—g(z)| : z,z+¢€ €
[a,b],]€'| <e€}. When h — 0 we have, w(g, 10h) — 0. O

Lemma 5. Let g € Cla,b], then p, R converges to k.

Proof. By using the definitions of k and R we obtain

IpnRg — kg|| = [M,Q7'F,Rg — ky|
< M, Q7 F,Rg — M, F,kg| + | M, F,kg — ky|
< [|M, Q7Y |1F.Rg — QrF, Kyl + O(h?),

and since |M,,|| and ||Q; || are bounded, we have
lpnRg — kg|| < C||F,Rg — Q7F,Kgl| < Cw(g,104),
with
0 = max{10h,w(Gpo(z),17h),w(Gp1(z),17h),...,w(Gpe(z),1Th)}. (23)

w(Gyp j(x),17h), 0 < j < 6 convergence to zero as h approaches zero for
continuous functions G, ;(x), 0 < j < 6, so that by using Eq (23), § — 0
and w(g, 10d) convergence to zero. O
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Now we present the main convergence theorem.

Theorem 2. The error bounds for collocation approzimation S’(a;) € Sps(A)
satisfies,

Iy — 57| = 00f), j=0,1,2,
Iy — 5| =00, j=3.4,
Iy — 5| = oY), j=5,6,
-S| =0m?), j=1.

Proof. We consider the problem: S( = v, BS = O(h®). Let {A} be a
sequence of partitions of the [a,b] and the problem y(¥) =0, By = 0 has a
unique solution. So there exists a polynomial £(x) of order 6 as follows

Bt =BS =08, W] =008, k=0,1,...,6. (24)

From solvability of (S — ¢)(7) = v, B(S —¢) = 0 we obtain
(T = ML Q7 ' FuR)(ST) — 7)) = MLQ7 1 (QrF — FuR)(S — )17,
Using (18) and the boundedness of | M, and [|Q7!||, we have
(I =M, Q; ' F,R)(ST) —£0) = M, Q; 1 (O(h%)) = O(hY). (25)
Subtracting (22) and (25), we obtain,
(I = M, Q7 'FR) (ST — ¢ — §0) = 0(%),

and we have

(8T — ¢ — 80y = p, R(ST — ¢ — 5Dy L O(h®). (26)

The operator R is continuously differentiable. So Eq. (26) has an integral
equation form as following

1
(50 — D _ M) —p. < / (RSO + 1(sD) — e _ gm)]dt)
0
x (80 — ¢ — 80 + o), (27)

1
where {1,} = pp (/ (R[4 +t(S(7) —eM_ §(7))]dt>, is a sequence of
0

linear operators converging to R/(y(7). So we have

(817 — 0 = §0) = 7,(8T — 60 — §O) + O(").
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Since (I — 7,,)~! exists and its norm is bounded, we obtain

I(5 =€ = 8) Vo = OF). (28)
According to the hypotheses of the problem, (S —¢— ,S:')@ =r, B(S—¢—
S) = 0, has unique solution. So we can write (S —¢& — 9)( in the following
form
. Z ~
(S—¢—-89) = %(Sm — D —SDYt)dt, i =0,1,...,6, (29)
T
which implies that

Using the triangular inequality we obtain
Iy =)D < llly = 9PN+ 1S =8N+ €D, i=0,1,....86,

by using equations (18) and (24) and Theorem 1, we can obtain the results
of Theorem 2. This completes of proof. U

5 Numerical experiments

We present the results from numerical experiments to demonstrate the
performance of the presented method and verify the results of the analysis.
The obtained results has been compared with the references [21, 23, 3] and
the results tabulated in Tables 1-6, these results verify the accurate nature
of our purposed method in applications. The numerical computations have
done by the software Mathematica 10.

Example 1. The following linear seventh order boundary value problem
is considered:

yN(z) = zy(z) + *(z* =22 —6), 0<z<1,
subjected to the boundary conditions

y(0)=y(1) =1, ¥'(0)=0, y'(1) = —e,
y"(0) =—1, y'(1) =—2¢, y®(0)=-2.

€T

The exact solution of the problem is y(z) = (1 — z)e®. This example has
been solved by our method with A = %, the maximum absolute errors

in the certain points are tabulated in Table 1 and compared with [21, 23],
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which shows that our method is accurate. Also the example has been solved
with h = %, 11—8, %, %, Elz; and the maximum absolgte errors in the solutions
are tabulated in Table 2. In this table E; = ||y — 8)@||, 0<i <6
and O; is the order of convergence of i-th derivatives of y. This table also

verified that our approach are applicable and accurate.

Table 1: The maximum absolute errors in the solution of Example 1.

z  our method method in [23] method in [21]

01  1.03(—15) 3.42(—13) 4.66(—13)
0.2  2.08(—15) 6.25(—14) 5.71(—12)
0.3  5.71(—14) 1.42(—13) 2.13(—11)
04  9.52(—14) 8.84(—14) 4.69(—11)
0.5  8.82(—14) 6.43(—14) 7.43(—11)
0.6  5.05(—13) 1.52(—12) 8.92(—11)
0.7  1.91(—13) 1.48(—12) 7.98(—11)
0.8  1.82(—13) 4.94(—12) 4.67(—11)
0.9  1.05(—13) 5.38(—12) 1.09(—11)

Table 2: The maximum absolute errors in the solution of Example 1 with
various values of h.

h 3 i i 7 e
Fo,0p  1.5(—13),— 5.3(—16),8.1 1.9(—18),8.1 7.6(—21),7.9 3.0(—23),7.9
E1,01 5.6(—13),— 2.0(—15),8.1 7.8(—18),8  2.9(—20),8.1 1.1(—22),8
E», 05  4.2(—12),— 1.6(—14),8  5.9(—17),8.1 2.3(—19),8  8.9(—22),8
E3,03 8.9(—10),— 1.5(—11),5.9 2.3(—13),6  3.7(—15),6  5.7(—17),6
Eq,04  5.0(=9),—  81(=11),5.9 1.3(—12),5.9 2.0(—14),6  3.2(—16),6
BE5,05 3.1(—6),—  1.9(—7),4 1.3(—=8),3.9  7.9(—10),4  4.9(—11),4
BEs,0s 1.0(=5),—  6.6(—7),3.9  4.2(—8),4 2.7(-9),4 1.8(—10),4

Example 2. Consider the following nonlinear seventh order boundary
value problem,
y D (z) = y*(x)e”, 0<w <1,

subjected to the boundary conditions

y(0) =y'(0) =¢"(0) =y (0) =1, y(1)=y'(1) =y"(1) =e.
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Table 3: The maximum absolute errors in the solution of Example 2.

h our method method in [3] method in [21]
= 6.22(—15) 6.48(—11) 3.02(—14)

% 1.42(—18) 3.31(—14) ——

= 1.01(-19) 2.78(—15) -

The exact solution of this problem is y(z) = e*. First of all we solve this
problem for various values of h = %, %, % and compare with the results
in [21, 3]. Our results are shown in Table 3. Then we obtain E; and O; for
various values of h. The results are tabulated in Table 4. This table shows
that the orders of convergence in applications agree with those we obtained
theoretically.

Table 4: The maximum absolute errors in the solution of Example 2 with
various values of h.

h 5 i i 75 e
Fo,0p  1.5(—14), — 5.3(—17),8.1 2.0(—19),8  7.7(—22),8 2.9(—24),8.1
E1,01  5.9(—14),— 2.2(—16),8.1 8.3(—19),8.1 3.2(—21),8 1.2(—23),8.1
E2,02  4.3(—13),— 1.6(—15),8.1 6.2(—18),8  2.4(—20),8 9.3(—23),8
E3,03 1.0(=10),— 1.7(=12),5.9 2.7(—14),6  4.2(—16),6 6.6(—18),6
E1,04 52(—=10),— 8.4(—12),6  1.3(—13),6  2.1(=15),6 3.3(—17),6
B5,05 3.6(=7),—  2.3(—8),4 1.5(—9),3.9  9.2(—11),4 5.8(—12),4
Fe,06 1.1(=6),—  6.9(—8),4 4.4(—9), 4 2.8(—10),4 1.7(—11),4

Example 3. Consider the following nonlinear seventh order boundary
value problem,

y (@) +yW (@) — y(2)e!™) = e ((—4(=3 + )
telefl@leosz) (1)) cosz — 8(5 +z)sinz), 0<z <1,

subjected to the boundary conditions

y(0) =1, ¥'(0) =y(1) =0, y'(1) = —ecos 1,
y"(0) =y (0) = =2, (1) = —2ecos 1 + 2esin 1.

The exact solution of the problem is given by y(z) = e®(1 — z) cos z. First
we solve this problem with h = % and compared the errors in those special
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points given in [3]. These results are tabulated in Table 5, the results in
this table verified that our method is more accurate. Then we obtain E;
and O; for various values of h. The results are tabulated in Table 6.

Table 5: The maximum absolute errors in the solution of Example 3.

x our method method in [3]
0.125  L.15(—12)  4.74(—10)

0250  1.35(—10) 5.20(—9)
0.375  2.89(—9)
0.500  5.42(—9) 2.45(—8
)
)

0.625 4.96(—9
0.750 2.69(—9
0.875 1.94(—10) 3.29(—9

Table 6: The maximum absolute errors in the solution of Example 3 with
various values of h.

h 5 i i 75 e
Fo,00  3.8(—13),— 1.1(—15),8.4 6.3(—18),7.4 2.9(—20),7.8 1.2(—22),7.9
E1,01  4.6(—12),— 1.6(—14),8.1 6.3(—17),8  2.5(—19),8  9.8(—22),8
B2,02  1.7(=11),— 5.4(—14),8.3 24(—16),7.8 9.9(—19),7.9 4.1(=21),7.9
E3,03 1.2(=8),—  1.9(—10),6  2.9(—12),6  4.6(—14),6  7.2(—16),6
4,04 3.9(=8),—  58(—10),6.1 9.1(—12),6  1.4(—13),6  2.2(—15),6
E5,05 4.1(=5),—  2.6(—6),4 1.6(—7),4 1.1(—8),3.9  6.3(—10),4.1
Fs,06 T7.7(=5),—  4.8(—6),4 2.9(—7), 4 1.8(—8),4 1.2(—9),3.9

6 Conclusion

We developed a numerical method to solve the general nonlinear seventh
order boundary value problems by using eighth degree B-spline approxi-
mation. The numerical illustration shown the proposed method has the
O(h®) order of accuracy, so we can conclude that our method has highly
accurate and efficient in comparison with the other existing methods. Our
results obtained by the optimal O(h®) method are in good agreement with
the proposed numerical algorithm.
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